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We analyze the structural relationship between microscopic and macroscopic tensors

which characterize the linear- and nonlinear-optical properties of molecular crystals exhi-

biting a strong donor-acceptor intramolecular interaction, with particular reference to
methyl-(2, 4-dinitrophenyl)-aminopropanoate (MAP). The quasiplanar structure of the ac-
tive part of these molecules results in a strong and characteristic anisotropy of the optical
hyperpolarizabilities, which can be traced up to the macroscopic 1evel when taking into ac-
count the crystal symmetry as well as the orientation of the molecules in the unit cell. The
experimental data on MAP are thoroughly analyzed on this basis, and it is found that a
two-dimensional model of the lowest-order hyperpolarizability tensor results in a structural
relation between the macroscopic tensor components, which is in agreement with experi-
mental data. In addition, the principal dielectric axes of this monoclinic crystal are deter-

mined by the orientation of the aromatic plane in the unit cell. The overall analysis also en-

ables the determination of four independent components of the molecular hyperpolarizabil-

ity tensor from experimental data only, and the results have been compared to those of a
semiempirical intermediate neglect of differential overlap calculation. The anisotropy of
this tensor reveals that the intramolecular charge transfer responsible for the large optical

nonlinearity is predominantly from the amino group to the nitro group in para position,
rather than towards the nitro group in ortho position. Finally the overall analysis provides

a basis for discussing what should be the best orientation of the molecules in the unit cell

for maximizing the crystal nonlinearity. The result is that phase-matchable nonlinear coef-

ficients up to six times larger than in MAP could be observed in compounds with similar

molecular hyperpolarizabilities but an optimum crystal structure.

I. INTRODUCTION

The nonlinear optical properties of organic crys-
tals have received a fair amount of interest in recent
years, owing to their very large optical nonlineari-
ties' ' and higher efficiency compared to the
currently studied inorganic crystals.

A unique feature of these organic materials is
their ability to form molecular crystals, where inter-

molecular forces are usually much weaker than in-

tramolecular ones. ' ' As a-consequence, it has be-

come common practice to analyze, as a first ap-

proximation, the nonlinear optical susceptibility of
organic crystals in terms of the nonlinear response
of the molecules, ' ' ' neglecting any contribution
due to their interactions, apart from the usual
local-field correction factors.

Therefore, for a given compound, several ap-

proaches can be used concurrently, in order to gath-
er as much information as possible on its nonlinear

optical properties. For example, experimental data
can be obtained through second-harmonic genera-

tion in powders, ' in liquids, or in single crys-
tals. In order to relate the nonlinear susceptibility
tensors of single crystals to the hyperpolarizability
tensors of its constituent molecules, it is necessary
to make use of crystal structure data. In addition,
valuable insights into the origin of the nonlinearities
at the molecular level can be obtained from several
theoretical approaches, such as simplified
models or more refined computer-assisted
semi-empirical calculations. Since each of
these approaches can only provide partial informa-
tion, it is very fruitful to examine how all these re-
sults can be interrelated, so as to allow confronta-
tion and cross-checking of all available data. In
fact, few organic compounds have been studied by
several independent methods, and it has been found
worthwhile to perform a detailed analysis on an ef-
ficient material investigated in our laboratory,
methyl-(2, 4-dinitrophenyl)-aminopropanoate (MAP)
(Ref. 1). In this material, as in other compounds re-
cently demonstrated, ' the large second-order op-
tical nonlinearity is due to a strong intramolecular
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charge transfer between m-electron donors and ac-
ceptors interacting through a conjugated aromatic
ring. ' ' As discussed in Sec. II of this paper,
when this charge transfer occurs between one donor
and one acceptor, the corresponding hyperpolariza-
bility is basically a one-dimensional property direct-
ed along the charge transfer axis. However, when
three radicals are involved in the charge transfer
such as in MAP or in its parent molecule 2,4-
dinitroaniline, the hyperpolarizability is a two-
dimensional property within the aromatic plane.
As a result the linear and nonlinear dielectric ten-
sors must reflect the orientation of the aromatic
plane in the unit cell. This is readily shown for the
linear optical properties, through the orientation of
the principal dielectric axes, which are not deter-
mined by the crystal symmetry only. For the non-
linear optical properties, we derive in Sec. III, the
geometrical relationships between the tensor corn-

ponents of macroscopic and molecular nonlineari-
ties. We discuss how the above-mentioned two- or
one-dimensional hypothesis can be checked from
experimental data, and how the molecular non-

linearity components can be inferred from these

data.
In Sec. IV, a quantitative analysis of experimental

data is given for MAP, and the results are com-

pared to those of a theoretical intermediate neglect
of differential overlap (INDO) calculation. Finally,
in Sec. V we discuss what should be the orientation
of the molecules in the unit cell, for optimizing the
crystal nonlinear susceptibility. This consideration
has a practical interest, inasmuch as the crystal
structure can be modified more or less independent-

ly of the molecular nonlinearity. This can be
achieved by adding to a highly nonlinear molecule,

'

properly chosen radicals' ' which induce no basic
change in the electronic structure of the donor-

acceptor conjugated system, but modify the molecu-
lar geometry, the intramolecular forces, and hence
the crystal structure.

Quite generally, these molecules contain a planar
conjugated system (e.g., benzene ring, pyridine,
styrene, stilbene) with several donor or acceptor
substituent radicals, and the various nitroanilines
constitute a typical family of such molecules.

The well-known expressions that can be derived
from time-dependent perturbation theory for the
linear and nonlinear polarizabilities ' will be used
as a guidline for the discussion of the anisotropies
and are recalled in Appendix A. These expressions
involve a sum over the various excited states of the
molecule, and each term of the sum is proportional
to a tensor product of dipole matrix elements con-
necting the various molecular states. Among these
excited states, the ones that produce the strong ab-

sorption band in the near uv, usually observed in
the type of molecules we consider here, correspond
to an electronic charge transfer from a donor
to an acceptor radical, throughout the conjugated
system. As was realized in recent years '

these electronic transitions provide the major con-
tribution to the lowest-order hyperpolarizability of
these molecules, and in fact also constitute a size-
able contribution to the linear polarizability as well,
a contribution that has sometimes been termed "op-
tical exaltation. " From the symmetry of these
charge-transfer states, one can readily assess some
important features of the anisotropy of the polariza-

bility tensors of these molecules.
The simplest case to discuss occurs when only

one donor and one acceptor are located at opposite
ends of the conjugated system, as for instance in p-
nitroaniline. In such a case, depicted in Fig. 1,
there clearly is a well defined axis a, along which

the charge transfer interaction takes place. If we

neglect the out-of-plane protons of the amino

group ' the molecular symmetry is mm2, hence the
b

N02

p-NA

II. ANISOTROPY
OF THE ELECTRONIC POLARIZABILITIES

OF MOLECULES VPITH STRONG
DONOR-ACCEPTOR INTERACTION

H2N

NOp

NOp R*- NH

N02

N02

Before going into the details of the structural re-

lations between macroscopic and microscopic polar-
izabilities, we briefly discuss in this section which

qualitative features can be expected, concerning the
anisotropy of the electronic linear and nonlinear po-
larizabilities of conjugated molecules with strongly
interacting donor and acceptor groups.

MAP2,4-DNA

FIG. l. Chemical formula of p-nitroaniline (p-NA),
2,4-dinitroaniline (2,4-DNA) and MAP molecules, and
coordinate axes in the aromatic plane. R~ stands for
(CH3)-CH-(CO2CH3) chiral radical, and x also lies in the
XZ plane of MAP crystal.
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dipole moments, in the ground state as well as in

any excited state, must be along the a axis. If we
now turn to transition dipole moments, it can only
be said from group theoretical arguments that the
corresponding vectors must be either parallel to the
a axis, or perpendicular to one of the mirror planes.
However, for the transitions that involve an in-

tramolecular charge transfer, the corresponding
transition dipole is generally directed ' along the
charge transfer axis a. These transitions involve
essentially an electronic excitation from a nonbond-

ing z-donor orbital to a m.-bonding acceptor one
(nD~m~) As .a result, the charge transfer contri-
bution to the linear and nonlinear polarizabilities of
this type of molecule is clearly a one-dimensional

property, that is, the only nonzero tensor com-
ponents of these polarizabilities are the ones that in-

volve only the a subindex (a«, P«„etc.). This
feature is in fact fully confirmed by the results of
detailed quantum mechanical calculations on p-
nitroaniline.

We now turn to the more complex case for which

a single charge transfer axis cannot so readily be de-

fined. Representative examples of such molecules

among the nitroaniline family are ortho- or meta-
nitroaniline, 2,4,-dinitroaniline, etc. For all these
molecules, the relative positions of the substituent
radicals lower the molecular symmetry, leaving only
a mirror plane, parallel to the aromatic ring. The
same arguments as above apply to this restricted
symmetry with the result that the ground- and
excited-state dipole moments are in this plane, as
well as the charge transfer transition dipoles. As a
consequence, charge transfer contribution to the
linear and nonlinear polarizabilities of these mole-

cules have an intrinsic two-dimensional character.
In other words, if c is the axis perpendicular to the
molecular plane, the polarizability tensor corn-

ponents that involve the c subindex are zero. In or-
der to gain further insight into this problem, we
have derived in Appendix A the full tensorial ex-

pression of P for a two-level system. ' ' The re-

sult involves only two vectors, the transition dipole

po& and the difference of dipole moments

p,„,=p~~ —poo between excited and ground states.
So, within this model, P is one dimensional if these
two vectors are parallel to each other, and two di-
mensional in the other case. Quite strikingly, the
limitation of the number of states involved in the
nonlinear process results in a geometrical limitation
on the dimensionality (in real space) of this process.

Although the preceding arguments are thought to
be quite useful to predict the polarizability anisotro-

py, they may also be considered as an oversimplifi-

cation of the problem. So, with the aim of getting a
more precise picture of these anisotropies for the
MAP molecules, we have performed INDO calcula-
tions on the simpler, but closely related, 2,4-
dinitroaniline molecule. These calculations are de-
rived from a general model (I.CAO-Hartree-Fock
on all valence electrons) which does not require any
assumption on the number of relevant eigenstates.
This method can advantageously circumvent
lengthy excited-state expansions of the nonlinear
susceptibilities, such as classically result from a per-
turbational procedure. The procedure preferred
here consists in a straightforward diagonalization of
a semiclassical perturbated molecular Hamiltonian,
including a dipolar term coupling the electrons to
an external field. These calculations yield, in par-
ticular, the perturbated dipole moment of the mole-
cule. Repetition of the same procedure at different
suitable field orientations and intensities finally
yields derivatives of the dipole at zero field
(dp'!dE, d pldE ), corresponding to polarizability
and hyperpolarizability coefficients. The INDO
method makes use of a specifically approximated
LCAO-Hartree-Fock molecular Hamiltonian, in-
cluding all valence electrons of the constituent
atoms. It has been shown in Ref. 31 to account well
for signs and relative magnitudes of lowest-order
hyperpolarizabilities of aromatic substituted mole-
cules and has also been recommended recently for
predicting the anisotropy of molecular polarizabili-
ties.

As can be easily recognized from Fig. 1, the
MAP and 2,4-dinitroaniline molecules are expected
to possess very similar electronic properties, since
they are primarily governed by the strong in-
tramolecular charge transfer that takes place be-
tween the donor amino group (NHz or
NH —C2H4 —COOCH3) on one hand, and the two
acceptor nitro groups on the other. This similarity
has been pointed out and discussed in Ref. 25 and
indeed it was found that both molecules have al-
most identical dipole moments, near-uv absorption
spectra, as well as lowest-order hyperpolarizabili-
ties, as measured by electric field induced second-
harmonic generation. This is owing to the fact that,
compared to 2,4-dinitroaniline, the extra atoms
which constitute the methyl-propanoate radical in
MAP are quite neutral with respect to the other
part of the molecule; they induce no significant per-
turbation into the delocalized conjugated electrons
of that part and seem to bear no sizeable dipole mo-
ment by themselves.

Taking advantage of this similarity, we have per-
formed semiempirical INDO calculations on 2,4-
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dinitroaniline and calculated its dipole moment p;,
linear polarizability a;j, and lowest-order hyperpo-
larizability p Jk using the same procedure as
described in Ref. 31, namely by means of a finite-
field method.

The results of this calculation can be found on
Table I. The various tensor components have been
expressed using the (abc) reference frame depicted
on Fig. 1, with the a and b axis lying in the molecu-
lar plane, and the c axis perpendicular to it. When
considering the relative values of the calculated ten-
sor components, the most striking feature is the re-
lative weakness of the components involving the
out-of-plane c axis, especially for the hyperpolariza-
bility tensor p~jk. This fully confirms the preceding
qualitative prediction that this hyperpolarizability is
essentially two dimensional. This feature is not so
strong for a,z, which is not very surprising, since
the m-electron contribution is not so prevailing for
a;j as it is for peak. Inspection of the in-plane com-
ponents shows that P~a is somewhat larger than the
other ones, while a,z is not very far from isotropic
in the molecular plane.

In the next sections, the analysis of experimental
data on MAP crystals will confirm these features
for MAP molecules, in a completely independent
way.

III. GEOMETRICAL RELATIONS
BETWEEN MICROSCOPIC

AND MACROSCOPIC NONLINEARITIES

In this section, we discuss the mathematical as-
pect of the problem with explicit reference to the
monochnie point group 2, and we point out how a
lower dimensionality at the molecular level can in-

Dipole moment
{in Debye units)

Linear polarizability
{in 10 esu )

Lowest-order hyperpolarizability
{in 10 ' esu)

Pa
Pb

&aa

CXgb

&bb

&cc '

P ~

Pb:
Pabb

13»bb

Pace

P»-

—4.74
—4.27

23.7
0.1

19.8
4.0

—6.33
0.34
2.07

—0.43
0.08
0.09

TABLE I. Results of INDO ealeulations on 2,4-

dinitroaniline (2,4-DNA).

duce structural relationships between the tensor
components of the crystal.

A. General expressions

As usually done, we express the lowest-order non-

linear susceptibility tensor dJk of the crystal in

terms of the second-order hyperpolarizability P,P of
all the molecules s in a unit cell of the crystal,
through the relation:

dIJK fI fJfKQ g cli ~Jj CKkPijk
s ijk

where V is the unit cell volume, fi is a local field

factor appropriate for the crystal axis L and fre-

quency v, and the CL'I' coefficients are the scalar
products L l(s) of unit vectors along crystal axis L
and molecular axis l(s).

This equation can be greatly simplified if all the
molecules in a unit cell can be deduced from a par-
ticular one through the crystal symmetry opera-
tions. In that case, the molecular reference frames
l(s)i —i 3 are also deduced from a particular one
through these symmetry operations. For the mono-
clinic point group 2, the two molecules in the unit
cell are interchanged by a two-fold rotation around
the I'crystal axis and Eq. (1) becomes

dIJK=Nfq fJ fKbIJK

(3)
where

1 (s) (s) (s)bIJK= , g g CI.—CJJCKkPi, k .
ijk s=1,2

We note that the tensor biJz, in spite of its micro-

scopic nature, is expressed in the crystal reference
frame and is submitted to the same symmetry re-

quirements as dIJK. In addition, it refers to a single

average molecule, and consistently N =2/V is the
number of molecules per unit volume in the crystal.
Thus blJ~ represents the crystal nonlinear polariza-

bility per molecule. The introduction of this tensor
was found quite useful for the present purpose, and

its definition can be readily generalized to all crystal

point groups, whatever the actual number of mol-

ecules in the unit cell. Upon the twofold rotation,
the coefficients CII are multiplied by +1 if I.=F
and —1 otherwise, so that averaging over the two
molecules per unit cell comes to multiply the contri-
bution of one molecule by either 1 or 0. With the
additional assumption of the Kleinman symmetry
the tensor d, b, and P are symmetric under any in-

dex permutation, and there remains four indepen-

dent components for b, which are explicitly ex-

pressed as
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Iyrxz Q——Y;XjXkP,Jk,
ijk

(4a) 2=- Y

&nr=g Y YjYkP,k
ijk

(4b}

brzz =g YiZjZkp,
ijk

~YZX =g YiZjXkPij'k
ijk

where one has chosen an arbitrary molecule in the
unit cell and where, for instance, F; are the com-
ponents in the molecular reference frame of the Y
unit vector of the crystal frame. The generalization
of Eqs. (3) and (4) to other crystal point groups of
interest can be found in Ref. 46.

Noting through Eq. (2) that the tensor biy» can
be readily determined from the experimental data

dlJ~ measured by second-harmonic generation, we
now consider under which conditions the system of
Eqs. (4a) to (4d} can be solved for p;ik.

In the general case of a molecule with no symme-

try, the number of independent components of p;jk
is 10 (with Kleinman symmetry), and these indivi-

dual components cannot be determined from experi-
mental data. Strictly speaking this is the case of
MAP, but as discussed in Sec. II, the active part of
the molecule is a planar aromatic ring (symmetry
m) with a pronounced two-dimensional character.
We shall therefore consider the consequences of
these properties on the structure of Eqs. (4a) to (4d).
The mirror symmetry assumption restricts the num-

ber of independent components to 6, which is still
too much for a complete determination of P. This
number is reduced to 4 for a two-dimensional sys-

tem, the components being P~, P„yy, Pyyy, and

Py~. In the following subsection, this case is

analyzed in more detail.

B. Analysis of the two-dimensional case

At first sight it may seem that the four unknown

components of P can be exactly determined from
the four equations (4a) to (4d). However the explicit
calculation reveals that this linear system of equa-

tions is singular.
Figure 2 describes a convenient choice of coordi-

nate systems for the crystal axes and the molecular
axes. Since only the F crystal axis is imposed by
symmetry, the X axis can be arbitrarily chosen in
the plane perpendicular to K We choose it to be
also in the molecular plane, so that X=x is a com-

crystalline
axes

dIJK or ~IJK
(&2 &) = = (XYZ)

Eqs.(7)

mon axis for macroscopic and microscopic refer-
ence frames, and call a the rotation angle around
this common axis that transforms y into Y. Consid-
ering the two molecules in the unit cell, axis X=x
is simply the intersection of the corresponding
molecular planes, and 2a is the dihedral angle be-
tween these planes. With this choice Eqs. (4a) to
(4d) now take a very simple form:

&YXX =COSa P xx,

&rrr =COS a Pyyy
3

2
&rzz COSa S111 a Pyyy

b»rz = —sina cosa P ~

(5a)

(5b)

(5c)

(5d)

This form displays the singularity of the linear sys-
tem of equations: the tensor b does not depend on

P~, which also means that this coefficient cannot
be reached from second-harmonic generation data
on the crystal, In addition, Eqs. (5b) and (5c) are
proportional. In other words the two-dimensional
assumption implies a structural relation between

two components of b, namely,

hygro/byway
——tan a . (6)

This is a predictive relation that can readily be test-
ed from experimental data using Eq. (2), assuming
that the crystal structure is known.

Eqs.(5)

molecular
axes (abc) = = (xyz)8

Eqs(8)
FIG. 2. Coordinate axes for the transformation be-

tween p;;k and biJ» (top), and summary of the geometri-
cal transformations discussed in Sec. III B (bottom).



STRUCTURAL DEPENDENCE OF NONLINEAR-OPTICAL. . . 2021

Finally we note that the coordinate system
sketched on Fig. 2, chosen for geometrical reasons,
is not necessarily the most convenient one when dis-
cussing separately macroscopic and microscopic
quantities. Conventionally, the dry tensor is ex-
pressed in a reference frame [let us call it (123)] re-
lated to the crystallographic (or dielectric axes), and
similarly a natural reference frame for discussing
the hyperpolarizability tensor ]]3;ik is related to some
particular atoms in the molecule, as are the a and b

axes, in Fig. 1. Thus one generally needs to rotate
the dlJ]r tensor in the XZ plane and the Pjk tensor

in the xy plane. These rotations are expressed as

dry co——s gd2]]+sin gd233+sin2$dp]3

dry =d222 s

drzz =sin fd2»+cos lf d233 sin2gdg]3,

(7a)

(7b)

(7c)

drzz=smfcosp(d233 d2]])+cos21{]dz]3 & (7d)

where one goes from (XYZ) to (123) systems
through a rotation of angle ]I( around the Y—:2 axis.
For the two dimensional P tensor, the transforma-
tion is

Ps„———singcos OP~+( —sin 8+2cos gsing)P„»»+(cos38 —2cosgsin28)P „„+cosgsin OP»»»,

Psst ———sin OP~ —3singcos 8]8~»+3cos8sin 8]8»~+cos OP»»»,

P by=sin OcosgP +(cos 8—2sin gcosg)]g»»+( —2cos gsing+sin 8)P»„„+singcos OP»»,

P„,=cos OP~+ 3cosgsin OP~»+3cos OsingP» +sin OP»»»,

(8a)

(Sb)

(Sc)

(8d)

where 8 is the rotation that brings the (xy) system in
coincidence with any other orthogonal (ab) system,
such as the one displayed on Fig. 1.

C. One-dimensional case

This case can be derived from the previous one by
letting the y direction in Fig. 2 along a one-
dimensional oscillator axis. Thus P»»» is the only
nonzero component of P, Eqs. (Sb) and (Sc) are un-
changed; hence Eq. (6) also and Eqs. (Sa) and (Sd),
together with Eq. (2), lead to

drxx =drxz =O . (9)

(d2]3)

d2»d233
(10)

%'e note that the orientation of the one-dimensional
axis need not be known for testing this relation.

These relations imply that if g is an arbitrary
direction in the Xz plane, the tensor component
dry, which varies sinusoidally when rotating g
around Y, should have its maximum when g is
along Z and a zero minimum when g is along X.
This behavior can be tested experimentally with a
fairly good accuracy, and it constitutes a charac-
teristic signature of the one-dimensional case.
Another relation, equivalent to Eq. (9), is found in
terms of the (123) reference frame, using Eqs. (7a)
to (7d), and reads

D. Relations for the linear polarizabilities

where the diagonal tensor aLI represents the aver-
age linear polarizability of the crystal per molecule,
just as the blJ~ tensor is related to the lowest-order
nonlinearity dl&z. Taking now into account the
crystal symmetry (monoclinic point group 2, with
two molecules per unit cell), the alJ]r tensor is relat-
ed to the molecular polarizability a,j through

2
1 (s) (s)a,J= —,g g Cri CJJ a]J.

ij s=1
(12)

a relation which is of course the direct analog of
Eq. (3). We note that in Eq. {12) the macroscopic
(I,J,K) and microscopic (i,j,k) reference frames can
be chosen quite arbitrarily, which was not the case
for Eq. (11). Owing to the twofold symmetry axis
of the crystal, the aIJ tensor has four independent
components, aux, a~~, azz, and axz, with F along

Quite similarly to the previous analysis, one can
relate the crystal refractive indice nz to the linear
polarizability tensor a;J of the molecules, again as-
suming for simplicity that the intermolecular in-
teractions have a negligible effect.

If we make use of the principal dielectric axes as
a reference frame and assume a Lorentz local-field
correction, one is led to the so-called I.orenz-
Lorentz relation

nL —1
2

QLL =
4~% n~+2
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the twofold axis, the X direction being arbitrary in
the perpendicular plane. For molecules with no
symmetry at all, the a;J tensor has six independent
components (here we neglect the eventual contribu-
tion of optical activity, which usually is relatively
small). However in many cases one of the principal
axes of the a;J tensor is fixed by symmetry, along a
rotation axis or perpendicular to a mirror plane.
This reduces the number of independent com-
ponents to four. If we call z this principal axis,
these components are a~, u„y, uyy and u~. It
turns out that the 4)&4 matrix which relates the ai&
components to n;J components is again greatly sim-
plified if one uses the reference frames depicted on
Fig. 2, with x and X being a common axis. In that
case Eq. (12) becomes

aXX =&xx ~

aYY ——(cos a)a~+(sin a)a

azz ——(sin a)a~Y+(cos a)a~,

azz ———(sina)a„Y .

(13a)

(13b)

(13c)

(13d}

Two comments. can be made from these equations.
If a,j. is approximately isotropic in the xy plane or
if x and y are principal axes of a,z, then o,~y is zero,
and from Eq. (13d) one concludes that X and Z
should be two principal dielectric axes of the crystal
(a~z ——0). This remarkable fact is found to be veri-
fied for MAP crystals, as described in Sec. IV. The
other comment is that if we make the two-
dimensional assumption for a;J (a =0), the fol-
lowing relation results:

azz/a YY ——tan a (2D case ) (14)

which, of course, can be compared to Eq. (6}, and
yields

b YZZ /~ YYY ~zz /~ YY (15)

+xx aXX s (16a)

ay@
——(cos a QYY —sin a Qzz)/cos2a,

a =(cos aazz —sin aa YY}/cos2a,2 (16c)

In fact, none of these assumptions are necessary
for inverting the system of Eqs. (13a)—(13d), and
the resulting equations are

IV. ANALYSIS
OP EXPERIMENTAL DATA ON MAP,

AND COMPARISON
WITH INDO CALCULATIONS

We shall now apply the previous analysis to the
second-harmonic generation (SHG} results on MAP
in the crystalline state' as well as in solution, mak-
ing use of the crystallographic data obtained by
Knossow et al.

The nonlinear coefficients of MAP crystals in
Ref. 1 were expressed in a (123) direct orthogonal
system with axes 1 and 2 parallel to the crystallo-
graphic axes [100] and [010], respectively. From
the atom coordinates given in Ref. 47 we have cal-
culated the angles a, 8, and P relating this (123)
reference frame, which also appears in Fig. 2, to the
(ab} axes appearing on Fig. 1, and the results are
given in Table II. The molecular plane was calcu-
lated from the coordinates of the three nitrogen
atoms of MAP molecules. As sketched on Fig. 1,
the a axis is directed from the nitrogen atom of the
amino group to the nitrogen atom of the nitro
group in para position.

As already mentioned in Sec. III0, the intersec-
tion of the XZ plane with the molecular plane is
found nearly parallel to the principal dielectric axis
of highest refractive index. Since this axis was
named Z in Ref. 1, one has to compare g in this pa-
per to u =37' of Ref. 1. The agreement is within 1',
comparable to the quoted experimental uncertainty
on u (0.5'). Such a coincidence can actually be in-
ferred from Eq. (13d) and the INDO results show-

ing near in-plane isotropy of the molecular polariza-
bility.

To analyze the SHG results, we first expressed
the dlJz tensor in the XYZ axes, using Eqs.
(7a)—(7d). Then we calculated the components of
br', using Eq. (2). For simplicity we used the
Lorentz local field factors

fr. = [(&r".)'+2]/3, (17)

where L =X,Y, or Z and @=co or 2'.
In this formula, we took advantage of the near

exact coincidence of the XYZ axes with the princi-
pal dielectric axes of the crystal, so that the pub-
lished values of nx, n~, and nz were directly used
for the calculation of the local field factors, apart

a~y = —gxz /slna, (16d)
TABLE II. Calculated values of a, 8 and P obtained

from crystal structure data (Ref. 47).

which enables us to calculate the full a;~ tensor
from the experimental refractive indices, using Eq.
(11). 36.89' 14.11' 36.05'
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TABLE III. Components of the b tensor, derived
from SHG experimental results of Ref. 1. Units are
10 '0 esu.

30

20

buzz brxz

—1.62 —3.59 —1.93 —1.12

TABLE IV: Comparison between experimental and
theoretical ratio of coefficients.

Experimental Theoretical Hypothesis

b yx~

/hyped

d 213 ~~d211d233 ~

0.54
0.005

0.56
1

2D
1D

from the above-mentioned interchange ofIwith Z.
We use N =3.2&(10 ' moleculeslcm, as calculated
from the crystallographic data, and the final results
for biz are given in Table III.

Note that the overall absolute sign of the dry
tensor was not experimentally determined in Ref. l.
However, the solution measurements have shown
that the scalar product g,. p;P;ij where p; is the i

component of the molecular dipole, is positive.
From this, and from the orientation of the molecule
in the crystal, we infer that the vector part of dry
should be oriented along —Y, in other words the
sum d~II+dqqq+d~33 should be negative. This
condition removed the overall sign indeterminacy.

One is now in a position to test the validity of
one-dimensional or two-dimensional approxima-
tions for describing the P tensor of MAP. Table IV
shows the comparison between experimental and
theoretical values of the quantities expressed in Eq.
(6) for the two-dimensional assumption, and Eq.
(10) for the one-dimensional assumption.

Obviously the one-dimensional approximation is
not satisfactory, which is also indicated by the fact
that the effective nonlinear coefficient displayed in

Fig. 3 or Ref. 1 does not go to zero minimum when

rotating the crystal around the Y axis: No X direc-
tion can be found for which Eq. (9) would be veri-

fied.
In contrast the agreement with Eq. (6) is fairly

good. This result supports the two-dimensional as-
sumption, in agreement with the theoretical find-
ings. Therefore we shall complete the analysis of
experimental data within the framework of the
two-dimensional model.

The values of br' in Table III, together with
Eqs. (Sa)—(5d), allow the determination of three
components of P, the result of which is given in
Table V. Since P cannot be determined by this
method, one can now make use of another available

10

V)
Qro Q
C)

:=-10

-20

3Q ) )

3600 180
e (degrees)

FIG. 3. Variation of the molecular P;~) components
upon rotation of MAP molecules in the ab plane. The
numerical values are those of Table V.

90

experimental data, obtained on MAP in solution by
electric-field-induced second-harmonic generation.
This data is the projection Pz of the vector part of
P along the dipole moment direction, and its value 5

is P&
——+22X 10 ' esu. From the results of the

INDO calculations it is found that the dipole mo-

ment direction makes an angle q=222 with the a
axis. Using these results, one readily determines

P~ from the relation

&p=(P~+& yy )cos(~+n)

+ (Py +Bye )»n(&+ ri)

and the numerical value of this last component is
also given in Table V.

One immediately notes that the largest of these
components is precisely the one that does not con-
tribute to the optical response of the crystal, which
is rather unfortunate. In the next section, we shall
examine in some details how much could be gained
if the orientation of the molecules in the crystal
were more favorable.

In order to compare these results with the INDO
calculations it is necessary to express P in the (ab)
reference frame, which is performed with the help
of Eqs. (8a)—(8d). The results can be found on
Table V. The validity of a confrontation between
INDO and experimentally inferred values of P is
limited by the extreme sensitivity of the tensorial
coefficients, in particular the sma11er ones

(P,ss, P&«), to small rotations of angle 8 around c,
as appears from Table V. INDO calculations have
been performed on a "model molecule" of MAP,
namely 2,4-dinitroaniline, with a resulting uncer-
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TABLE V. Components of the two-dimensional ten-
sor P as derived from experimental data on MAP [Eqs.
(5) and (18)]. Units are 10 '0 esu.

—28.5
i3
—27.1

+ 2.3
le
+ 5.6

—6.8
Pabb
—0.48

—2.0
Pbbb
—7.7

tainty on the definition of the best relative orienta-
tions of the substituent groups. This may result in
a considerable discrepancy between theory and ex-
periments on the smaller nonlinear coefficients. A
common tendency showing up consistently in both
calculated and experimental results is the marked
anisotropy of the P tensor (i.e., P«, much larger
than other coefficients) corresponding to a prevail-
ing charge transfer in the para direction, and the
negative sign of P«, (consistent with a charge
transfer from the amine donor to the nitro acceptor
groups). Although rather anisotropic, both experi-
mental and theoretical P tensors exhibit a definite
two-dimensional extension, as shown by the impos-
sibility of satisfying in both cases such relations as

Pbbb ~Paaa (Pabb ~~baa )

demanded by a one-dimensional extension.
The refractive index data have also been analyzed

along the lines of Sec. III I3, taking into account the
dispersion behavior, which was experimentally
determined in Ref. 1, for optical wavelengths rang-
ing from 0.509 to 1.318 pm. In order to make the
best use of these data, the tensor components
aLL (Az) where calculated using Eq. (11), at each
wavelength Az for which the refractive indices had

been measured. The wavelength dependence of at L
has then been put in analytical form, with a least-
squares fit to Sellmeier-type equations:

A,
2

aLt (A, ) =aLt +a LL 2 2
—a Lt A, . (19)(O) (1) L (2)

—Arl

The result of this calculation is given in Table VI,
expressed in the same reference frame as the br'
tensor in Table III. If we neglect the last term in

Eq. (19), which accounts for the vibrational absorp-
tion bands in the infrared, then a' ' corresponds to
the zero frequency limit of the electronic polariza-
bility, while the a'" term gives the dispersion of the
first electronic absorption band in the near uv.
Since this electronic transition corresponds to the
intramolecular charge transfer it is instructive to
test the two-dimensional hypothesis on this
resonant term. Indeed, the ratio azz/aq'~ is not
very different from the value of tan a (0.50 com-
pared to 0.56) as predicted by Eq. (14). This is
again a confirmation of the two-dimensional nature
of the charge-transfer contribution to the polariza-
bilities. Qn the contrary this relation is not verified
for a' ' term, which is not surprising since this term
contains the contributions of all the higher-lying ex-
cited states of the conjugated part of the molecule,
as well as the contribution of the chiral radical,
which of course is not expected to be two-
dimensional. Finally, the various components have
been converted back to the molecular reference
frame using Eqs. (16), and the numerical results are
also given in Table VI. The nonphysical negative
value of a~' arises from the nonexact compensation
of the two terms in Eq. (16c); however this com-
ponent can be considered as being essentially zero.

TABLE VI. Linear polarizability results obtained
from the refractive indices of MAP crystals. See Eqs.
(11), (19), and (16). Units for a' ' and a'" are 10 esu
and fora' ' are 10 ' esu.

V. OPTIMUM MOLECULAR ORIENTATION
FOR MAXIMIZING

THE CRYSTAL NONLINEARITY

Sellmeier term

&xx

~rr
&zz

~xz
&xx

&xy

a~

+aa

&ub

bb
&cc

(0)

32.5
24.9
22.0
=0
32.5
~Q
28.6
18.3
32.3

—0.9
28.8
18.3

5.3
2.6
1.3
~0
5.3
~Q
4.3

—0.4
5.2

—0.24
4.4

—0.4

(2)

0.42
0.19
0.20
=0

A,L, (pm)

0.377
0.413
0.406

Since the full nonlinear tensor of MAP molecules
has been determined in the preceding section, we are
now in a position to calculate what is the highest
crystal nonlinearity that can be expected from com-
pounds with similar molecular hyperpolarizabilities,
but an optimized crystal structure. For simplicity,
we discuss this optimization within the monoclinic
point group 2, but this approach can be generalized
to other point groups.

As can be seen from Eqs. (5a) —(Sd) and
(8a)—(8d), an optimum value of 8 and a can be
found for each particular tensor component bljz
under consideration. We shall therefore consider
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each case individually. In addition, we note, that
the optimization can be carried out independently
on 8 and u, which simplifies considerably the
analysis.

A. Optimum value of b»x

Equation (5a) indicates that the optimum value of
a is a =0, that is, when the twofold axis lies in the
molecular plane. In addition we need to rotate the

Pjk tensor within its plane, in order to find the
maximum value of I3y~(g). In Fig. 3 is given the
variation of this component as a function of 0, us-

ing the experimentally determined P,zk tensor (Table
V) and the inverse of the transformation expressed
in (8a) —(Sd). From this we find that

I bronx I max=
I
I yxx I max

—30
n=O

=14.2)&10 esu
& 47

the principal charge-transfer axis a is nearly parallel
to the Y crystal axis (8—90'=10.6'). This situation
is very close to that of 2-methyl-4-nitroaniline
(MNA), for which the second-harmonic coefficient

dxx» has been measured to be dxxx(MNA)
=500d»(Si02) =-6X 10 esu. For the comparison,
one also has to note the difference in molecular
packing density [%=5.5X10 ' molecules/cm3 in
MNA (Ref. 5)j. The simpler structure of MNA ac-
counts for the more favorable value of N.

C. Optimum value of b~z

From Eq. (Sc) we see that the optimum value of
a is obtained for 3cos a —1=0, i.e., a =54.74', and

that the best value for 8 is the one that maximizes

Pyyy. Therefore the result is

2
IbYzz I

max= ~
I Pyyy I max3'v 3

(20)
/

With this molecular orientation, and from the ex-
perimental polaHzability tensor a(J we estimate
n~-1.81 and n~"-1.97 which, for the same molec-
ular packing density as in MAP (% =3.2X10 '

moleculeslcm ), would give, through Eq. (2) and
Lorentz local-field factors,

o, =54.74'
—= 11&10 esu 8=100.6

(24)

which, together with the estimated refractive in-

dices riz-=1.68 and nz -=1.56 for this orientation
would lead to

(dr~x)m, „=2.7X10 esu . (21) (drzz), „=1.3X10 esu .

B. Optimum value of b~

(22)

This molecular orientation yields n~-1.84 and

nz -2.03, which would give

(d„„„)m,„=6.1X 10 esu . (23)

This value is substantially larger than the best
d &zan value; however it is not very useful for
birefringence phase-matched nonlinear interaction.
We note that the optimum orientation is such that

From Eq. (5b) the optimum value of a is also
a =0, but in this case we need to find the maximum
value of Pyyy(e). The variation of this coefficient is
also given in Fig. (3), and the optimum value is

I
brn'

I
max=

I I yyy I max

a=0
8 7g 10 esu 9= 100.6'

—30

We note that the optimum values of bzxx and

buzz are not very different in magnitude. This is
because in the two-dimensional tensor P,jk, one

component is much larger than the other ones. Ac-
tually, if P;Jk were strictly one-dimensional (P;Jk =0
except for P„,), one would have

a =54.74'
YXX Imax 3~3 Paaa g 35

(b

a=O
(b rrr )max Paaa g () ( 1D case )

a=54.74'
(bYzz )max ~ I aaa g 9()'3v3

and consequently the optimum values of bye and

buzz would be equal. In fact, in the one-
dimensional case there is no need to consider the
molecular plane any longer, but only the angle g be-
tween the a and F axes, and in either cases
(a=0, 8=35.26', and a=54.74', 8=90') this angle
is g =54.74', which maximizes the product
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sin g cosg'.

Finally, we note that the optimum value for diaz&
is 6.7 times larger than the phase-matchable coeffi-
cient d2~ in actual MAP crystals, which shows that
a significant improvement can be expected from an
optimized crystal structure. As far as the d~z
coefficient is concerned, the potential gain is still
larger (roughly 14 times larger than the dzz of
MAP), and in fact the actual crystal structure of
MNA (Ref. 4) approaches this optimum orientation
very closely, which is very useful for electro-optic
applications.

VI. CONCLUSION

This detailed analysis of structural relationships
between microscopic and macroscopic tensors of
MAP has provided new interesting information on

the individual polarizability and hyperpolarizability
tensor components of MAP molecule, and it has
confirmed that a two-dimensional model is ade-

quate for describing its lowest-order hyperpolariza-
bility tensor with a fair degree of accuracy. Inspec-
tion of the in-plane anisotropy of this tensor reveals
that the intramolecular charge transfer responsible
for the large optical nonlinearity is predominantly
directed towards the p-nitro group rather than to-
wards the 0-nitro group in this 2,4-dinitroaniline

derivative. However a strict one-dimensional model

does not lead to a correct prediction of the crystal-
line nonlinear coefficients, because in the crystal
structure of MAP the predominant charge-transfer
axis a is nearly perpendicular (-79') to the twofold
symmetry axis. Naturally, this considerably lowers
the contribution of the P„, component and

enhances the relative weight of the other in-plane
components. From a practical point of view, one

APPENDIX A: LOWEST-ORDER
HYPERPOLARIZABILITY TENSOR

IN THE TWO-LEVEL APPROXIMATION

Time-dependent quantum-mechanical perturba-
tion theory allows us to express the nonlinear polar-
izability tensors ' in terms of the energies
fico~=E& Eo of exci—ted states and of matrix ele-
ments p~=(p

~ p; ~
q) of the dipole operator be-

tween states p and q. The hyperpolarizability tensor

p,jk for second-harmonic generation relates the peak
amplitude p; of the second-harmonic dipole to the
peak amplitude EJ" of the fundamental electric field
through the relation

2' 2ci7 cap co
pl PljkEJ k

where P,&~ is expressed ' by

(Al)

can conclude that the molecular orientation in
MAP crystals is not particularly favorable, and
phase-matchable nonlinear coefficients up to six
times larger could be obtained with an optimum
crystal structure. This point stresses the central im-
portance of molecule orientation in the search of ef-
ficient nonlinear materials and should stimulate fur-
ther studies in this direction.

Finally, we note that this anlysis can be easily ap-
plied to any molecular crystal with point group 2
symmetry and could be used to further check the
degree of generality of the two-dimensional assump-
tion for the lowest-order hyperpolarizability of in-
tramolecular charge-transfer molecules. Extension
of this analysis to the other nancentrosymmetric
point groups allows us to perform similar studies
on a larger variety of molecular crystals.

2 2
cgpcoq +2Q) k . ) GopNq —co

@Jk z X Pos (I wI so +I me~co ~ z 4 z„z z, +&o~&p~~eo 2 2 2 2)2A
P~C

(N —4N )(N —N ) &N —N J(N —Np )( q

(A2)

(A3)

where the sum runs over all energy states of the system.
If werestrict this sum to only two levels, the ground state ~0) and the excited state

~
I), there remains only

four terms in this sum (p, q =0,1). It can be readily seen that the term p =0, q =0 is identically zero. In addi-
tion, each praduct in the term p = 1, q = 1 can be associated with a correspondin~ product of the terms p = 1,
q =0 ar p =0, q =1, and the final result depends only on the difference 5i =alii —@to between excited- and
ground-state dipole moments. %ith this notation, and m~ ——po~ for the transition dipole moment, we get

5;mjmk coi+2co
pg(2 levels) =

z +m;(mj5k+5jmk) z z z2 coi —co (coi 4' )(coi —N)—
From this expression, we note that the nonlinearity
of a two-level system is a two-dimensional tensar,

since it involves only tensor products of the two
vectors 5 and m [any component involving the z
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axis perpendicular to the (5,m) plane is zero].
Furthermore, if 5 and m are parallel, then P is one-

dimensional. Because of the two different
frequency-dependent factors in (A3) the Kleinman
symmetry relation is only valid in the limit of zero
frequency, which reads

(pjk)„o= 2 2 (5;mjmk+m;5lmk+m;mj5k)
2A Co/ (A4)

2A (to]—4to )(to]—co )
(A5)

and is proportional to the symmetrized tensor prod-
ucts S(5Xm )&m). Finally, we note that Eq. (A3)
exhibits a simple dispersion behavior for i =j =k,
leading to
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