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Higher harmonic emission by a relativistic electron beam in a longitudinal magnetic wiggler
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The classical limit of the Einstein-coefficient method is used in the low-gain regime to
calculate the stimulated emission from a tenuous relativistic electron beam propagating in
the combined solenoidal and longitudina/ wiggler fields (Bo+5Bsink~)e, produced near
the axis of a multiple-mirror (undulator) field configuration. Emission is found to occur at
all harmonics of the wiggler wave number ko with Doppler upshifted output frequency
given by to=(lkoVb+to, i, ) (1+Vqlc)yi, /(1+yqV /ic ), where l&1. The emission is corn

pared to the low-gain cyclotron maser with 5B=0 and to the low-gain free-electron laser

(operating at higher harmonics) utilizing a transverse linearly polarized wiggler field.

I. INTRODUCTION

The Lowbitron (acronym for longitudinal wiggler
beam interaction) is a novel source of coherent radi-
ation in the centimeter-, millimeter-, and
submillimeter-wavelength regions of the elec-
tromagnetic spectrum. The radiation is generated

by a tenuous, thin, relativistic electron beam with

average axial velocity Vb and transverse velocity Vq

propagating along the axis of a multiple-mirror (un-

dulator) magnetic field. It is assumed that the beam
radius is sufficiently small that the electrons experi-
ence only the axial solenoidal and wiggler fields
given by Eq. (2). The output frequency to is up-
shifted in proportion to harmonics of koVb, where

+=2sr/ko is the wiggler wavelength. This offers
the possibility of radiation generation at very short
wavelengths.

Previously, we have considered this free-
electron-laser (FEL) configuration in the high-gain
regime using the Maxwell-Vlasov equations to
study coherent emission pt the fundamental har-

monic, ' and at higher harmonics. In this paper,
the classical limit of the Einstein-coefficient
method is used in the low-gain regime to study
stimulated emission at the fundamental and higher
harmonics. In Sec. II, we determine the electron or-
bits in the magnetic field given by Eq. (2). These
orbits are then used in Sec. III to determine the
spontaneous energy radiated. In Sec. IV, the ampli-
tude gain per unit length is calculated for a cold,
tenuous, relativistic electron beam. For sufficiently
large magnetic fields, we find that the emission is

inherently broadband in the sense that many adja-
cent harmonics can exhibit substantial amplifica-
tion. For a device operating as an oscillator, it
would be possible to tune the output over a range of
frequencies for fixed electron-beam and magnetic-
field parameters by changing the optical-mirror
separation to correspond to the different harmonics.
The low-gain I.owbitron results are compared to the
low-gain cyclotron maser and low-gain, higher har-
monic FBI.utilizing a transverse, linearly polarized
wiggler field.

II. CONSTANTS OF THE MOTION
AND ELECTRON TRAJECTORIES

We consider a tenuous, relativistic electron beam

propagating along the axis of a combined solenoidal
magnetic field and multiple-mirror (undulator)
magnetic field with axial periodicity length
l(,o=2vr/ko. It is assumed that the beam radius Rs
is sufficiently small that koRt, & 1 and that kor & 1

is satisfied over the radial cross section of the elec-
tron beam. Here, cylindrical polar coordinates
(r,8,z) are introduced, where r is the radial distance
from the axis of symmetry and z is the axial coordi-
nate. For kpr &1, the axial and radial magnetic
field, B,(r,z) and B„(r,z), can be approximated near
the axis by'

8 =Bp 1+ sinkpz + 4 58k pr sinkpz,p 58
Bp

8, = ——,58kpr coskpz,p
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where Bp ——const is the average solenoidal field,
5B =const is the oscillation amplitude of the
multiple-mirror field, and 5B/Bo &1 is related to
the mirror ratio & by 8 =(1+5B/Bu)/
(1 5B—/Bo). For present purposes, it is assumed
that koRb is sufficiently small that field contribu-
tions of the order kor5B (and smaller) are negligibly
small. Therefore, in the subsequent analysis, the ax-
ial and radial magnetic fields in Eq. (1) are approxi-
mated by

B =Bp 1+ sinkpzp

Bp

(1 V2/ 2 V&/ 2)—i/2

and

Vs = f d'p (p. /ym}fb f d'pf'

f d'pfi'
=0,

is the average axial velocity of the electron beam.
For this choice of distribution function, the beam
equilibrium is cold in the axial direction with effec-
tive axial temperature

f d'p(p. —&p. &)(u.—&u. &)

B,'=0. (2) where

That is, to lowest order, the electron experiences
only the axial solenoidal and wiggler field com-
ponents of the multiple-mirror field.

Assuming a sufficiently tenuous electron beam
with negligibly small electron motion in the longitu-
dinal wiggler field given by Eq. (2) is characterized

by the four constants of the motion

pz ~

2 2 2pi=(pr+pe) ~

ymc'=(m'c4+c'p', +c'p,')'",

fb =fb(pi P*) (4)

is considered. In order to determine the detailed
properties of the growth rate, we make the specific
choice of beam equilibrium

nb
fs = 5(pi —

yb m Vi }5(p,—yb m Vs ), (5)
27Tp j

where ns =fd p fq =const is the beam density, the
constants Vb and Vq are related to yb by

Ps rps ————A s(r,z)
e

c
J

Here, p, is the axial momentum, pi ——(p, +ps)' is
the perpendicular momentum, ymc is the electron
energy, I'8 is the canonical angular momentum, and

As ——(rBO/2)[1+(5B/Bo) sinkoz] is the vector po-
tential for the axial field B, in Eq. (2). Also, m is
the electron rest mass, —e is the electron charge,
and c is the speed of light in uacuo. Note that
ymc =const can be constructed from the constants
of the motion, p, and pq, which are independently
conserved.

For present purposes, it is assumed that the
equilibrium electron distribution fs has no explicit
dependence on I'~, and the class of beam equilibria

f d'PSf' f d'pf'

On the other hand, the effective transverse tempera-
ture is given by

Ti —( —, ) f d ppiuifb f d p fb

=ybm Vg/2 .

dpx e, p
, = ——u~B, (z'),

dt cy

dpi' u„'B,(z'),—
dt' c"
dpz---;— =0,dt'

(6)

(8)

where p'(t')=ymv(t') and y=(1+p' /m c )'~
=const. Here, the boundary conditions
x'(t'=t)=x and p '(t'=t)=p are imposed, i.e., the
particle trajectory passes through the phase-space
point (x, p) at time t'=t. From Eq (8), the .axial
orbit is given by

I I
ps =pz~ Z =Z+Uz& ~

where ~=t' —t and u, =p, /ym is the constant axial
velocity. In order to determine the transverse
motion, Eqs. (6) and (7}are combined to give

d, . 5B
, u'+ it0, 1+ ——sin(koz+kou, r) u'+,dt' '

Bp

This thermal anisotropy Ti & T~~ provides the free-

energy source to amplify the radiation.
In order to calculate the spontaneous energy radi-

ated by an electron passing through the magnetic-
field configuration given by Eq. (2), we first deter-
mine the electron orbits from
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where u'+ ——uz(t')+ivr'(t'), co, =eBplymc is the re-
lativistic cyclotron frequency in the solenoidal field
Bp, and use has been made of Eq. (9). Integrating
Eq. (10) with respect to t' and enforcing

u'+ (t'=t) =u„+iur=vi exp(iP),

where

(u„v„)=(ui cosg, ui sing)

is the transverse velocity at t'= t, gives

coskpz —cos( kpz +k 0vz'r)
v'+(t') =vi exp iP+icocr+icoc

0 kP Vz

From Eq. (11), it is evident that pi(t')=ym
~

v'+(t')
~
=ymvi is independent of t', although the individual

transverse velocity components, v,'(t') and vr'(t'), may be strongly modulated by the longitudinal wiggler field
5B sinkpz. Making use of

exp(ib coscz) = g Jm(b) exp( im—a+imir/2),

Eq. (11)becomes

u'+(t') =ui exp(iP) g g J J„(i)"exp[i (co,r+mkpv, r)] exp[i (m —n)kpz],
c 6B c M ~ n —m

m= —~n= —ao Oz 0 Oz 0ku B " ku B

(12)

where J„(x)is the Bessel function of the first kind of order n. Integrating Eq. (12) with respect to t gives for
the radius of the electron orbit

r'+ (t') r+ ——ui exp(iP—) g g Jm J„(i)"5B c 5B

m= —ton= —ao 0 z 0 0 z 0

exp[i (cocr+mkpu, r)]—1
)& exp[i (m n)kpz—] i coc+rnkovz

(13)

where r'+(t') =x'(t')+iy'(t') In the abs. ence of wiggler field (5B =0), Eq. (13) gives the constant-radius orbit
corresponding to simple helical motion in the solenoidal field Bp In the. absence of the solenoidal field
(Bp ——0), the m =0 term in Eq. (13) grows linearly with r, and the radius of the orbit increases without bound
unless the argument of Jp is near a zero of Jo, in which case the orbit remains bounded. Also, in the presence
of both the solenoidal and wiggler fields, the radius of the orbit grows linearly in r for co, = —mkpu, exactly.
In the following analysis, it is assumed that the value of u, =Vb is such that co, +mkp Vb+0, and the radius of
the electron orbit remains bounded.

We remind the reader that in the derivation the approximate orbits in Eqs. (9) and (12) have assumed that
kpr &&1 and 5B/Bo «1, and the (oscillatory) radial magnetic field B„= (5B/2)kpr —coskpz has been ap-
proximated by B„=O[Eq. (2)]. To determine the range of validity of this approximation, we have also calcu-
lated (in an iterative sense) the leading-order corrections to the longitudinal and transverse orbits, treating the
magnetic force ( e le) v 't&B„e„as—a small correction. It is found that Eqs. (9) and (12) constitute excellent

approximations to the axial and transverse orbits provided the inequalities

1 1 1 c 5B " " coc 5B coc 5B
2 2' 2 2 ++ Jm

kpu kpvl 2 kpuz Bo = i= kpuz Bp kpvz Bp

X (mkpu, +co, ) '[kpv, +(m+i)kpu, +co, ]

are satisfied. These inequalities are readily satisfied in the regimes of practical interest, including 5B/Bp «1
and co, /kov, & 1
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III. SPONTANEOUS EMISSION COEFFICIENT

The spontaneous emission coefficient 71„(x, p ) is the energy radiated by an electron per unit frequency inter-
val per unit solid angle divided by the time T=I./u, that the electron is being accelerated. Here, L is the axial
distance over which the acceleration takes place. It is assumed that the radiation field is right-hand circularly
polarized and propagating in the z direction with frequency co and wave number k related by co=kc in the
tenuous beam limit. For observation along the z axis, the spontaneous emission coefficient in the classical lim-
it is given by

I d I e~ dec, X(e, X v ') expi(kz' cd—)T dcodQ 4
(14)

The orbits in Eqs. (9) and (12) are substituted into Eq. (14), and the integration over r is carried out. This
gives

r

v 00 ce c 5B c 5B(i)"(—i)'exp[i(l —n)koz]Ji „J„
8 cTi kovz Bo kovz Bo

exp[i (ku, +lkov, +co, co)T] —1—
kv, +lkov +m, —a)

exp [ i (k—v, +nkou, +co, co)T] 1— —
kv, +nkov, + (15)

Equation (15) contains terms that (spatially) oscillate on the length scale of the wiggler wavelength

Ao
——2ir/ko. Since our primary interest is in the average emission properties, we average Eq. (15) over a

wiggler wavelength, which gives the average spontaneous emission coefficient i)„:
2 2 2e coviT ~

&
co~rl„= g Ji (sin gi )/pi, (16)

8 c i kou~ Bo

where

it, =(ku, +lk, u, +~, ~)T/2 .

In the absence of wiggler field (I=0), only the l =0 term in Eq. (16) survives, and il„is a maximum for

$0——0 corresponding to cyclotron resonance in the solenoidal field 8&&. For 58+0, spontaneous emission oc-
curs at all harmonics of kou, . Maximum emission at each harmonic number 1 occurs when gi ——0 and the ar-
gument of Ji is such that Ji is a maximum. Even when the argument of the Bessel function gives a maximum

value of Ji for a particular choice of l, the emission in neighboring harmonics can be substantial. Also, for
58~, the fo——0 contribution in Eq. (16) is reduced by the Jo factor relative to the gs ——0 emission when

B=0.

IV. AMPLITUDE GAIN IN THE TENUOUS SEAM LIMIT

Making use of the expression for the spontaneous emission rl~ in Eq. (16), the amplitude gain per unit
length I can be determined from the classical limit of the Einstein-coefficient method. The amplitude gain

per unit length is given by (I' & 0 for amplification)

r= ,
' f deaf" d, f"d co de de

where fb(pi, p, ) is the equilibrium distribution function, co=kc has been assumed, u, =p, /ym and ui =pi/ym
are the axial and transverse velocities, and ymc =(m c +c p, +c pi)'~ is the electron energy. In Eq. (17), a
phenomenological filling factor F has been included which describes the coupling of the electron beam to the
electromagnetic mode being amplified. The geometric factor E is equal to unity for a uniform electromagnetic
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(18)

plane wave and electron beam with infinite radius. Moreover, for finite-beam cross section, F is equal to unity
when the electron beam and radial extent of the radiation field exactly overlap. On the other hand, F&1
when the beam radius is less than the radial extent of the radiation field.

Substituting Eqs. (5) and (16) into Eq. (17) and integrating by parts with respect to p, and pz gives the gain
per unit length I =+I" „ri,where

2 2
' '2 '2

co~bLF sin gi Vi Vg
Ji(li)[Ji i(&)—Ji+i(&)]+ JI'(&)+2(1 c/v—b)Ji'(&)

8ybc' A' vb vb

2
sin

llew

~ 2

+ &~'(&)[oi( —1+Vblc)+oi, b]
&b b

Here, co~b 4nnbe——Im. is the nonrelativistic electron
plasma frequency squared, ~,b ——eBp/ybMc,

b =(oi~b Iko Vb )(5B/Bp )

pi =(kVb+lkp Vb+co,b co)T/2 —.
Equation (18}is valid only for the case of low gain
(I L & 1) and c ILL « l. In order for the line-shape
factors proportional to (sin Pi)/tg in Eq. (18) to be
a valid representation of the emission for more gen-

eral choice of fb, it is necessary that any small axial
spread in electron momentum (bp, ) and small

spread in transverse electron momentum (Spy)
satisfy the inequalities

1/L ))[~(1—Vb/c)/c +lkp)hp, /ybm Vb

and

1/L »covihpilc ybmVqVb .

We first examine Eq. (18) in the absence of
wiggler magnetic field, i.e., M =0. In this limit,
only the 1 =0 term survives, and Eq. (18}gives the
gain per unit length for the cyclotron maser insta-

bility taking into account a finite interaction length

L, i.e.,

I

tribution. Equation (19) is symmetric in Pp and
gives amphfication on either side of tPp ——0. Both
transverse and axial electron bunching contribute to
Eq. (19) with the axial bunching dominating for the
maximum value of r, . The output frequency is
approximately

N=N~b(1+ Vb Ic)ybl(1+yb V~/c ),
which is limited to wavelengths in the centimeter
and millimeter range for values of Bp and yb typi-
cally available. For moderately large values of Bp
and yb, it may be possible to reach submillimeter
wavelengths.

We now examine Eq. (18) in the presence of the
wiggler magnetic field, 5B+0. For finite values of
b, 1+0, and assuming (8/Bgi)(sin Pi/gi) is not
negligibly small, the terms in Eq. (18) proportional
to L are dominant. This gives

2 2
' 2

co bL I' Vg
1 I- Ji (b)[co,b —co(1—Vb Ic)]

16yb Vbc Vb

sin~11 i
X (20)

Rewriting

[co,b —co(1—Vb /c) ]=(2/i /L —lko ) Vb

cozbLF z z sin gpr, =, [2(1—c/vb) —vt/Vb]
8ybc Po

'2
V~ sin 2gp

Vi 4o
(19)

in Eq. (20}gives

copbL I: V,
2 2

' '2

I i= Ji (b)(2/i/L —lko)
16ybC b

An expression similar to Eq. (19) has been derived

previously using the single-particle equations of
motion. For exact resonance (fo ——0), Eq. (19)
predicts only absorption of radiation. Also, for
VJ —0 and arbitrary go, Eq. ( 19) predicts only ab-

sorption, as expected. The above expression for
I, has its maximum value for go=+3.75 with
the final term in Eq. (19) giving the dominant con-

sill pi
X

~
(21)

Typically,
~
lko ( && ~2$IIL ~. Moreo~e~, since we

are interested in output frequencies that are
Doppler upshifted, we take l &0. As a function of
gi, the quantity I i in Eq. (21} then assumes its
maximum value for gi-1.3, which gives
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I max

=lkoLJ) (b) .
cm

(23)

Depending on the size of J) (b) in Eq. (23), it is evi-
dent that for koL »1 and 5B@0, it is possible to
obtain a larger or comparable gain to the cyclotron
maser, but at a much higher output frequency.

From Eq. (22), depending on the size of J), it is
clear that substantial amplification can occur simul-
taneously in several adjacent harmonics. If b &1,
then the small-argument expansion of the Bessel
function appearing in Eq. (22) can be used, which
shows that I =1 gives the largest amplification.
For sufficiently large magnetic field, b can take on
values greater than unity. In this case, for a speci-
fied value of l, several neighboring harmonics can
give substantial arnplification at different output
frequencies. For operation as an oscillator, given
values of kp, Vb, Vz, and yb, it would be possible to
tune the output over a narrow frequency range by
adjusting the mirror locations to correspond to the
frequency at a particular harmonic.

As a numerical example, for b =1.8, J&
is a max-

imum, and the first three harmonics can be excited
simultaneously with I i/I 2

——1.87 and I ~/I 3

=11.68. For b =4.2., J3 is a maximum, with
I 3/I ) =28.3, I 3/I'2 ——2.89, I g/I g

——1.44, and
I 3/P5 —4.33. In this case, the first five harmonics
can be excited to a significant level. The above
values chosen for b require substantial magnetic
fields. For example, if yb

——2, Vb /c =0.'71,
1

Vi/c =0.5, 5B/Bo —,, then b = 1.8 ——requires

LI' V
I ~m 054 Pb i

II —
1 2 y P l

ybc

with an output frequency of approximately

( Ik() Vb +co b )( 1 + Vs /c )yg

(1+ygVi/c )

In the presence of the wiggler magnetic field, it is
evident from Eqs. (20) and (21) that the gain per
unit length gives only amplification for 1()) & 0. This
is in contrast to the case M =0 where amplification
occurs for both positive and negative 1(o, symmetric
about $0——0.

Comparing the output frequency with and
without the wiggler field, we find that the output
frequency for 5B+0 is always greater than that for
5B=0 and can be substantially larger for
lkoVb&co, s. Taking the ratio of Eq. (22) to the
maximum value obtained from Eq. (19), and assum-
ing that the final term in Eq. (19) is dominant, gives

(1+Vs/c)fkoyb Vb

1+b ygVb/2c
(24)

[J(I—) )r2(f0)

J(f+))/2(fk)IVbbl b/c ~

(=Verb yg/4c (1+Vbb yb/2ci) .

Comparing the growth rate for the case of a longi-
tudinal wiggler to Eq. (24) gives (assuming parame-
ters otherwise the same)

I max
l

Ig
rb Vi I Jl (b)

f a./
(25)

where the longitudinal wiggler output frequency is
given by

(Ik() Vb+ co,s )(1+Vs /c)yg

1+yg Vi/c

For b &1, the l =f=1 term is dominant with
I )

'"/I
i
——( V) c/2 Vs ) Therefore, the. transverse

wiggler gives a somewhat larger growth rate due to

co,b/ckp =3.83 oi Bp =12.8kp kg, where kp=27T/Ap
is expressed in cm '. For the above values of
ys, Vb, Vi, and 5B/Bo, the choice of b =4.2 then
requires Bo ——23ko kG

%e also note the condition on the electron-beam
energy spread in order for Eq. (18) to be valid:

( Vb/c)

kpL [1( 1+Vb /c) +co&b /ckp]

places a stringent limitation on the beam energy
spread. This condition becomes increasingly diffi-
cult to satisfy as the harmonic number I is in-
creased. For the first numerical example given in
the preceding paragraph, the beam energy spread
must satisfy 0.3/koL (1+2.1) & by/ys, which for
koL-50 and 1=3 requires by/yb &10 . For the
second numerical example, 0.3/koL (I +5.2)
&hy/yb, which for kpL-50 and l =5, requires
hy/y&0. 6X10 '.

An FEI. using a transverse, linearly polarized
wiggler field with no solenoidal field has been
shown theoretically to radiate at odd harmonics,
f=1,3,5, . . ., of the wave number ko. In the
present notation, the corresponding gain per unit
length and output frequency are given by

2 20.54 ~pbL
I / —— '

i fkoa/,16 ybc2
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the fact that the longitudinal wiggler operates with
an electron beam having larger initial transverse
velocity Vj. Although the growth rate for the
transverse wiggler is typically larger, for
yb Vz ic & 1 the output frequency for the longitudi-
nal wiggler can be substantially higher than the out-
put frequency for the transverse wiggler FEL.
Comparing the gain at higher harmonics, a similar
conclusion holds when yb Vile & 1.

V. CONCLUSION

In summary, we have used the classical limit of
the Einstein-coefficient method to study in the
low-gain regime stimulated emission from a cold,
tenuous, thin, relativistic electron beam propagating
in the combined solenoidal and longitudinal wiggler
fields produced on the axis of a multiple-mirror
(undulator) field [Eq. (2)]. The gain per unit length
was calculated in Sec. IV and the maximum gain
per unit length is given by Eq. (22). Emission was

found to occur simultaneously in all harmonics of
kp with the Doppler-upshifted output frequency
given by

co = ( Ik p Vb +ro b )( 1 + Vb Ic)yb I( 1 +yb Vi Ic )

For sufficiently large magnetic fields, the emission
is inherently broadband in the sense that many adja-
cent harmonics can exhibit substantial amplifica-
tion. For 58+0, it is possible to obtain a larger or
comparable growth rate to the low-gain cyclotron
maser (58 =0), at a much higher output frequency.
For yb Vi &c, it was also found that the output fre-
quency can be considerably higher than that of an
FEL using a transverse wiggler, although the gain
per unit length is typically somewhat smaller.
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