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Energy-loss calculations for medium-energy rare gas +H2 collisions
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Cross sections differential in energy loss and scattering angle and most-probable

reciprocal-mass functions are calculated for several rare gas on Hq collisions in the low-keV

collision-energy range. Specifically, the collision systems He+H2, Ne+H2, and Ne +H2
have been considered. The classical-trajectory calculations are based on a triatomic-

molecular potential-functional form suggested by ab initio calculations of the He-H2 energy

surface, which serves as a prototype for all rare-gas-H& systems. The parameters in that

functional form have been fitted from the experimental differential energy-loss measure-

ments for Ne on H2 collisions to yield the ¹H2energy surface, and from the Ne+ on H2

differential energy-loss measurements to yield the Ne-H2+ energy surface. With the energy

surfaces thus parametrized, the calculated differential energy-loss cross sections agree well

with the experimental data. They explain the anomalously large range of scattering angle

in which the collision is elastic, with no vibrational-rotational excitation.

I. INTRODUCTION

Recent energy-loss measurements in large-angle
scattering experiments (up to 10 keV deg) of Ne+ on

H2 and Ne on H2 in the low-keV collision-energy
range have suggested the existence of strong nonad-
ditive valence forces deep in the repulsive region of
the interaction energy surface, ' a region previously
thought to be dominated by vector additive forces
generated by screened Coulomb core-core potentials.
Until now, it has been supposed that valence forces
are limited to relatively large separations. The ex-
periments, however, demonstrated that these nonad-
ditive valence forces extend deep into the repulsive
region as well. In particular, Ne on H2 collisions
which lead to reduced scattering angles of 2 keV deg
or less and Ne+ on H2 collisions which lead to re-
duced scattering angles of 5 keV deg or less seem to
be almost completely elastic, despite the fact that
the distance of closest approach between the Ne
projectile and the Hq target for 2 keV deg scattering
is approximately equal to the H-H separation in the
target, so that a large vibrational impulse had been
expected. Moreover, a very significant difference
was found between Ne on H2 collisions and Ne+ on

H2 collisions, indicating that core-core forces
(which are almost unaffected by the difference be-
tween Ne and Ne+) do not play a dominant role in
these collisions.

These surprising results motivated an ab initio
study of the simpler He-Hz energy surface in the

repulsive region to serve as a prototype for all rare-
gas-Hq collision systems, inasmuch as He+ on H2
collisions behave in a manner quite similar to Ne+
on Hq collisions. The ab initio calculations did
indeed bear out the experimental conclusions of
Refs. 1 and 2. The He-H2 calculated energy surface
is rather well fit by the parametric form:
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which should also be valid for all rare-gas-H2 sys-

tems as well. Here, Zz is the nuclear charge of the
projectile, A& is the strength of the two-body polari-
zation potential, and A3 gives the strength of the
long-range part of the three-body polarization po-
tential, the term that gives rise to the nonadditive
forces. The term Be is a short-range contribu-
tion which describes the saturation of the three-

body term in the vicinity of R=0. The geometry is
described in the preceding paper, which also gives,
in Table II, the values of the parameters yielding
the best fit to the ab initio calculations of the He-Hq
system. The three-body term is a function only of
R, the distance between the projectile and the center
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of the Hq target. It can, therefore, contribute only
to elastic scattering; it cannot contribute to rota-
tional or vibrational excitation. It arises froIn the
fact that the electrons in an H~ molecule are some-
what drawn into the region between the two pro-
tons, at the expense of the distributions centered
about each proton; it is this distribution, centered at
E=0, that causes the three-body potential. The po-
larization potentials are repulsive, due to the Pauli
exclusion principle which forbids the overlap of
electrons in phase space. Thus, the spatial overlap
of the He and Hq distributions at small separations
causes an increase in the momentum distribution
and, therefore, in the electronic energy. Character-
istically, the Born —Mayer-type polarization terms
are long range, while the core-core Bohr terms are
short range. The two-body polarization term has a
small amplitude and is, moreover, only weakly able
to cause vibrational or rotational excitation. Thus,
larger impact parameter collisions will be almost
completely elastic. However, a Born-Mayer poten-
tial has a maximum value of ~ that it is able to pro-
duce, whereas the core-core Bohr potential can pro-
duce all center-of-mass (c.m. ) scattering angles up
to 180'. Thus, the potential given by Eq. (1) will

give rise to essentially elastic scattering for scatter-
ing angles with ~ below some critical value, the
maximum that can be produced by the polarization
term. Beyond that critical value of w, the core-core
terms must contribute, and with that contribution
will come vibrational-rotational excitation.

In this paper, the dependence of the energy loss
on r is quantified, detailed calculations for He-Hq,

¹Hz, and Ne+-Hq collisions are presented. The
results for Ne+ Hq and Ne+-Hq collisions are in

good agreement with existing experimental results.

II. THEORY

Mp/M, g ——T/EB (2)

For gentle collisions with impact parameters much
larger than the H-H separation in the target mole-
cule, M,~~ will be very nearly the en(ire molecular
mass, 2M'. On the other hand, for hard collisions,
the high momentum transfer involved can be
achieved only if the distance of closest approach be-
tween the projectile and one of the target nuclei is
much less than the H-H separation in the Hz. In
this latter case, Md~ will be very nearly equal to
Mz, since the other H remains behind as a distant
spectator. This suggests, and several experiments
confirm, ' ' that the dimensionless reciprocal
mass function f, introduced by Sigmund and de-
fined by

f=M~/M, rr, (3)

takes on values between 0.5 (the elastic limit) and
1.0 (the binary limit). The function f is, then, a
scaled energy loss, a convenient parameter which
determines how inelastic a given atom-molecule col-
lision is. Its use does not entail the loss of any in-
formation, inasmuch as both the projectile energy
loss, T, and vibrational-rotational inelastic energy,

Q, are determined by f and the scattering angle.
The inelastic energy is just the difference between
the total energy lost by the projectile and the
translational recoil energy of the target mass
Mz- ——2M' ..

Q =T P /2Mr, — (4)

where, for small scattering angle, the collisional
momentum transfer I' is the incident momentum
multiplied by the scattering angle,

P =(2M,E)'"e .

From the definitions (2) and (3),

f=M~/M, p=Mn T/MI E8

It is by now becoming standard to discuss energy
loss in atom-Inolecule collisions in terms of a re-
ciprocal mass function, f. This parameter is ob-
tained by analogy with simple potential scattering
of a projectile of mass Mp by a target of mass Mz,
where kinematics alone determines that the projec-
tile energy loss T, the projectile energy E, and the
scattering angle 0 are related by Mp/Mz ——T/EO .
For collisions of helium projectiles with Hz targets
which occur without electronic excitation (but in
which vibrational-rotational excitation may occur),
one can still define an effective molecular mass,
M ff by the equation

, Tl(P /2Mr—)

and from Eqs. (4)—(6), T and Q are given by

T =2/EH Mp/Mr,

Q =(2f —1 )EO Mp/Mr .

(6)

Sigmund first suggested that, under rather gen-
eral conditions which are expected to be valid in the
keV collision energy regime, f will depend only on
the reduced scattering angle ~=EB. These condi-
tions are (i) classical scattering and (ii) the sudden
approximation for the motion of the nuclei (elec-
tronic motion continues to be treated adiabatically).
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Reference 7 also contained a third condition requir-
ing the collision forces between projectile and target
molecule to be vector-additive binary forces. With
the indication from the present work and Ref. 3
that the scaling law seemed to be valid even without
binary forces, Sigmund generalized the original
derivation to arbitrary forces derivable from a po-
tential. Sigmund scaling thus requires only the two
assumptions listed above and will be valid for
nonadditive polarization forces as well as binary
forces.

Following Sigmund, Fig. 1 shows the geometry
of a collision projected onto the target plane, a
plane perpendicular to the projectile velocity which
contains the center of mass of the target molecule.
Thus, the projected H-H separation, d, of Fig. 1 is
r sinu, where r is the full H-H separation and a is
the angle between r and the projectile velocity.
This work presents results for equilibrium H-H
separation, 1.4ao. Additional calculations were also
made in the range 1.2 & r (1.6ao and show that cal-
culations at equilibrium r give the same results as is
obtained by averaging over ground-state vibrational
separations. The target plane contains the impact
parameters b1 and b2 of the helium projectile with
respect to the near and far hydrogen atoms, and b3,
the impact parameter with respect to the center of
the target molecule. The b; are written as vectors
in the target plane, because the directions as well as
the magnitudes are important. These b; determine
the reduced scattering angles ~;, with ~~ and ~2 be-

ing determined by the binary forces, while ~3 is
determined by the three-body polarization force.
The impact expansions of the reduced scattering
angles are useful here:

V(p) =(Vo/p)exp( —cp)

r=cVPK1(cb)+ 0 (E ')

7)

and

V(p) = Voexp( —cp), (10)
r=cbVpKp(cb)+O(E ),

where p stands for Rq, R~, or R and where Eo and

Ei are the modified Bessel functions. Bernstein'
has derived the leading term in Eq. (10) from a
quantal phase-shift argument. For the small

scattering angles considered in this work, the terms
proportional to E ' are negligible, a fact which

plays an important role in securing the scaling

property described by Sigmund. In order to mini-

mize the confusion which can arise from conflicting
jargons, it may be noted that the scattering angles
considered in this work range up to a few degrees in
the laboratory frame. These are termed "large an-

gle scattering" in the experimental jargon, yet are
well within the "small angle scattering" range of
the theorists' jargon. In this small scattering angle
approximation, impulses parallel to the projectile
velocity are negligible, so that the reduced scatter-
ing angles ~i, ~q, and ~3 all lie in the target plane
and add vectorially to yield the net scattering angle,

T = T1 + T2 P1/2MH+P——2/2MB, (12)

where P~ and P2 are the separate recoil momenta of
each H. Because the force giving rise to ~z is exert-
ed against the H2 center of mass, it is equally divid-

ed between both H atoms. Thus,

P1 ——(2Mp/E)' (r1+—,r3),

P2=(2Mp/E)' (72+ 213) p

(13a)

(13b)

and

1++2++3 '

The energy lost by the projectile is the sum of the
energies acquired by the two H atoms in the target
molecule:

r~r
/

b
Ib /br

/

T =(Mp/MHE)

X [+~1++2+ 2 +3+ r3 ( +1+r2)1

Substitution of (14) into (6) yields

f r [+i++2+ 2 ~3+ r3 (+1+r2)) ~

(14)

(15)

FIG. 1. He + H2 collision geometry projected onto the
target plane. b; are impact parameters and ~; are reduced

scattering angles, EH;.

where Eo has been replaced by ~.
From Eqs. (1), (9), (10), and (15), it is clear that f,

so calculated, is a function of impact parameters
only. It is, therefore, independent of E or 8
separately, and will be a universal function of
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s=EO. This is a specific realization of Sigmund s
scaling principle.

The above equations define the outcome of a sin-

gle projectile-target collision at a given impact con-
figuration defined by impact parameters b; and the
orientation angle a of the molecular target. In or-
der to determine cross sections, r and f were thus
calculated from Eqs. (11) and (15) and stored for,
typically, 10 different impact configurations, sam-

pling sufficient values of both impact positions and
molecular orientation angle to secure good numeri-
cal convergence. The number of configurations
which result in scattering into reduced scattering
angles between ~ and ~+Ax. with a scaled energy
loss between f and f+hf then determine the dou-

bly differential cross sections.

III. RESULTS

The most-probable scaled energy losses, f, are
shown plotted as functions of r in Fig. 2. These
plots have been the feature of central concern in the
recent literature. The curve marked 3 in this figure
presents the scaled most-probable energy losses for
He on H2 or He on 02 collisions obtained with the
ab initio calculated He-H2 interaction potential, the
parameters for Eq. (1) being taken from Table II of
Ref. 3. It will be noted that Eq. (15) predicts identi-

cal values of f~ for H2 and D2 targets. At present,
no experimental data for this collision system are
available for direct comparison with the theoretical
results, but the qualitative features for this system
are expected to be similar to the energy losses both
in Ne on 02 and Ne+ on D2 scattering, both of
which have been measured. For want of other ex-
perimental data, it is these neon on molecular deu-

terium experimental results which are compared
here with the theory. Suitable parameters for the
Ne-D2 and (Ne-D2)+ potentials are easily deter-
mined by fitting the scattering data. Of course,
Zz ——10, and A,, is taken to be proportional to
(1+Zp )'~, as suggested by Thomas-Fermi argu-
ments [cf. Eq. (17b) below] so that for, neon projec-
tiles, the exponential parameter A,„scaled from the
value for helium projectiles, is A,, =4.72ao . It is
shown analytically below that the dependence off
on r is relatively insensitive to the details of the
core-core potentials, but quite sensitive to the
three-body potentials and, in particular, to the max-
imum scattering angles which they produce. These
are largely determined by the strength parameters
A3 and B, which have therefore been determined by
optimizing the agreement in Fig. 2. The resulting
values for the ¹02system are A3 ——6, B=4.75;
for the (Ne-D2)+ system, A3 ——20 and B=15.8. All
other parameters have been kept the same as for the
He-H2 system, for lack of any calculated values for
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FIG. 2. Most-probable scaled energy loss of the projectile plotted as a function of reduced scattering angle. Curve A

shows the calculated results obtained using the ab initio potential for the He-H2 system. , Curves B and C show the
Ne+ D2 and Ne + D2 calculations using potentials of the form Eq. {1)with parameters empirically fitted for each col-
lision system. Calculations are described in Sec. II. Experimental points from Ref. 2 are also shown. Open points give
the results for Ne on D2 corresponding to projectile energies of 0.5 keV, V; 1.0 keV, 0; 1.5 keV, D; and 2.0 keV, Q. Re-
sults for Ne+ + D2 collisions at projectile energy 3.5 keV are represented by a solid nablus. Curve D shows the results ob-
tained for Ne or Ne+ on D2 using the Bohr two-center potential given by Eq. {17).
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the Ne-H2 or (¹H2)+systems. The details of the
core-core potentials are not important in an f~ vs r
plot, but uncertainty in the value of Az, which gives
the range of polarization forces, may be a serious
defect. Ultimately, both A3 and Az can be experi-
mentally determined by carefully measuring the dif-
ferential scattering cross section in the completely
elastic angular region below the critical value of r
and inverting these measurements to yield the long-
range tail of the scattering potential; thus far, how-

ever, no such measurements have been made.
Curve 8 in Fig. 2 shows the calculated value of

f vs w for Ne on D2 (or Hq) collision, while curve
C shows the results for Ne+ on D2 (or H2) col-
lisions. In the range of r &2 keV deg for Ne on D2
collisions, a detailed analysis shows that the statisti-
cally predominant collisions are those close to the
midplane of the molecular target, b~ -b2. For
values of r larger than 2 keV deg, f~ rises above 0.5
and asymptotically approaches the binary limit of
1.0. The three-body forces alone cannot produce
such large values of r, and the core-core forces
necessarily play an important, and asymptotically
dominant, role in the scattering. Moreover, the cal-
culations for Ne on D2 show that, for ~& 4 keV deg,
the statistically dominant region of Fig. 1 is the
projected internuclear axis, so that b2-d+b&. In
this region, an explicit formula for the dependence
of f upon r can be easily obtained from Eq. (15) by
making the mild approximation that the effect of
the distant target atom is negligible compared to ei-
ther the near target atom or the three-body force, so
that r2 « r& or r3. One easily finds that

(16)

Furthermore, r3 is very nearly a constant for large
~, because for all impact parameters in the range

0.4ao (b3 (0.9~o

73 is within 10%%uo of its maximum value, 1.2 keV deg
for Ne-H2. Since a large value of r can only result
from a close collision with one target atom, b3 usu-

ally falls within that rather broad range, and it is
possible to set r3 1.2 keVdeg. ——Equation (16) is
then a quadratic in 1/r, which approximates the
calculated results of curve B very well not only at
large v, where the above arguments apply, but,
surprisingly, for all values of ~ beyond 1.2 keVdeg.
Similarly, if for Ne+ on D2 scattering the value of
r3 is set equal to 4 keV deg, (the maximum value of
r3), then Eq. (16) agrees quite well with curve C for
all r beyond 4 keVdeg. Remarkably, Eq. (16) does
not depend on the detailed form of the core-core in-

teractions, except that they be short range and
strong enough to produce large w, nor does it de-

pend sensitively on the projected internuclear
separation d. The maximum value of ~3 emerges as
a dominant feature, which determines the parame-
ters of the three-body terms in the potential. Along
with the results calculated in this work, Fig. 2 also
shows the experimental data points from Andersen
et al. for collisions involving Ne and Ne+ projec-
tiles with D2. The theory agrees closely with exper-
iment except at large values of v., where spurious
counts arising from electronic excitation may have
artificially raised the f values. " The difference, for
example, between the experimental and calculated
values for Ne on D2 at v =8 keV deg, corresponds to
an excess energy loss of 14 eV, which is comparable
to electronic excitation energies of the projectile and
the target.

The threshold behavior of f as it first begins to
rise above the elastic limit, 0.5, is an interesting as-
pect of the energy-loss dynamics which should be
studied in higher resolution in future work. Equa-
tion (16) predicts the rise to be parabolic, with

f~ ——, proportional to (r—r&'") near r3'" The.
currently available experimental data shown in Fig.
2 lend some support to such a parabolic rise, but
since (16) is, in principle, a high r approximation
with no a priori claim to validity near the elastic
limit, further study is required.

Finally, curve D in Fig. 2 shows for comparison
the single curve representing both Ne on D2 and
Ne+ on D2 predicted by a strict vectorially additive
two-body Bohr potential:

V =Z~/Rzexp( A,,Rz)+Z~/R—~exp( A,R~),—,

(17a)

(17b)

Here, Z& is again the projectile charge and Z, for
each target atom, has been set equal to unity. The
resulting f hovers very close to unity over the en-
tire range of reduced scattering angle here con-
sidered. This is because the effects of the two-
center Bohr potential fall off rapidly with distance,
so that even in distant (b »d, A,, ') encounters re-
sulting in small scattering angles, the ratio ~q/~~

~C~can be very small, of order e ' . The reciprocal
mass function is then approximately given by

cosh', ,d /(1+ cosh', ,d),
which is nearly unity for Ne '+ + Dz collisions.
Thus, with the potential of Eq. (17) even distant
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collisions end up near the binary limit, whereas po-
tentials of the form of Eq. (1) avoid this unrealistic
feature, since they contain the important three-body
polarization forces, as discussed above.

Figure 3 shows the calculated doubly differential
energy cross sections for the Ne+ on D2 (or H2) col-
lision system. It is seen that the energy-loss depen-
dence of the calculated cross section obtained with
the parametrically fitted potential of the form given

by Eq. (1) is a rather sharply peaked function.
Indeed, it is for this reason that there is a most-
probable energy loss, f~, associated with each re-

duced scattering angle ~. Information is contained
in the width and shape of the peak which, if experi-
mentally determined, can yield valuable information
on the range of the core-core part of the triatomic-
molecular potential. In the vicinity of the critical
value of r, at which the crossover occurs from dom-
inant scattering by the three-body forces to dom-
inant scattering by the core-core forces, if the range
of the core-care potential is not much smaller than
the three-body valence potential, the line shape of
the energy-loss cross section becomes broad and can
even exhibit a doubly peaked structure. This
behavior is illustrated in Fig. 4 for a vectorially ad-
ditive two-body Bohr potential. Such a potential
has no three-body part; hence, the anomalously
broad line is found at small values of ~. For the po-
tential of the form Eq. (1) used to generate curve C
for Ne+ on Di collisions, the anomalously broad
line shape would occur at ~=6 keVdeg, were the
range of the core-core potential significantly longer

than that used for curve C.
No such doubly peaked line shape has been seen

in the experimental data. Unfortunately, experi-
mental resolution problems do not yet allow any
firm conclusions to be drawn. It is not difficult to
demonstrate that most, if not all, of the experimen-
tal linewidths are due to experimental resolution.
Taking the differential of T as given by Eq. (7),
considering f, E, and 8 all to be variables,

5T=(2M~/Mr)

X(E8 5f+E8 f5E/E+2fE858) .

For Ne or Ne+ on B2, with the energy loss T mea-
sured in eV while the beam energy E is measured in
keV and 0 in deg,

5T=3.1E8 5f+3.1E8 f5E/E+6. 1fE858 .

The first term of (17) is the natural linewidth, due
to the fact that collisions which result in a given
scattering angle ~ can give rise to a range of values
for T. The second and third terms describe contri-
butions to the linewidth 5T due to beam energy and
angular widths. Since

5E/E =0.0005

for the experiment, this term is negligible. On the
other hand, using the value 0.25' quoted by Ander-
sen et a/. for the angular width of the beam, over
60% of the widths for 6T shown in their Fig. 1 is

T=6

0.5 0.6 0.7 0.8 0.9 I.O

SCALED PROJECTILE ENERGY LOSS f 0.5
I

0.6 0.8
I

0.9 I.O

FIG. 3. Doubly differential cross sections for Ne+ on
Di collisions plotted as functions of scaled energy loss, f,
at v=6, 10, and 20 keVdeg. Calculations were carried
out as described in Sec. II, through the use of a potential
of the form Eq. (1) with the parameters empirically fitted
for the (¹Dz)+system. Respective maxima in the dou-
bly differential cross section are located at 1.2, 0.27, and
0.062a 0/keV deg.

SCALED PROJECTILE ENERGY LOSS f

FIG. 4. Doubly differential cross sections calculated
with a binary Bohr potential, Eq. (17). Broad double
peak seen at small values of v arises from the fact that
small scattering angles can be produced by either large
impact parameter collisions, which produce small f, or
collisions in which the projectile goes through the center
of the target molecule, which produce large f.
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due to this cause. Moreover, these linewidths are
found to vary directly with EO, and not EH, sug-

gesting that all, or nearly all, of their linewidths are
due to angular resolution, with an uncertain contri-
bution from the natural linewidth 5f. Even so, a

really broad line of the form seen in Fig. 4 should
show up in the experimental linewidths if it existed.
In any event, it will be extremely interesting to ex-
amine future experimental work on the line shapes
carried out with higher angular resolution.
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