Spin-orbit interval in the ground state of F-like ions

Y.-K. Kim and K.-N. Huang Argonne National Laboratory, Argonne, Illinois 60439 (Received 19 April 1982)

Recommended spin-orbit intervals in the ground state, $2p^{52}P_{3/2}-^2P_{1/2}$, of fluorinelike ions are presented for ions of high nuclear charge ($Z \le 56$). The recommended values are based on the relativistic Hartree-Fock calculations with corrections deduced from known experimental values in the low-Z side of the sequence.

I. INTRODUCTION

Magnetic-dipole transitions between levels separated by spin-orbit interaction, such as the $2p^{52}P_{3/2} - {}^{2}P_{1/2}$ transition in fluorinelike ions, have become an important tool for the diagnostics of high-temperature plasmas.¹ Theoretical transition probabilities and wavelengths for magnetic-dipole and electric-quadrupole transitions for ions isoelectronic to the first-row atoms have been calculated from relativistic Hartree-Fock wave functions and published elsewhere.² In Ref. 2, all relativistic configurations of same parity and total angular momentum J that can be constructed within the principal quantum number n=2 complex are allowed to mix. This is known as the multiconfiguration Dirac-Fock (MCDF) wave functions. For the fluorinelike ions, only one relativistic configuration for each level is possible, i.e., $2s^2 2p_{1/2}^2 2p_{3/2}^3$ for the ${}^2P_{3/2}$ level and $2s^2 2p_{1/2} 2p_{3/2}^4$ for the ${}^2P_{1/2}$ level. Hence, in reality, the wave functions used for the F-like ions in Ref. 2 as well as in the present work were single-configuration wave functions. A1though the transition probabilities in Ref. 2 are sufficiently reliable for most purposes, the wavelengths need further improvement to be of practical value to spectroscopists.

The primary source of uncertainties in the transition wavelengths derived from *ab initio* calculations is the nonrelativistic electron correlation energy. However, for levels separated by the spin-orbit interaction, the nonrelativistic correlation contribution should be the same in both levels so that its effect can be canceled by forcing the two levels to have the same nonrelativistic total energy.³ For instance, one can start from the nonrelativistic Hartree-Fock (or multiconfiguration Hartree-Fock) energy, and then calculate the spin-orbit splitting as perturbation. Another approach is to perform relativistic calculations, e.g., compute the total energies for the ${}^{2}P_{3/2}$ and ${}^{2}P_{1/2}$ levels in separate MCDF calculations, but require that the two levels converge to the same nonrelativistic limit. In principle, these two approaches should lead to comparable results for ions of low nuclear charge. For ions with intermediate or high nuclear charge Z, however, the MCDF method offers an advantage by allowing correlation contributions from levels that will mix only relativistically. For instance, the $2p^{34}S_{3/2}$ level can mix with the $2s^22p^2P_{3/2}$ level in relativistic coupling but not in nonrelativistic coupling.

On the other hand, the MCDF method^{4,5} has its own pitfall: The relativistic $2p_{3/2}$ and $2p_{1/2}$ radial functions do not necessarily reduce to the same radial function in the nonrelativistic limit when the fine-structure constant α is set to zero in the MCDF program. As was pointed out by Wood and Pyper,⁶ this inherent difficulty occurs whenever the parent core of the state being calculated (e.g., $2p^4$ core for F-like ions) has more than one LS term. In such cases, a singly excited configuration (e.g., $2p^4$ 3p for F-like ions) has a nonvanishing Hamiltonian matrix element with the ground state,⁷ and consequently the two relativistic radial functions $2p_{3/2}$ and $2p_{1/2}$ simulate two nonrelativistic orbitals 2pand 3p resulting in different nonrelativistic limits. This problem, however, can be corrected simply by subtracting the spurious nonrelativistic contribution from the relativistic transition energy if the two levels are separated by the spin-orbit interaction.³ In practice, we calculate the transition energies twice, first with the correct value of α , and next with $\alpha = 0$. Then, the latter value is subtracted from the first result. This simple procedure dramatically improves the agreement between theory and experiment for low-Z ions.³

II. SYSTEMATICS OF TRANSITION WAVELENGTHS

The transition wavelengths for high-Z ions can be improved further by studying the Z dependence

26

1984

©1982 The American Physical Society

of the difference $\Delta \omega$ between the theoretical Dirac-Fock value $\omega(DF)$ and known experimental one $\omega(\exp)$. To obtain a reliable Z dependence of $\Delta \omega$, we must ensure that the theoretical transition energies exhibit as systematic a Z dependence as possible. For instance, Edlén⁸ used the values from Ref. 2 without the Lamb-shift contribution which occasionally introduced irregular Z dependence.

In the present work, we took additional precautions to ensure systematic Z dependence of theoretical transition energies: (a) We subtracted the spurious nonrelativistic correlation contribution mentioned above; (b) we included the estimate of the Lamb shift for all K- and L-shell electrons in the field of the bare nuclear charge; and (c) we used the Fermi distribution for the nucleus to assure the continuity of both amplitude and slope of radial functions at the nuclear boundary. These improvements lead both to better numerical values of the theoretical transition energies and to more systematic and reliable Z dependence of $\Delta \omega$ as is shown in Fig. 1.

For F-like ions up to Ge^{23+} (Z = 32), it is a simple task to determine most likely values of the spin-orbit interval based on smooth Z dependence of $\Delta \omega$. A few values of $\Delta \omega$ plotted in Fig. 1 deviate from the rest, clearly indicating experimental abberations. Since it is clear from Fig. 1 that the uncertainties in $\Delta \omega$ can be determined an order of magnitude better than the values of $\Delta \omega$ themselves, we can bracket the most likely values, or recommended values of $\omega = \omega(\text{DF}) - \Delta \omega$ to an accuracy unattainable by *ab initio* calculations alone.

The extrapolation of $\Delta \omega$ to higher Z is less reliable because experimental values are either nonexistent or bear large uncertainties. Furthermore, no clear theoretical guidelines are available for extrapolating $\Delta \omega$ to higher Z because the Z dependence of

FIG. 1. Correction $\Delta \omega$ to the theoretical spin-orbit splitting as a function of the nuclear charge Z of F-like ions. Note that the left half of the figure ($Z \leq 32$) uses the left scale and the right half of the figure ($Z \geq 30$) uses the right scale. Circles are the differences between the Dirac-Fock values $\omega(DF)$ and experimental values quoted in Table I. Solid curves are the corrections $\Delta \omega(DF)$ to obtain recommended transition energies from $\omega(DF)$. Theoretical uncertainties are roughly 25% of $\Delta \omega(DF)$.

 ω is very complicated.⁹ Numerically, the Z dependence of $\Delta \omega$ for 20 < Z < 40 in Fig. 1 is approximately $\Delta \omega \propto Z^5$. For Z > 40, we extrapolated $\Delta \omega$ in Fig. 1 by making it proportional to Z^5 . We assigned uncertainties of ~25% in $\Delta \omega$ for ions beyond Kr²⁷⁺.

III. RESULTS

Our recommended values are presented in Table I and compared with experimental data and semiempirical values recommended by Edlén.⁸ The close agreement with Edlén's recommended values is expected because our procedure and Edlén's are similar. We quoted only representative experimental values in Table I. The experimental value for

TABLE I. Energies for the $2p^{52}P_{3/2}-^2P_{1/2}$ transition of the fluorine isoelectronic sequence (in cm⁻¹).

z		Theory		Recommended	Recommended by Edlén		
	Ion	$\omega(\mathrm{DF})$	$\Delta \omega(\mathbf{DF})$	$[\omega(DF) - \Delta\omega(DF)]$	(Ref. 8)	Experiment	References
9	F	399	5	404 <u>+</u> 2		404.1 ±0.3	Lidén ^a
10	Ne ⁺	774	-6	780 ± 2	779	780.34 ± 0.14	Persson ^b
11	Na ²⁺	1359	7	1366 ± 2	1367	1366.3 +1	Martin ^c
12	Mg ³⁺	2221	— 7	2228 ± 3	2230	2228+2	Martin ^d
13	Al^{4+}	3435	-7	3442 ± 5	3445	3442 ± 2	Martin ^e
14	Si ⁵⁺	5084	-6	5090± 5	5094	5090 ± 4	Artru ^f
15	\mathbf{P}^{6+}	7264	5	7269 <u>+</u> 5	7272	7275 ± 2	Eidelsberg ^g
16	S ⁷⁺	10078	-3	10081 ± 5	10084	10 080	Robinson ^h
17	C18+	13 636	-2	13638+5	13 641	13631+40	Kaufman ⁱ
18	Ar ⁹⁺	18 063	0	18063 ± 5	18065	18 059	Moore ^j
19	K ¹⁰⁺	23 488	2	23486 ± 5	23 485	23467 ± 20	Corliss ^k

		Theory		Recommended	Recommended	**************************************		
Z	Ion	$\omega(\mathrm{DF})$	$\Delta\omega(\mathrm{DF})$	$[\omega(DF) - \Delta\omega(DF)]$	(Ref. 8)	Experiment	References	
20	Ca ¹¹⁺	30 0 5 5	5	30050 ± 5	30 048	30041 ± 40	Kaufman ⁱ	
21	Sc^{12+}	37 915	8	37907 ± 5	37 905	37908 ± 3	Suckewer (Ref. 1)	
22	Ti ¹³⁺	47 229	13	47216 ± 5	47 215	47219 <u>+</u> 4	Hinnov ¹	
23	V^{14+}	58 170	19	58151 ± 5	58 150	58093 ± 40	K aufman ⁱ	
24	Cr ¹⁵⁺	70919	26	70893 ± 10	70 895	70892 ± 15	Suckewer (Ref. 1)	
25	Mn^{16+}	85 671	34	85637±10	85 640	85 505	Fawcett ^m	
26	Fe^{17+}	102 629	43	102586 ± 10	102 590	102580 ± 15	Suckewer (Ref. 1)	
27	Co ¹⁸⁺	122 010	53	121957 ± 10	121 960			
28	Ni ¹⁹⁺	144 038	64	143 974 <u>+</u> 20	143 975	143978 ± 30	Suckewer (Ref. 1)	
29	Cu ²⁰⁺	168 953	80	$168873\pm~20$	168 874	168833 ± 60	Hinnov ⁿ	
30	Zn^{21+}	197 006	97	196 909 ± 20	196 908	196980 <u>+</u> 90	Kononov ^o	
31	Ga ²²⁺	228 457	120	228337 ± 30	228 337	228379 ± 200	Kononov ^o	
32	Ge ²³⁺	263 583	145	$263438\pm~30$	263 435	263 435 <u>+</u> 140	Hinnov ⁿ	
33	As ²⁴⁺	302 671	175	302 496 ± 30	302 491	302678 ± 300	Kononov ^o	
34	Se ²⁵⁺	346 022	205	345817 ± 40	345 806			
35	B r ²⁶⁺	393 949	234	$393715\pm~40$	393 693			
36	Kr ²⁷⁺	446783	272	446 511 ± 60	446 479			
37	R b ²⁸⁺	504 863	313	504 550± 80				
38	Sr ²⁹⁺	568 547	360	568187 ± 100		568 343±390	Reader ^p	
39	Y ³⁰⁺	638 207	415	637792 ± 100		637 267 <u>+</u> 490	Reader ^p	
40	Zr^{31+}	714 231	464	713767 ± 100				
41	Nb ³²⁺	797 023	526	796497 ± 150				
42	Mo ³³⁺	887 003	590	886413 ± 150				
43	Tc ³⁴⁺	984 608	660	983 948±150				
44	Ru ³⁵⁺	1 090 292	730	1 089 562 <u>+</u> 200				
45	Rh ³⁶⁺	1 204 529	810	1203719 ± 200				
46	Pd ³⁷⁺	1 327 816	900	1 326 916 <u>+</u> 250				
47	Ag ³⁸⁺	1 460 655	1000	1 459 655 <u>+</u> 250				
48	Cd ³⁹⁺	1 603 582	1110	1602472 ± 250				
49	In ⁴⁰⁺	1 757 149	1230	1755919±300				
50	Sn ⁴¹⁺	1921931	1360	1920571 ± 300				
51	Sb ⁴²⁺	2 098 525	1500	2097025 ± 400				
52	Te ⁴³⁺	2 282 551	1650	2280901 ± 400				
53	I ⁴⁴⁺	2 489 656	1810	2 487 846 <u>+</u> 450				
54	Xe ⁴⁵⁺	2 705 507	1980	2703527 ± 500				
55	Cs ⁴⁶⁺	2 935 801	2160	2933641 ± 500				
56	Ba ⁴⁷⁺	3 181 278	2350	3178928 ± 600				

TABLE I. (Continued.)

^aK. Lidén, Ark. Fys. <u>1</u>, 229 (1949).

^bW. Persson, Phys. Scr. <u>3</u>, 133 (1971).

°W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 10, 153 (1981).

^dW. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data <u>9</u>, 1 (1980).

^eW. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data <u>8</u>, 817 (1979).

^fM. C. Artru and W. L. Brillet, Phys. Scr. <u>16</u>, 93 (1977).

^gM. Eidelsberg and M. C. Artru, Phys. Scr. <u>16</u>, 109 (1977).

^hH. A. Robinson, Phys. Rev. <u>52</u>, 724 (1937).

ⁱV. Kaufman, J. Sugar, and D. Cooper, Phys. Scr. <u>25</u>, 623 (1982).

^jC. E. Moore, Atomic Energy Levels, NSRDS-NBS 35, Vol. I (U. S. Government Printing Office, 1971).

^kC. Corliss and J. Sugar, J. Phys. Chem. Ref. Data <u>8</u>, 1109 (1979).

¹E. Hinnov and S. Suckewer, Phys. Lett. <u>79A</u>, 298 (1980).

^mB. C. Fawcett, J. Phys. B <u>4</u>, 981 (1971).

ⁿE. Hinnov, S. Suckewer, S. Cohen, and K. Sato, Phys. Rev. A <u>25</u>, 2293 (1982).

^oExperimental data by É. Ya. Kononov et al. as quoted in B. Edlén, Opt. Pura Appl. <u>10</u>, 123 (1977).

^pJ. Reader, Phys. Rev. A <u>26</u>, 501 (1982).

Mn¹⁶⁺ is clearly out of step with the rest of the data. The difference (166 cm⁻¹) between $\omega(DF)$ and the experimental value is too large to be included in Fig. 1. For ions with Z > 25, the magnitudes $\Delta\omega(DF)$ and accompanying uncertainties are very small fractions of $\omega(DF)$, comparable to the uncertainties in the experimental values quoted in Table I.

We hope that the publication of our predicted values will stimulate enough interest among spectroscopists to provide additional experimental values and improve our "recommended" values. Similar determination of spin-orbit intervals of oth-

- ¹S. Suckewer and E. Hinnov, in *Physics of Electronic and Atomic Collisions (Invited papers, XII ICPEAC, Gatlinburg, Tennessee, 1981)*, edited by S. Datz (North-Holland, Amsterdam, 1982), p. 783.
- ²K. T. Cheng, Y.-K. Kim, and J. P. Desclaux, At. Data Nucl. Data Tables <u>24</u>, 111 (1979).
- ³K.-N. Huang, Y.-K. Kim, K. T. Cheng, and J. P. Desclaux, Phys. Rev. Lett. <u>48</u>, 1245 (1982).

er ions isoelectronic to the first-row atoms is in progress.

ACKNOWLEDGMENTS

The authors would like to thank Dr. W. C. Martin, Dr. J. Reader, Dr. J. Sugar, and Dr. E. Hinnov for providing us with experimental values quoted in Table I, and Professor B. Edlén for sending us his recommended term values prior to publication. This work was supported by the U. S. Department of Energy under Contract No. W-31-109-ENG-38.

- ⁴J. P. Desclaux, Comput. Phys. Commun. <u>9</u>, 31 (1975).
- ⁵I. P. Grant, B. J. McKenzie, P. H. Norrington, D. F. Mayers, and N. C. Pyper, Comput. Phys. Commun. <u>21</u>, 207 (1980).
- ⁶C. P. Wood and N. C. Pyper, Mol. Phys. <u>41</u>, 149 (1980).
- ⁷J. Bausch and M. Klapisch, J. Phys. B <u>5</u>, 29 (1972).
- ⁸B. Edlén, Phys. Scr. <u>26</u>, 71 (1982).
- ⁹D. Layzer and J. Bahcall, Ann. Phys. <u>17</u>, 177 (1962).