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The collective interaction in a free-electron laser with combined helical wiggler and uni-

form axial guide fields is presented in the linearized regime. The analysis involves a pertur-

bation of the Vlasov-Maxwell equations about the constant-velocity helical trajectories, and

the general driving currents are derived for this configuration. The complete dispersion

equation is then obtained for a monoenergetic beam. Analytic solutions are obtained in the

strong pump and space-charge dominated regimes, and an extensive numerical analysis is

presented for a wide range of operating parameters. The results indicate that substantial

enhancements in the gain are possible when the relativistic axial gyrofrequency is compar-

able to the free-electron laser doppler upshift. In addition, there is a range of parameters

for which the ponderomotive potential acts to destabilize the electron beam. In this regime,

we find both unstable electrostatic beam modes and largely electromagnetic modes with

broad bandwidths.

I. INTRODUCTION

The physical process which gives rise to wave
amplification in free-electron lasers stems from the
interaction of a relativistic electron beam with a
spatially periodic magnetic field (i.e., the wiggler or
pump field) applied largely transverse to the direc-
tion of bulk electron motion. The effect of the
wiggler field is to provide a coupling between the
electron beam and electromagnetic radiation fields
which results in a ponderomotive force along the
axis of the beam. The form of the interaction can
be classified in a variety of ways depending upon
such parameters as the magnitude of the electron
current, the strength of the pump field, the bulk en-

ergy and energy spread of the beam, and the length
of the interaction region. For example, on the one
hand, thermal effects can be neglected when the en-

ergy spread in the beam hE «Eo/X, where Eo is
the bulk beam energy and X is the number of
wiggler periods in the interaction region. In this re-
gime the entire electron beam participates in the in-
teraction; however, collective (i.e., electrostatic) ef-
fects are important only when the fluctuating
space-charge potential is comparable to the pon-
deromotive potential. The interaction in this collec-
tive regime is referred to as stimulated Raman
scattering, and describes the coupling of a
negative-energy space-charge wave and a positive-
energy electromagnetic wave through the presence

of the wiggler. On the other hand, when thermal
effects are important, the radiation is resonant with

only a small fraction of the beam and the process is
termed stimulated Compton scattering. We shall be
concerned in this paper with the cold-beam limit,
and deal with both the single-particle and collective
regimes.

An additional factor in the interaction is intro-
duced by practical limitations in the propagation of
intense electron beams; specifically, that an axial
guide field is required to collimate intense beams in
the transverse direction.

'

This is of primary impor-
tance to free-electron laser experiments operating at
millimeter wavelengths' which employ relatively
high-current (& 1 kA) and low-energy (-1 MeV)
electron beams. In contrast, an axial guide field is
not a practical necessity for infrared free-electron
laser experiments which typically operate at
much lower ambient currents (-1 A) but higher en-

ergies (-50 MeV). However, the effect of the axial
guide field on the free-electron laser mechanism
may be relevant in the latter case as well because of
enhancements in the gain which may result when a
guide field is present.

The effects of an axial guide field have been
treated from the standpoints of both a fluid ' and
a kinetic theory. It is our purpose in this work
to treat the question of the free-electron laser insta-
bility in the presence of an axial guide field in both
the tenuous (i.e., single-particle regime) and dense
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(i.e., Raman regime} beam limits by means of a
solution of the Vlasov-Maxwell equations. In the
interest of analytic tractability a cold-beam approxi-
mation is imposed, and the contributions due to cy-
clotron mode interactions are included. The organi-
zation of the paper is as follows. In Sec. II, we
develop the fiuctuating source currents by solution
of the Vlasov equation. The unperturbed orbits are
assumed to be constant axial velocity (helical) trajec-
tories, ' '" and the source currents are found for a
general equilibrium distribution. The general
dispersion equation is obtained in Sec. III, and
solved in several analytically accessible regimes for
a cold-beam limit. A detailed numerical solution is
presented in Sec. IV for a wide range of operating
parameters. A summary and discussion appears in
Sec. V.

proximately by stable helical trajectories, and
writei5 "

p„=ymu~cosk~z+P„cosQot —Py sinQot,

py =ymv~sink~z+P„sjnQot +PycosQot,

P, =ymU
~ ~

—P~ [P„cos(k~z —Qpt)

P„s—in(k„z Qp—t )],

(4)

where U:—Q„U~~ l(Qp —k~u~~) and
U~~ are the trans-

verse and axial velocities corresponding to the
helical trajectories, Qp

—=
~

e8p lyme ~,
y=(1 —U /c ) '~, p~=U„/U~~ is the pump
strength parameter, and P„and Py are constants
which correspond to the canonical momenta in the
limit as 80~0. Equations (4) are valid as long as

~ p„Pxz
~

&&
~ ymu~~ ~

and require that U and U~~

are related via

II. THE SOURCE CURRENT

In this section we derive the fluctuating source
current by means of solution of the linearizcd
Vlasov equation. The physical configuration we
consider is that of a relativistic electron beam pro-
pagating through an ambient magnetic field com-
posed of a periodic helical wiggler field and a uni-
form axial guide field

U~~+Uat=(1 —y )C

which constitutes a quartic equation for U
~
~. Equa-

tion (5) describes at most four distinct classes of tra-
jectories, of which one is characterized by motion
antiparallel to Bp and will be ignored. Of the
remaining trajectories having motion parallel to Bo,
we restrict consideration to those which are
stable i7, is i e for which

B=8pe, +B~(r,z), (k~U~~ —Qp}[k~U~[ —(1+P~ )Qp] )0 . (6)

A~=-
N

Ii(k~r )cos(8—k~z)e,
1

k r

where the wiggler field is assumed to be generated
with a bifilar helix and is derived from a vector po-
tential of the form'

The typical dependence of the axial velocity on
80 is sh~~~ in Fig. 1, in which we Pl«P~~ ( =U~ ~

/c)
versus Pp (—:Qp/k~c) for a kinetic energy of 1.5
MeV and wiggler amplitude and period such that
Q~/k~c =0.05. There are two classes of stable or-
bits. One class (referred to as group I) of orbits is

I i (k„r)sin(8 ——k~z)ee (2) STABLE—II

in cylindrical coordinates. In Eq. (2), 8 and

k~ (=2m/A, ~, where A,„ is the wiggler period) are
assumed to be constant and Ii and I i are the modi-
fied Bessel function of the first kind and its deriva-
tive, respectively. Since for most free-electron laser
experiments the initial beam radius is a small frac-
tion of the wiggler period, we shall expand in
powers of k r and write

B~~B~(8„cosk~z+8yslnk~z) .

p) (
Os

3.94

~w/kwC 0.05

The single-particle orbits in these combined fields
have been amply discussed in the literature. ' ' and
will not be discussed in depth here. We shall re-
strict consideration to orbits which are given ap-

FIG. 1. Graph of the axial velocity vs p0 (:—Q0/k c)
for a beam energy of 1.S MeV and a wiggler amplitude
and period such that Q /k c =0.05.
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characterized by high axial velocities and has
k u~~ &(1+p )Qo. For these trajectories the axial
velocity decreases monotonically with increasing 80
until U~~ =(1+P~)Poc which is the orbital stability
boundary. For the parameters shown, this occurs
for P0-0.765. The second class of orbits (group II)
is characterized by an axial velocity which increases
monotonically from zero with increasing 80, and
high axial velocities are, typically, found only when

po & I. In contrast to group I trajectories, the stabil-
ity criterion (6) is satisfied for these orbits because
k v

~~
& Ao. It will be shown in Sec. III that the re-

lative magnitude of k v~I and Qo for group I and II
I

orbits has important consequences on the excited
spectrum. Finally, it is important to note that
k U~~+Qo for either class of orbits. Were the
equality to hold it would imply an infinite U~ which
would violate the conservation of energy represent-
ed by Eq. (5).

The source current is obtained from the velocity
moments of the perturbed distribution function
5fb(z, p, t)=fb(z, p, t) F&(p—„P~,p), where fb is the
complete distribution, FI, is the equilibrium distri-
bution, and 5fb is assumed to be first order in the
radiation fields. The formal solution of the Vlasov
equat1on to th18 order ls

dz', 1 BF
5fb(z, p, t(z))=ef, 5E(z', t(z))+ —v(z')X5B(z', r(z'))

U, (z') ' c '
gp(z')

' (7)

where the solution is parametrized in terms of the axial position relative to the start of the interaction region
(a« =0) and ~(z) =to+ dz'/v, (z') is the sum of the time required for an electron to transverse the distance

0
z and the entry time t0.

We assume plane-wave solutions of the form exp( i cot)—and choose to work with the scalar and vector po-
tentials

and

5$(z, t) = —,5$(z)exp( icot)+c.—c.

5A(z, t) = —,5A (z)exp( icot )+c—c.
where e, .5A(z) =0. In addition, since the assumption of small P» and P~ are implicit in the analysis, we adopt
an equilibrium distribution of the form

Fb(P»&Py, P) =nb5(P»)5(Pi, )Gb(P),

where nb is the number density of the beam, and Gb(p) is an arbitrary function subject to the normalization
condition dpPG&(p)/p, = l. Observe that the choice of a distribution of this form (8) confines the equili-

0
brium trajectories to be those constant axial velocity (helical) orbits described by (5). The interested reader is
referred to Freund et al. ' for a detailed derivation of the perturbed distribution and source current. We con-
fine ourselves here to the final result. With respect to the basis e+ ——, (e»+ie~), th—e source current can be
written in the form

5J (z, t) = [SJ+(z)e+ +5J (z)e +VI,(z)e, ]exp( icot)+c.c. , —

where

2

5J+(z)= f dp
P

Sm.c o yp,

2p+p- p+
exp[+iQot(z)] 2+ 2 D++exp[+i Qot(z)] 2

D
pz pz

and

+p+
~

+i
~

8 . 8 8D++P+ i D P+D—, Gb(P)—
P =P=Ox y

(10)

Kl, (z) = f dp
p

Sm.c o y

8 8
i D —D, Gb(P)—

clPy Bp
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In Eqs. (10) and (11),cob is the beam plasma frequency, p+ =p +ip~,

D+—:—exp[+i Qot (z)] I 5A+ (z)—5A+ {0)exp[i(co+Qo)r(z,O) ]
ck+iQO, 5A+(z')exp[i(t0+Qp)r{z z )]Iov, z' (12)

z
D, = —f dz'exp[icos(z, z')] —8, 5$(z')+ 5A+(z')+ 5A (z')

p 0 pz pz

where r(z,z'}—:t (z)—t(z'). Finally, we assume the spatial dependence of the fields to be

5A+ (z) =5A+ (0)exp(ik+z)

5$(z) =5/(0)exp(ikz) .

As a result, the source currents can be expresed as

5J+(z)= — 52~(z) 2 +a S+(k~,t0) —a„5$(z)e+ X( k, tv)
8m.c —

ypz co+Op —k+ vll 8m
(14)

Cf, (z) =— 5$(z)X(k, t0) — a~[ 5A+(z)exp(ik~z)o+(k+, t0)+5A (z)exp( ik~z—)o (k,c0)],

where a„—=eA~lmc, (( )) =f dp Gb(p}( ),

2

X{k,t0):— f dp (16)

2

X,(k,t0):— dp
Cob IXI kl v

l l m aG

k 0 k~vll —Qp y(tv —kvll ) Bp

00 p c k~ Qp co+Qp+k~vll
2 2

S+(k+,c0)—:f dp Gp(p) 1+
(k..

ll
Q ) k„.

ll
—Q, ~;Q,—kull

2
kw&ll m ()Gp—Nc dp

y (k vll
—Qo) N+kgfull —k+vll Bp

2

o+(k+, t0) —= f dp
y(k

ll
—Q )

—k
ll
—k

ll
Bp

N+kUll

co+k~Ull —k+ Ull

(17)

p ~+k~UII CO+
y pll (k„vll —Qo} ~+k~vll + "II ~+ v +

Gb(p), (19)

and it has been assumed that Gb(p) =0 for p =0, oo. Observe that Eqs. (14)—(19) are equivalent to the result
found by Sprangle and Smith in the limit as Bv~O.

III. THE DISPERSION EQUATION

The dispersion equation is obtained by substitution of the source currents [Eqs. (14)—(19)] into Maxwell s

equations
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N
a,'+" 5~,(z)=-4 Cr, (.), 5,5y(.)=' '5J,(z). (20)

This results in a set of three coupled equations for the initial field amplitudes

k
A+(k+k, ro}52+(0)+—,a X,(k,co)5$(0)=0,

N
(21)

[1+X(k,o))]5/(0)+a„[52+(0)cr+(k —k, co)+52 (0)o (k+k„,co)]=0,

where the wavelength matching conditions imply that k+ k+k——~, and

c k+ Nb p N k+Ull Nb
2 2 2 2

A+(k+, co)=1—
z

— — a S+(k+,co)
N N gP N+0 —k+ Ull 2N

(22)

describes the dispersion properties of the pure electromagnetic modes in the combined wiggler and axial guide
fields. The dispersion equation itself is found by setting the determinant of the matrix of coefficients of Eqs.
(21) to zero, which yields

a2 k c2k~ cr+(k —k,o)) o (k+k, co)
1 +X(koi) = „zX,(kCO)

k k }
+ (23)

It is evident that Eq. (23) describes the coupling between the electrostatic beam mode with each of the elec-
tromagnetic modes.

In the interest of analytic tractability, we shall now assume that the electron beam is sufficiently cold that a
monoenergetic distribution of the form

Gb(P»}= 5(P —Po}—
p

(24)

can be employed. As mentioned previously, this is generally valid as long as the mom. entum spread
hp «po/E. Combination of (23) and (24) yields a dispersion equation of the form

p~ rob a+(k k~, co) a (—k+k„,co)

2 y e+(k —k„,co) e (k+k, co}
+ (25)

to second order in the wiggler amplitude, where all orbit quantities (i.e., v~~, y„P~, etc.) are computed using
Po~

and

2
Nb

y

cob(N —k+v~~ )
e+(k+, co) —= 1

y(co —k+c )(co+00—k+v~~ )

1
a+(k+k~, oi) =

ro2 —(k+k ) c

(26)

(27)

~b /y) + r

X[(1—4 )(kc —cov~~/c) +y, (1—4)(co —k c )]
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Nb Qp
+ pii(kc —couii /c)%

r k..
ll
—n,

N+kvll
N —

kUII co+ Qp —(k+k )u
( (

Qp 2 2 2 3N+kVII+ [(co—kv
~ ~

) —Ic U
~ ~
]k Ull

—Qp N —kUII

+n, +k..
ll

co+Qp —(k+k~)u((

—y, (1—4)[(m —ku
N —

kUII

N —2kv
I I

20p
+

kvll kUII
(28)

In addition, we have defined

QpP y,

(1+P )Qp —k uii

and

(29)

0=—1— Qp (1+p~)k~uII co

Pii(kc —covii/c) (1+P„)Qp—k~uii
(30)

In Eq. (2S), e+(k+k~, co) describes the circularly polarized electromagnetic modes in the absence of the
wiggler, and the left-hand side describes the electrostatic beam modes. Observe, however, that the presence of
the wiggler modifies the natural electrostatic response frequency by a factor of 4 defined in (29).

The wiggler field, therefore, provides a coupling between the space-charge wave and either polarization state
of the electromagnetic wave. We choose, without loss of generality, to focus on the coupling with the 52+
mode. As a consequence, we shall assume that

~
e+(k —k, co)

~
&&

~

E (k+k, co)
~

and neglect the term in

e (k+k~, co) in (2S). If we assume in addition that cob/yco &&1, then the dispersion equation can be cast
into the substantially simpler form

2
2 2 2 2 2 2 b +

[(co—kvii) —ic vii] co —k+c-
y(co —Qp —k+U[~ )

~2 2
Hw b p2
2 r

N — C
cob(co —k+Uii ) N —kvll

+y, co (1—4)+coQp, (31)
y(co —Qp —k+ ui

i

) N —Qp —k+ vll

where we have written k+ ——k —k~ for simplicity. Peak gain in (31) can be expected to occur near the inter-
sections of the electrostatic and electromagnetic dispersion curves. A schematic representation of the disper-
sion relation is shown in Fig. 2 for Qp & cob/y' . Evidently, high-frequency interactions with the electrostatic
beam mode can occur only in the positive N and k+ quadrant when v

II & 0, and we shall restrict the analysis
to this regime. It should be observed that the slope of the space-charge modes (co=k+u~~+k u~~+icu~~) is
identical to the pure cyclotron mode (co =k+ v~

~

+Qp), and the relative magnitudes of the k+ —0 intercepts of
these curves determine which branch of the electromagnetic dispersion curve participates in the interaction.
This point will be discussed in more depth at a later stage of the analysis.

The dispersion equation represented by (31) is a fifth-degree polynomial in k. If we make the restriction
that k+ & 0, then (31) can be reduced to the following quartic equation:

k — —~ k — +IC (k —k~ E+)(k —k„—K —)

2

4 Zc '~

~ (2k2 co
p

—I C k —k—
Ull Ull

(32)
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g.o

FIG. 2. Schematic representation of the dispersion
curves for the 53+ mode showing the passive interaction
between the cyclotron and the pure electromagnetic mode
at co={1—pll) 'Qo.

where (=cob/y ck is the beam strength,
c E =co —cog/p,22=2 2

o)—Qp l QpE+ +—~'+2('k'
Vii 2 EV

~~

1/2

(33)

and ~:E (co Qo—)lu—ll. It—is clear that the na-
ture of the interaction is strongly dependent upon
the sign of 4, which affects the natural electrostatic
response frequency of the plasma as well as mediat-
ing the ponderomotive force. In the limit as
Bp~O 4 approaches unity and (32) reduces to the

A. 4&0

In this regime we observe that the orbital stability
criterion imphes that

' 2/3

&p
(34)

well-known results ih the limit of zero axial
field. The behavior of @ when the guide field
is finite, however, is strongly dependent on the type
of orbit under consideration. The variation of 4
with Po is shown in Fig. 3 for the parameters used
to generate the orbits in Fig. 1. As shown in the
figure, 4) 1 for group I orbits and contains a
singularity when Qo(1+p„)=k~u

ll
which is the or-

bital stability boundary. In the case of group II or-
bits the magnitude of 4 is, typically, less than or of
the order of unity, but 4 is negative for axial guide
fields less than a critical magnitude given by
[I+p~(1—y, )]Q&——k~ull. As Bo increases beyond
this critical value 4 approaches unity; however, it
should be noted that P decreases monotonically
with increasing Bp in this regime. In either case in
which 4&0, the interaction is basically one in
which a positive-energy electromagnetic wave is
coupled to a negative-energy space-charge wave by
the action of the wiggler. Neither wave is intrinsi-
cally unstable and growth occurs when the wiggler
amplitude is above threshold. However, when 4 is
less than zero, ~ is imaginary and the space-charge
waves, themselves, comprise a complex-conjugate
p»r ~="U

I I

+&
I

a'
I vll one of which is unstable. As

a result, we shall distinguish between these two pos-
sibilities and treat the solution to the dispersion
equation when 4 is positive and negative separately.

y = 3.94

Qw/kwc = 0.05

for group I orbits, and the requirement that 4 be
positive leads to the condition that

' 2/3

k Ull &Qo 1 —(y —1) ~3 (35)
p

—2—
FIG. 3. Graph of 4 vs Po for both group I aud group

II orbits for a beam energy of 1.S MeV and a wiggler am-
plitude and period such that Q /k c =0.05.

for group II orbits. As a consequence, the intersec-
tion between the space-charge and electromagnetic
modes occurs at frequencies greater (less) than
Qo(1 —pll)

' for group I (II) orbits when
a'Ull «

I
k Ull

—Qo
I

This condition is satisfied as
long as 4&y,g '(B /Bo) and, since g«1 is
implicitly assumed in order to neglect self-field ef-
fects, is a relatively weak constraint. A schematic
representation of the interaction is shown in Figs.
4(a) and 4(b) for group I and II orbits in which we
plot m versus k+ and the dotted line represents
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(kw + X) Vll

4k—:k +K co—IU
l l

—« is the frequency mismatch
parameter. Equation (36) reduces to the result
found by Sprangle and Smith in the limit as
BO~O, and corresponds to the limit discussed by
Friedland and Fruchtman. '

The single-particle or "strong-pump" regime oc-
curs when

~

5k
~

&&
~

2«
~

. In this regime, (36) can
be approximated by

2

(37)

Qo Peak growth occurs when Ak=Q, for which the
complex roots are

2yz kw Pll

(b)

(5k),„=—,(1+iv 3) g'pll 'q
2

' 1/3

(38)

Therefore, self-consistency imposes the requirement
that

2«« —„p„yzpllk~ (39)

(k + X) Vll

2yz kw Pll

= k+

FIG. 4. Schematic representation of the interaction for
group I (a) and group II (b) orbits when 4&0. Dotted
line denotes complex-conjugate roots.

(36)

where we have chosen 5k —=k —~/v
~ ~

—~, and

complex-conjugate roots. It is the lower (i.e.,
co=kvll —«Ull) space-charge mode which produces
the active coupling and wave growth since this is
the negative-energy mode. We note that from (34)
and (35), the intersections are not close to the
cyclotron line and occur approximately for
co ck+-(k++k )Ull. This is the well-known
free-electron laser resonance at k+ -2y, k„pll.

If the beam strength parameter is sufficiently
small that g «y, (B~/Bo) and y, (B /Bo)

, then the cyclotron resonance effects can be
neglected and the dispersion equation reduces to the
cubic

2

5k(5k+2«)(5k —bk)= — g k~PlT'C

2

5k' —ak5k+ pyll«.k=O, (40)

which has the solutions

5k= ,
' ak+ ,'(ak' p'.-y', pll«k-. )' '.— (41)

Peak gain is found for hk=O in this regime as well
and is

1/2

(5k),„=, iP y,k—
W

(42)

The Raman regime, therefore, occurs when

«» —,p~y, pllk~,

and requires relatively large beam currents.

(43)

in order for Eq. (37) to be valid. It is important to
recognize that in this regime the coupling between
the electrostatic beam mode and the 52+ mode is
relatively unimportant, and the strength of the
pump and ponderomotive potential completely
dominate the interaction. Because of this, (37) can
be recovered in a much more direct manner by ig-
noring the space-charge potential in (21) and setting
A+(k —k, co) =0 .

In the opposite, or space-charge dominated
(or stimulated Raman scattering), regime,

~

5k
~

&&
~

2«
~

and space-charge effects are
predominant. Here, the dispersion equation is of
the form
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FIG. 7. Graph of (Imk/k ),„as a function of the ax-
ial guide field for group I and group II (4 & 0) orbits.

in Fig. 4 for orbits in groups I and II. The growth
rates (Im k/k ) are plotted versus frequency for
several appropriate values of Pp in Figs. 5 and 6 for
the two types of trajectory. Instability is found to

occur for co=(1—
P~~)

'k
v~~ which corresponds to

the well-known free-electron laser resonance condi-
tion. The observation of decreasing (increasing) fre-
quencies of instability with increasing axial field for
group I (II) orbits can, therefore, be explained by ex-
amination of Fig. 1 in which it is seen that v~~ de-
creases (increases} with increasing Pp.

The behavior of the peak growth rates for the
two classes of orbits can also be readily explained.
As shown in Fig. 7, the peak growth rate for group
I orbits is a monotonically increasing function of Bp
up to the singularity at the orbital stability boun-
dary (at Pp-0. 765 for this choice of parameters).
This behavior is due to increases in both P~ and 4
with the axial field which results in increases in the
effects of both the electrostatic/electromagnetic
coupling and the ponderomotive potential. Observe,
however, that the singularity is due solely to the
character of 4 since P„ is everywhere finite. The
scaling of the maximum growth rate with Pp is also
shown in Fig. 7 for group II trajectories. In this
case, however, 4 is bounded by unity and increases
monotonically from zero (at Pp-1.25}with increas-
ing axial fields. In addition, P„decreases monoton-
ically to zero with increasing Bp for group II orbits
since lima P~=B~/Bp. As a consequence, the
peak growth can be expected to initially increase
from zero at Pp 1.25, and to decrease again slowly
to zero as the axial field becomes large. This
behavior for the growth rates of each class of orbit
is in qualitative agreement with that found previ-
ously in the context of a low gain theory. ' Finally,
since it is our intention to treat the collective re-

0.3

O

3

0.2
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y = 3.$L

~w/kwC = 0.05

g=o.i

P. =o.s

0.1—

9
k c

Re k+/k

FIG. 8. Graph of co/ck vs Rek+/k for group II or-
bits (4 &0) and Pp=0. 5.

Cd/c

FIG. 9. Graph of Imk/k vs co/ck for group II
(4 &0) orbits and Pp ——0.5.
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gime, the parameters have been chosen to corre-
spond to the space-charge dominated limit dis-
cussed in Sec. III and the numerical results for the
peak gain can be recovered from Eq. (40) to within
an error of a few percent.

Some care must be taken in the characterization
of the dispersion properties of (32) when 4 &0. For
low axial fields (Po&0.7 for the parameters under
consideration) both v

~~
and

~

4
~

are low and condi-
tion (43) is not well satisfied when
co & (1—P~) Qo. This regime is illustrated in Figs.
8 and 9 in which we plot co/ck~ versus Rek+/k~
and Imk/k„versus co/ck~, respectively, for
Po——0.5. The dashed line in Fig. 8 corresponds to
complex-conjugate roots. Evidently, two instability
regimes exist. At high frequencies, the modified
space-charge wave discussed in Sec. IIIB is ob-
tained with an asymptotic value (i.e., high-co limit
of Imk/k ) which agrees to within 1% of the
predicted value in Eq. (45). The instability found at
lower frequencies is difficult to treat analytically,
and corresponds to a modified cyclotron mode.

For higher axial fields (Po) 0.7), the character of
the unstable modes is altered. As shown in Fig. 10,
in which we plot co/ck„versus Rek+/k„ for
Po——1, there are still two unstable regimes. While
the higher frequency regime corresponds to the
modified space-charge mode in this case as well, the
lower frequency instability requires some discus-
sion. The growth rate in this regime is plotted as a
function of frequency in Fig. 11 for Po

——0.8, 1, and

20 —
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~ /k c=0.05
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15
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Cd/k t:

FIG. 11. Graph of Imk/k vs cg/ck for group II
(4 & 0) orbits and Pa=0. 8, 1, and 1.2.

1.2. In each case, the peak in Imk/k~ observed for
the lower frequency instability corresponds to the
region shown in Fig. 10 in which the real part of
the complex modes (dashed line) exceeds that of the
waves which are purely real. Near the peak 5k=0,
and the instability which results is a largely elec-
tromagnetic free-electron laser interaction which
(for our choice of parameters) agrees to within a
few percent of the analytic expression for the peak
growth rate (40) in the collective, or stimulated Ra-
man scattering, limit. As the frequency decreases,

~

b,k
~

increases and the character of the instability
becomes increasingly electrostatic and we find an
unstable modified space-charge wave for frequen-
cies co O' Qp.

V. SUMMARY AND DISCUSSION

10
3

9
k c

10

Re k /k

FIG. 10. Graph of co/ck„vs Rek+/k for group II
(4 &0) orbits and Po ——1.

In this paper we have analyzed the linear growth
rate in both the single-particle and collective re-
gimes of operation of a free-electron laser configu-
ration which contains a uniform axial guide field.
The technique employed consists, essentially, of a
Vlasov theory of the perturbations about constant-

v~~ helical trajectories, and includes the effects of
both stimulated Raman scattering with electrostatic
beam modes and the effect of the ponderomotive
potential due to the exited radiation. Analytic ex-
pressions for the growth rate in these two regimes
are found and a comparison is made with a numeri-
cal solution of the full dispersion equation. Sub-
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stantial agreement is found between the analytical
and numerical treatments. In addition, substantial
qualitative agreement also exists between the
present work, which is in the high gain regime, and
the small signal theories. "'

The results indicate that substantial enhance-
ments in the growth rate of the free-electron laser
instability may be obtained by the inclusion of an
axial guide field in which Qo-ck„, as a result of in-

creases both in the transverse velocity and the pon-
deromotive potential. It should be pointed out,
however, that the presence of the guide field also
gives rise to instability in the electrostatic beam
mode for group II orbits when 4&0. Since this
may have a degrading effect on beam quality and,
in turn, on the operating efficiency, further study of
this question is required.

A cyclotron mode interaction in the collective re-

gime has been found only where the axial velocity
and

~

4
~

are relatively small. However, two fac-
tors should be noted. The first is that our choice of

equilibrium orbits (i.e., with P„=P~=0) has intrin-

sically ignored the random (or Larmor) component
of the transverse velocity which can be expected to
be the primary source of a gyrotron type of instabil-

ity. The second is our choice of an idealized mag-
netic field structure in which transverse gradients in
the wiggler field have been neglected, which is valid

only for orbits in which k r(&1. Since small u~~

implies large transverse velocities and excursions
from the axis of symmetry, the choice of an ideal

wiggler ultimately breaks down in this limit.
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