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The cross sections for elastic scattering and for excitation of hydrogen atoms by elec-
tron impact are calculated for energies in the range from 10.2 to 12.1 eV. The calcula-
tions are made variationally. A pseudostate expansion is employed to represent the target
atom. Energies and widths of resonances are obtained. Results are compared with exper-

iment.

I. INTRODUCTION

This paper is devoted to a study of the scattering
of electrons by hydrogen atoms in an energy range
in which the states with principal quantum number
n=2 can be excited, but no other inelastic process-
es occur. A significant comparison of theory and
experiment ought to be possible in this energy re-
gion between the n=2 and 3 thresholds, free of
complications, both experimental and theoretical,
which may arise at higher energies when cascade
processes and ionization are possible.

The paper reports an attempt to perform a rath-
er precise calculation which covers the specific
range of incident energies from k2=0.7501 (0.0001
Ry above the n=2 threshold), through k2=0.8885
(0.000 39 Ry below the n=3 threshold). Emphasis
is placed on determination of the total cross sec-
tions for the excitation of the 2s and 2p state since
rather accurate experimental data are available.! 2
We also give the total cross section for elastic
scattering. There is a shape resonance just above
the n=2 threshold, and there are series of Fesh-
back resonances under the n=3 threshold. The
positions and widths of 24 resonances in partial
waves from 'S through F have been determined.
Some of the ones which are found in the P state
are the same as those observed in measurements of
the photodetachment of the H™ ion.?

The present calculation employs variational pro-
cedures.* It is based on a close-coupling expansion
including pseudostates. Over almost all of the en-
ergy range a basis of 7s, 5p, 3d, 2 f, and 1g states
have been used to describe the atom. This 18-state
basis includes the exact hydrogenic eigenfunctions
through n=3 plus the exact atomic 4 f state and,
in addition, includes 11 pseudostates (45, 3p, 2d,
1f, and 1g types). The parameters of this basis

are given in Table 7 of Ref. 4.

There have been many previous scattering calcu-
lations in this range. The present work is, in fact,
an extension of a calculation by Morgan et al.,’
which used a very similar approach, but a smaller
(14-state) basis set. That work considered only the
region of the Feshbach resonances under the n=3
threshold. We have extended their calculation
through the entire region between the n=2 and 3
thresholds. In addition, it has been possible to in-
clude more short-range functions in expansion of
the scattering wave function used in the variational
method here than in the previous work. As a re-
sult, better convergence and more accurate results
have been obtained. Some of the Feshbach reso-
nances have been located more accurately, and
some others found for the first time in scattering
calculations. The increased accuracy of the present
calculations has also made it possible to describe
the shape resonance just above the n=2 threshold.

Other calculations deserve mention at this point.
Geltman and Burke® were the first to use a pseudo-
state basis for the description of the target in this
energy range. They employed a small basis set
containing six states: the exact ls, 2s, and 2p
atomic states and three pseudostates denoted 3s,
3p, and 3d. These pseudostates were those derived
previously by Damburg and Geltman’ and provide
the full polarizabilities of most of the channels
which open at the n=2 threshold. Geltman and
Burke reported cross sections at only four energies.
However, they compared their results at these ener-
gies with the six-state (exact atomic eigenfunction
1s through 3d) close-coupling calculation of Burke
et al.,® and with a calculation of Taylor and
Burke’ in which the three eigenstate expansion (1s,
2s, 2p) was supplemented by variationally deter-
mined correlation terms of the Hylleras type. I
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will show subsequently a comparison of eigenphase
sums from the present work and from the calcula-
tion discussed by Geltman and Burke, which sug-
gests that the present results may indeed be more
accurate than any of the preceding ones. It is
worth noting at this point that our calculated cross
sections are closer to those of Taylor and Burke
than either of the six-state calculations mentioned
above.

In Sec. II, I will discuss briefly some of the cal-
culational procedures, and make the comparison
with the previous calculations just mentioned. Sec-
tion III contains a list of the resonances obtained
in this work. Their positions and widths are com-
pared with other theoretical results and with exper-
iment where possible. Results for the scattering
cross sections are presented and discussed in Sec.
IV. My conclusions are given in Sec. V.

II. PROCEDURES, COMPARISON
OF CALCULATIONS

The procedure of the variational methods as ap-
plied to hydrogen are discussed in some detail in
Ref. 4. It is not necessary to repeat this material
here. The following comments should serve to
characterize this calculation adequately.

With one exception, discussed below, this work
is based on the 18-state (7-5-3-2-1) target-state ex-
pansion. Parameters are contained in Table 7 of
Ref. 4. Computations were made for values of the
total angular momentum L from 0—3. Contribu-
tions from states with L >4 were obtained from
the unitarized Born approximation including ex-
change (UBX). A model polarization potential'® is
included in the calculation of the 1s-1s element of
the UBX K matrix. In the energy range studied
here, the contribution from these higher angular
momenta ought to be small, and the UBX exten-
sion should not lead to significant error. In the
“worst” case, at the high-energy end of our range
(k?=0.888) the L >4 contribution to the 15-2p ex-
citation cross section is about 2%, and for the 1s-
2s, about 0.5%. The major error produced by
inadequate treatment of the higher partial waves is
that we are unable to investigate the resonances
which may occur in the G state.

Efforts were made to improve the convergence
of the expansion of the scattering wave functions
with respect to the situation reported in Ref. 5.
The improved convergences is manifest in im-
proved agreement between cross sections computed
according to the five variational procedures con-
sidered*!' [Kohn, Inverse Kohn, orthogonalized

minimum norm (OMN), inverse orthogonalized
minimum (IOMN), optimized anomaly free (OAF)]
(see Refs. 4 and 11 for a discussion of different
variational procedures). The improvements result-
ed from the following measures: (1) The number
of short-range function [Slater-type orbitals (STO)]
used in the expansion of the scattering wave func-
tions was increased from 9 for each channel, as
used in Ref. 5 to 15 (for L=0 and 1), 13 for L =2,
and 12 for L=3. (2) Additional energy-dependent
oscillatory functions (proportional to sinkr /7> and
coskr /r? at large r) were included in the expansion
basis for L=2 and 3 in addition to the functions
varying as r ~% at large 7 used in previous work.

(3) Portions of the calculation of the inverse of the
“bound-bound” matrix* were performed in quadru-
ple precision (on an IBM 3033).

The exceptional case mentioned above occurred
for the 'P state in the region where a shape reso-
nance occurs, just above the n=2 threshold. In
this region a smaller, 11-state (5-4-2) basis was
used for the target. (The parameters are also con-
tained in Table 7 of Ref. 4.) This was done in or-
der to permit use of a large basis (20 STO’s) set in
the expansion of the scattering wave function. Os-
cillatory functions decaying as » ~> and as r ~2
were also included. The large basis was necessary
in order to obtain adequate agreement between the
different variational estimates of the K matrix.

Calculations were made on a grid of energies in
which AE=0.005 Ry from k*=0.75 to 0.855 for
all angular momenta considered. Above this, a
grid of AE=0.001 Ry was used from k2=0.8880,
and then intervals of 0.0001 Ry up to k2=0.8885.
Additional calculations were made in the vicinity
of resonances. For example, the 'P (and 3P) partial
cross sections were calculated at intervals of 0.0001
Ry from K2=0.7501—0.7525, then at more widely
spaced points (k?=0.7530, 0.7535, 0.754, 0.755,
0.756, 0.757, and 0.758) up to k2=0.76. Other
partial cross-sections ('3S, "3D) which are large
but not resonant in the near threshold region were
calculated at intervals of about 0.001 Ry up to
k?=0.76. In the region just below the n=3
threshold, calculations were made in the vicinity of
each of the Feshbach resonances on a grid whose
size was determined roughly by the width of the
resonance. As examples, the 3F cross sections were
calculated at nine closely spaced energies in the
neighborhood of the spectacular resonance at
k2=0.8770, and the 'D cross sections were ob-
tained at 12 points close to the resonance at
k2=0.888 49.
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It remained to place the cross sections on a uni-
form scale suitable for tabulation, and graphical
display. A K-matrix fitting routine, previously
developed in another context'? was used for inter-
polation in the neighborhood of a resonance. In
this procedure, the K-matrix pole is first located by
examination of the original calculations. Once this
position is known, a linear least-squares fit is then
made to the K matrix in which the background en-
ergy dependence is expressed as a low-order poly-
nomial. Cross sections can then be computed rap-
idly from the fitted K matrix at any desired ener-
gy.

The quality of different calculations can, in part
be compared through consideration of the eigen-
phase sum.® It is known'? that the exact values of
the tangents of the eigenphases are upper bounds
on results which can be obtained from a close-
coupling calculation in which exact target wave-
functions are used in all open channels. Here we
shall consider the sum of the eigenphases. It can
further be shown that the addition of a closed
channel function to the target basis must lead to
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an increase in this quantity. Hence, there is a
sense in which that calculation which produces the
highest eigenphase sum is best. There is one pro-
viso, however; the tangent of an eigenphase, which
is the quantity actually computed by diagonaliza-
tion of the K matrix, is a periodic function with
singularities. The arctangent is multivalued. The
comparison of eigenphase sums between two calcu-
lations is therefore meaningful only if the corre-
sponding eigenphases in each refer to the same
branch of the arctangent.

Eigenphase sums from different calculations are
presented in Table I for L=0, 1; $=0, 1 at four
energies below the resonance region. Three of the
calculations are those discussed by Geltman and
Burke and mentioned above. Results from our ear-
lier work with the 11-state (5-4-2) basis'* are also
given. In most instances the present eigenphase
sums are larger than those previously reported.
There is an apparent anomaly in the 3S state for
k?=0.76 where the result of Taylor and Burke ap-
pears to be much larger. This is, however, a situa-
tion in which one has to be careful about choosing

TABLE 1. Eigenphase sums for four states at four energies. T.B.: Taylor and Burke; 3-state + correlation func-
tions, Refs. 6 and 9; G.B.: Geltman and Burke; three exact states + three pseudostates, Ref. 6; 6¢cc: six atomic states,
Refs. 6 and 8; 5-4-2: 11-state basis set previously employed in Ref. 14.

k? Present G.B. T.B. 6cc 5-4-2

s

0.76 —0.462 —0.535 —0.508 —0.574 —0.47

0.78 1.701 1.620 1.640 1.576 1.68

0.81 1.649 1.559 1.618 1.518 1.62

0.83 1.656 1.562 1.615 1.498 1.62
38

0.76 1.030 1.024 2.634 1.012 1.01

0.78 2.953 2.947 2.924 2.936 2.94

0.81 2.112 2.104 2.097 2.084 2.10

0.83 1.721 1.714 1.693 1.692 1.71
p

0.76 —1.122 —1.152 —1.185 —1.245 —1.19

0.78 0.645 0.614 0.559 0.538 0.64

0.81 —0.327 —0.360 —0.417 —0.468 —0.36

0.83 —0.727 —0.760 —0.826 —0.869 —0.75
3p

0.76 —0.417 —0.439 —0.508 —0.476 —0.44

0.78 1.482 1.455 1.386 1.410 1.46

0.81 0.682 0.651 0.683 0.584 0.66

0.83 0.436 0.398 0.312 0.320 0.40
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TABLE II. Results of several different calculations for energies and widths of resonances (all quantities in Ryd-
bergs). The number in parentheses indicates the power of 10 by which the preceding quantity is to be multiplied.

Present Ref. 5 Complex rotation Ref. 21
E r E r E r E

L=0 S=0

0.86199 2.86(—3) 0.8621 2.83(-3) 0.862 00* 2.84(—3) 0.86170

0.884 45 6.11(—4) 0.884 61 5.82(—4) 0.88537

0.88773 1.55(—4) 0.88763

0.88799 6.74(—5) 0.88802
L=0 S=1

0.88203 1.77(-5) 0.88212 1.8(—5) 0.88204

0.88752 4.28(—6) 0.88787 9(—6) 0.88753
L=1 S=0

0.75121 1.47(-3) 0.75130° 1.04(—3)

0.874 57 2.39(—3) 0.87495 2.42(-3) 0.874 58° 2.34(—-3) 0.87532

0.882 86 1.79(-5) 0.88297 9(—6) 0.88286

0.88777 4.36(—6) 0.88815 2.2(-5) 0.88777

0.88820 1.37(—4) 0.88840 1.62(—4) 0.888 24
L=1 S=

0.864 16 3.29(—-3) 0.864 28 3.40(—3) 0.864 20° 3.2(-3) 0.86372

0.88516 6.11(—4) 0.88526 6.38(—4) 0.88505

0.88724 8.39(—6) 0.88725

0.888 18 1.22(—4) 0.888 17
L=2 S=0

0.86809 3.27(=-3) 0.8682 3.24(—4) 0.8681¢ 3.2(-3) 0.868 33

0.886 36 4.83(—4) 0.88647 4.89(—4) 0.88636

0.888 49 5.37(-5) 0.888 69 4.2(-5) 0.88852
L=2 S=1

0.88207 7.5(—4) 0.88212 7.55(—4) 0.882 04¢ 7.5(—4) 0.88122

0.88453 1.70(—5) 0.884 63 1.7(-5) 0.88452

0.88821 3.15(—6) 0.888 58 6(—6) 0.88822
L=3 S=0

0.886 89 1.0(-5) 0.88701 1.0(—5) 0.886 88
L=3 S=1

0.87697 2.18(—4) 0.8772 2.3(—4) 0.876 98¢ 2.2(—4) 0.87577

0.888 00 1.08(—5) 0.888 06 1:0(—5) 0.88793

2Reference 18.
YReference 22.
“Reference 19.
dReference 20.

the correct branch of the arctangent function. Let
us follow the rise of the eigenphase as the n=2

threshold is approached from the high energy side.
A more complete examination of the 3S eigenphase

sum in our calculations shows that, as the incident
energy decreases toward the n=2 threshold, the
eigenphase sum rises. Just below k2=0.78, one of
the component eigenphases rises to 7/2. Below
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this energy, the computer program selects a value
for the eigenphase close to —/2, and the rise
with decreasing energy continues. Apparently the
3S eigenphase sum in the calculations of Taylor
and Burke has not undergone this change and is on
a different branch.

III. RESONANCES

Scattering calculations lead to very direct deter-
minations of positions and widths of resonances. I
examine the eigenphase sums for each L and S for
evidence of a rapid increase. Calculations are then
made in the region of the resonance, and a fit is
made to the eigenphase sum 87 using the expres-
sion

8r(E)=a +tan“m . (1
The quantity E is the resonance energy and T is
the width. T attempt to place the calculated points
close enough to E so that the variation of the
nonresonant background with energy is negligible.

This procedure works quite satisfactorily for the
Feshbach resonances lying under the n=3 thresh-
old. It is, however, unsatisfactory for the 'P shape
resonance just above the n=2 threshold, which I
have discussed elsewhere.!> In this case the back-
ground eigenphase sum is falling rapidly with in-
creasing energy, apparently as 1/(E —E,;) from a
presumably infinite value at the threshold energy
E; =0.75 Ry. In this case, I replace (1) with

4 Lb+c(E—Egy)

ST(E)Z—ETE—,;

r

2Eg—E) @

+tan~!

The present results for the positions and widths
of the calculated resonances are given in Table II,
where they are compared with values from the pre-
vious scattering calculation of Morgan et al.’
Generally, the resonance energies determined here
are slightly lower than those of Morgan et al.’ as
one would expect, in view of the increase of the
eigenphase sum as the target basis is improved. It
would be outside of the intended scope of this pa-
per to review all the extensive previous work on
the determination of resonances (see Refs. 16 and
17 for reviews). I will, however, present results ob-
tained by Ho using the complex rotation
method,'®~2° for the lowest members of the Fesh-
bach resonance series for the 'S, 'P, *P, 'D, D, and
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3F states. Generally, excellent agreement is seen in
the comparison for both the positions and the
widths. I also present results for the energies
(only) of all the resonances found here from the
compilation of Lipsky, Anania, and Conneely.?!
These authors diagonalize the Hamiltonian for the
two-electron system in a basis formed from angu-
larly coupled products of hydrogenic functions, the
ground state and the n=2 states being excluded.
They do not obtain widths, and a shift of the reso-
nance position resulting from interactions with
open channels is also not included in their method.
This shift is presumably similar in magnitude to
the width. All of the resonances they find below
k?=0.8885 with the conventional parity (— 1)t
have been found in these scattering calculations. It
will be seen that the difference between my ener-
gies and those of Ref. 21 is in magnitude typically
less than the width and therefore for some of the
higher, narrow resonances the agreement is really
excellent.

The 'P shape resonance above n=2 is, as usual,
in a category by itself. I give in Table II, in addi-
tion to my result, the value obtained using the
complex rotation method by Wendoloski and
Reinhardt.?? In this case the agreement between
the different techniques is not as good (particularly
for the width) as was obtained for the Feshbach
series. One may speculate whether the complex ro-
tation method which employs a basis set of
Laguerre functions with a common exponential
factor may have some difficulty in describing a sit-
uation in which there is a strong energy-dependent
background.

The energy I reported previously®* for the posi-
tion of the (very narrow) lowest 'P Feshbach reso-
nance below the n=2 threshold can be subtracted
from that given here for the shape resonance to
give a separation between these two resonances of
0.00331 Ry or 0.0450 eV. This result seems to be
in good agreement with preliminary results?* from
precise measurements of the photodetachment of
H~-.

Some of the resonances reported here have been
observed in electron-scattering experiments. The
discussion of scattering observations will be de-
ferred to Sec. IV in which results for cross sections
will be presented. It should be noted that the two
broadest of the Feshbach resonances in 'P state
under the n=3 threshold have been observed in
measurements of the H™ photodetachment cross
section.’ The results of Hamm et al. for energies
(after subtraction of the binding energy of H™) are
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TABLE III. Results for states 1s-1s, 1s-2s, and 1s-1p.

JOSEPH CALLAWAY

k? Is-1s 1s-2s 1s-2p
0.7502 7.010 0.103 0.145
0.7504 7.016 0.106 0.165
0.7506 7.026 0.118 0.200
0.7508 7.040 0.137 0.256
0.7510 7.055 0.164 0.336
0.7512 7.064 0.194 0.423
0.7514 7.061 0.214 0.479
0.7516 7.047 0.217 0.489
0.7518 7.031 0.209 0.467
0.7520 7.017 0.198 0.435
0.753 6.981 0.159 0.323
0.754 6.964 0.146 0.278
0.755 6.954 0.140 0.256
0.756 6.945 0.137 0.244
0.758 6.910 0.135 0.230
0.76 6.909 0.136 0.224
0.765 6.859 0.138 0.218
0.77 6.815 0.141 0.219
0.775 6.770 0.145 0.224
0.78 6.727 0.149 0.231
0.785 6.683 0.155 0.238
0.79 6.639 0.162 0.246
0.795 6.595 0.169 0.254
0.80 6.552 0.176 0.261
0.805 6.509 0.184 0.269
0.81 6.467 0.190 0.279
0.815 6.422 0.195 0.288
0.82 6.318 0.200 0.298
0.825 6.340 0.204 0.309
0.83 6.298 0.207 0.320
0.835 6.257 0.210 0.330
0.84 6.216 0.212 0.341
0.845 6.176 0.213 0.349
0.85 6.136 0.212 0.361
0.855 6.101 0.205 0.367
0.858 6.092 0.191 0.365
0.860 6.120 0.166 0.354
0.861 6.171 0.145 0.345
0.862 6.210 0.148 0.348
0.863 6.156 0.174 0.356
0.864 6.139 0.188 0.358
0.865 6.109 0.220 0.376
0.866 6.055 0.233 0.374
0.867 6.014 0.215 0.332
0.868 6.000 0.179 0.268
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TABLE II1. (Continued.)

k? Is-1s 1s-2s 1s-2p
0.869 6.009 0.178 0.279
0.870 6.007 0.199 0.331
0.871 5.998 0.213 0.363
0.872 5.987 0.221 0.381
0.873 5.976 0.227 0.386
0.874 5.965 0.226 0.355
0.875 5.956 0.216 0.312
0.876 5.950 0.211 0.324
0.877 5.979 0.466 0.805
0.878 5.924 0.234 0.425
0.879 5919 0.226 0.414
0.880 5912 0.222 0.411
0.881 5.907 0.217 0.408
0.882 5912 0.212 0.429
0.883 5.903 0.208 0.430
0.884 5.965 0.168 0.404
0.885 5.949 0.188 0.408
E =0.8748+0.0003 Ry, I'=0.002 02+0.00006 Ry tions at selected energies from k2=0.7502 to 0.885.
for the lower of the two, and Ep =0.8886+0.0003 Above the latter energy, the structure in the excita-
Ry, I'=0.000 12+0.00002 Ry for the higher. tion cross sections occurs on such a fine energy

scale that an adequate tabulation would have to be
very lengthy, and results are presented in graphical

IV. SCATTERING CROSS SECTIONS form instead. However, a more detailed tabulation
can be obtained from the author on request.
Table III presents numerical values for the cal- First, a few brief comments about the elastic-

culated elastic-scattering and excitation cross sec-
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FIG. 1. Cross section (units wa3) for the excitation of FIG. 2. Cross section (units mad) for the excitation of
the 2s state in the energy range 0.75 <k?<0.86. Points the 2p state in the energy range 0.75 <k?<0.86. Points

represent the experimental results of Williams (Ref. 2). represent the experimental results of Williams (Ref. 2).
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FIG. 3. Same as Fig. 1 for the energy range 0.855 <k?<0.8875. Vertical bars indicate the position of resonances.
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FIG. 4. Same as Fig. 2 for the energy range 0.855 <k2<0.8875. Vertical bars indicate the position of resonances.
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FIG. 5. Same as Fig. 1 for the energy range
0.8875 <k*<0.8885. (Calculated cross sections only.)

scattering cross section. Inspection of Table III
shows that resonances produce only small oscilla-
tions in this quantity, superimposed on a steadily
decreasing background. Elastic scattering in this
energy range is dominated by contributions from
the two states >S, and *P which together account
for (very roughly) about 85% of the total. Slightly
less than 10% of the total comes from 'S, and all
the other partial waves contribute together roughly
5%. Neither of the dominant states has major
resonant structure in the elastic channel. The elas-
tic cross section is so smooth and so nearly mono-
tonic that I have not shown it graphically.

On the other hand, the excitation cross sections
have rich structure. It is useful to divide the total
energy range into three separate regions in which
different energy scales are appropriate for graphi-
cal purposes.

A. From threshold to the Feshbach resonance region

Figures 1 and 2 show the 2s and 2p excitation
cross sections from k2=0.75 to 0.86. The theoreti-
cal values are compared with the measurements of
Williams.? The principal structure is that of the
highly asymmetric, near threshold 'P shape reso-
nance. This resonance is clearly present in the ex-
perimental data which, however, show the smear-
ing effects of a finite spread of electron energies.
Above the shape resonance, the cross sections rise
steadily until the Feshbach resonances begin. The
calculations agree quite well with experiment in
this range.

G’(WOS)

02r- .

s/ s[fe [P o

-l !

1 ! 1 1 1
08879 o888l 08883 08885

k2

1 1
08875 08877

FIG. 6. Same as Fig. 2 for the energy range
0.8875 <k2<0.8885. (Calculated cross sections only.)

B. Lower resonance region

Figures 3 and 4 show the excitation cross sec-
tions from k2=0.855 to 0.8875 Ry. The lower en-
ergy portions of the cross sections are dominated
by a few broad resonances, ('S, P, 'D, and 'P) and
a high but rather narrow °F resonance. The lower
resonances are obviously present in the experimen-
tal data, although the calculated structure is clearly
somewhat smeared in the experiments. The *F res-
onance, which is a spectacular feature of the calcu-
lated cross sections is not apparent in the experi-
mental results. As an energy increases, the calcu-
lated resonances become narrower and more closely
spaced. The experimental results fail to reveal the
predicted detailed structure.

C. Upper resonance region

Figures 5 and 6 show the excitation cross sec-
tions on a finer scale from k2=0.8875 to 0.8885,
the upper limit of the present calculations. Experi-
mental results are very sparse and are not shown.
The most pronounced structure is the second *F
resonance whose width is only 103 Ry. This pro-
duces a factor of 2 enhancement of both the 2s and
2p cross sections. The depression as the high-
energy end is approached is due to a !D resonance.

V. CONCLUSIONS

The present calculations are clearly able to ac-
count for the observed 2s and 2p total excitation
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cross section in the energy range between the n=2
threshold and the onset of the Feshbach resonances
below the n=3 threshold. This application of
variational methods to a close-coupling calculation
with a reasonably large pseudostate basis is suc-
cessful. Furthermore, the method appears to be
quite effective in determining the positions and
widths of resonances insofar as one can judge by
the comparison of results calculated according to
quite different methods. There is reasonable agree-
ment with the corresponding quantities determined

from measurements of the photodetachment of
H~. It remains to be seen, however, whether the
complicated and detailed structure predicted for
the excitation cross sections in the region of the
Feshbach resonances can be observed in electron-
scattering experiments, for which still better energy
resolution is required. Beyond this, measurements
of the elastic-scattering cross section and of dif-
ferential cross section in this energy range would
be useful as additional tests of the adequacy of
these calculations, and of current theory.
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