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Single-configuration Hartree-Fock calculations are reported on the HeH2 triatomic-

molecular system in the range of small He-Hq separation, 8, to complement earlier studies,

so that the entire energy surface of interest to He on H2 collisions in the low-keV collision-

energy regime has now been determined. It is found that strong repulsive three-body polar-

ization forces exist which dominate the physics of this collision-energy regime. Because a

Legendre-polynomial expansion in the angular variable is found to be useless in this region

of the energy surface, a new parametrization is introduced which includes both binary and

three-body terms. The three-body terms are needed because the electron distribution in H2

is different from the sum of the distributions of two individual H atoms.

I. INTRODUCTION

Recent scattering experiments between rare-gas
atoms and H& in the low-keV range of collision en-

ergies' have suggested the existence of strong,
nonadditive valence forces deep in the repulsive re-

gion of the energy surface, a surprising result since
this region was thought to be dominated by
screened Coulomb core-core type interactions,
which give rise to additive forces. Indeed, the un-

mistakable conclusion from the experimental data
was stated both tentatively and weakly in Ref. 3 for
this very reason. Accordingly, it seemed
worthwhile to investigate the repulsive part of the
He-H2 energy surface, the simplest of rare-gas Hq

systems and a prototype for the others, all of which
behave in the same way in low-keV energy col-
lisions.

A number of ab initio calculations on the He-Hq
triatomic-molecular system can be found in the
literature~ " starting from 1963. There also exist

two energy surface fittings to experimental data. ' '
The existing literature is well summarized by Meyer

et al, " and none cover the full region required by

keV energy collisions. In fact, the more recent and

more accurate works have concentrated on the van

der %aals minimum, which is located at He-H2

separation R =6.5ao. This is approximately four
times the separation r between the two protons in

the H2, so that the van der %aals minimum is lo-

cated in a region where the energy surface is near1y

isotropic in the angle y between R and r. As a
consequence, these works were able to parametrize

the energy surface by expanding the angular depen-

dence in Legendre polynomials

V(R, r, y) =g V„(R,r)P„(cosy)

and retaining only the first two terms.
On the other hand, scattering experiments in the

low-keV collision-energy range probe the energy

surface deep in the repulsive region, where it is far
more anisotropic and does not admit of a useful

Legendre-polynomial expansion. Parenthetically, it

may be remarked that the van der %aals minimum

for He-Hq has a well depth of only 1.0 meV. Such

a shallow well is inconsequential for scattering ex-

periments in the keV energy range, although experi-

ments in this collision energy range are capable of
"seeing" and exploring a more substantial well.

In this work ab initio calculations are presented

for the deep repulsive region to complete the energy

surface, and a new parametrization is developed to
extend the Tang and Toennies theoretical model for
the energy surface' to cover the entire energy sur-

face. The Tang and Toennies model was originally

introduced to describe the energy surface at inter-

mediate and large distances (R )4a&&), which in-

cludes the region of the van der %aals minimum.

For 8 &4ao, the first two terms of the Legendre-

polynomial expansion are found to suffice; more-

over, the coefficients of I'0 and I'2 can be taken as
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functions of R only. Tang and Toennies further
decomposed Vo and Vi into a self-consistent-field
(SCF) contribution, a dispersion contribution, and a
coupling correction:

V„(R,r) = V„scp(R)+ V„d;,p(R)

+V„„(R). (2)

The SCF contribution (a single-configuration
Hartree-Pock calculation) yields a purely repulsive

energy and is sufficient to describe the repulsive re-

gion of the energy surface at smaller values of R.
In the limited range of R, which Tang and Toennies
consider, they find that VoscF and V2 sc„can be
accurately described by Born-Mayer potentials:
A„exp( b„R).—The dispersion contribution, on the
other hand, can only arise from a configuration in-
teraction (CI) calculation; its existence altogether
depends on electron-electron correlation. It is ex-
pressed as a series in inverse powers of R:

gC„;/R '.
l &3

Finally, their correction term takes into account the
effect of the repulsion on the dispersion.

In this work, the decomposition of the potential
into VscF, Vd;», and V„ is retained, with Vd&sp

and V„as given by Tang and Toennies. ' Only
VscF has to be modified to encompass the extended
range of R here considered. Ab initio SCF calcula-
tions are here reported for values of R from 0 to
3ao, thus completing the range of R for which the
energy surface has been calculated. In this small R
region, neither the dispersion nor the coupling.
terms of the Tang and Toennies model make any
appreciable contribution, so that only VscF need
here be considered. It is found that a Legendre-
polynomial expansion of VscF is inadequate in this
small R region and that the dependence on the H-H
separation, r, is quite important. Indeed, without
the r dependence of the energy surface, the experi-
mentally observed vibrational excitation could not
take place. Calculations were therefore carried out
for r =1.2, 1.4, and 1.6ao. Moreover, a finer mesh
of 30' increment was used for the angular depen-
dence. A new parametrization for VscF is described
in Sec. III, which adequately fits the calculated en-

ergy surface over a range of energy variation which
spans more than four orders of magnitude. At the
same time, this parametrization has the correct lim-
iting forms at the singular points Rz ——0 and
Rz ——0, and the nonsingular, ordinary point R =0.
Finally, the individual terms in the new parametri-
zation have physical significance and provide a
better intuitive understanding of the energy surface.

II. CALCULATIONS

TABLE I. Comparison with the results of Meyer et al.

y R r Present Meyer et al. ' SCF Meyer et al. ' CI

0' 2 1.2 0.195
1.4 0.215
1.6 0.232

0.195
0.211
0.230

0.188
0.205
0.226

3 1.2 0.030
1.4 0.036
1.6 0.042

0.031
0.036
0.041

0.029
0.033
0.038

90' 2 1.2 0.152
1.4 0.154
1.6 0.155

0.153
0.154
0.154

0.145
0.146
0.145

3 1.2 0.024
1.4 0.026
1.6 0.029

'Reference 11.

0.025
0.026
0.028

0.022
0.023
0.024

SCF-LCAO-MO calculations (where LCAO and
MO represent linear combination of atomic orbitals
and molecular orbitals, respectively) have been
made on the ground-state energy surface of the He-

H2 triatomic-molecular system using the IBMQL

program and the SCF mode of the Gva program.
The Gaussian basis set, taken from Brown and
Hayes, ' contained: (a) five s-type Gaussian func-
tions contracted to four s-type atomic orbitals along
with two p-type Gaussians centered on each H and
(b) six s-type Gaussians contracted to four atomic
orbitals along with two p-type Gaussians centered
on the He. This basis set adequately describes po-
larization contributions to the energy surface.

As a single-configuration calculation, it can give
only the VscF contribution of the Tang and Toen-
nies model. Consequently, there was no point to ex-
tending the calculations beyond R =3, which is well
into the asymptotic region of VscF and provides
sufficient overlap for comparison with the accurate
results of Meyer et al. " It can be seen from Table I
that at R =2 and 3, their SCF energies differ from
the present results by approximately 0.002 hartree
(l hartree =27.2 eV). Moreover, at the two com-
parison values of R, the best multiconfiguration re-
sults of Meyer et al. are lower than the SCF results
by an amount less than 0.007 hartree, thereby vali-
dating the use of SCF calculations for representing
the repulsive region of the energy surface. The ac-
curacy of the present calculations, including corre-
lation corrections from a CI calculation, are, there-
fore, or the order of 0.01 hartree. For this reason,



1926 ARNOLD RUSSEK AND RAMIRO GARCIA G. 26

TABLE II. He-H2 interaction energy. Interaction energy as a function of R, r, and y.
Columns labeled E;„,give the ab initio calculations. Columns labeled V~„give the results of
the parameteric fit, Eq. (7), with ZHZH, ——2, A,,=3.20, A2 ——1.2, Ap ——1.742, A3 ——2.76,
8 =2.18, and b =2.20.

1.2
1.4
1.6

2.41
1.88
1.53

2.40
1.89
1.56

2.41
1.88
1.53

y= 30'

~par

2.40
1.89
1.56

2.41
1.88
1.53

y=60'
~par

2.40
1.89
1.56

E;„,

2.41
1.88
1.53

y=90'
~par

2.40
1.89
1.56

0.5 1.2
1.4
1.6

16.70
6.87
3.76

16.19
6.73
3.84

4.00
2.90
2.06

3.93
2.96
2.23

1.81
1.44
1.24

1.81
1.53
1.30

1.58
1.36
1.18

1.46
1.26
1.10

1.0 1.2
1.4
1.6

2.3S
3.64
6.59

2.31
3.57
6.42

1.36
1.47
1.51

1.36
1.50
1.59

0.84
0.78
0.70

0.77
0.73
0.69

0.78
0.73
0.68

0.64
0.59
0.55

1.5 1.2
1.4
1.6

0.52
0.60
0.74

0.53
0.64
0.80

0.45
0.47
0.49

0.43
0.47
0.52

0.37
0.37
0.35

0.32
0.32
0.31

0.36
0.35
0.34

0.28
0.27
0.26

2.0 1.2
1.4
1.6

0.20
0.22
0.23

0.19
0.22
0.25

0.18
0.19
0.20

0.17
0.18
0.20

0.16
0.16
0.17

0.14
0.14
0.14

0.15
0.15
0.16

0.12
0.12
0.12

3.0 1.2
1.4
1.6

0.030
0.036
0.042

0.033
0.036
0.040

0.029
0.033
0.038

0.030
0.032
0.034

0.025
0.028
0.032

0.026
0.026
0.026

0.024
0.026
0.029

0.024
0.023
0.023

the results presented in Table II are given only to
two decimal places, except at R =3, where they are
given to two significant figures.

With the geometry shown in Fig. 1, the energy Eint l scF EHe EH (3)

surface is given for 63 coordinate sets, R, r, y, in the
columns labeled E;„,of Table II, where

4

HB

FIG. 1. Molecular geometry. Independent coordi-
nates are R, r, and y. Distances between the He nucleus
and the two H nuclei are denoted by R~ and R&. Dis-
tances R~ and R~ are defined in Eqs. (9).

Hence, for any value of r, E;„, is the interaction en-

ergy between a He atom and an H2 molecule with
proton-proton separation r. Physically, it represents
the scattering potential for a slow (low-keV) He
atom impinging on a ground-state H2 molecule with
fixed separation r during the interaction time. For
all practical purposes, such is the case for small an-
gle scattering in the low-kV energy regime. On the
one hand, the collision is slow enough so that the
adiabatic electronic energy acts as an effective po-
tential for the nuclear motion. On the other hand,
the collision time, of the order of 10 ' sec, is short
compared with vibrational periods (-10 ' sec)
and rotational periods (-10 ' sec), so that r effec-
tively remains constant in both magnitude and
direction during the collision. For convenience in
converting from E;„,to VscF at the three values of r
here considered:
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3.984 hartree at r =1.2ao,

E;„t=VscF+ ~ 3.994 hartree at r =1.4ao,

3.988 hartree at r =1.6ao.

(4)

III. ENERGY SURFACE

A. Atom-atom potential

Vatom-atom
R)2

(5)

where R~2 is the internuclear separation. From the
above discussion, it is reasonable to expect that A,,
should be larger than A& so that the screened
Coulomb core interaction is shorter range than the
Born-Mayer polarization interaction. The potential
form given by Eq. (5) is indeed found to describe
the He-H interaction, with the relative sizes of the
respective ranges conforming to expectation.

B. Atom-molecule potential

Purely additive two-body forces would yield for
the He-H2 atom-molecule interaction:

Vtwo-body H He
Rg

—A, R~C

+

—A, R~ —A, R~+A(e ~ "+e ~ ),

For heuristic purposes, the two-body atom-atom
energy will be considered first, because an under-
standing of this interaction is essential to the under-

standing of the atom-molecule energy. At small in-

ternuclear separations, where the Coulomb repul-
sion between the nuclei dominates, the interaction
energy should be a screened Coloumb type, essen-

tially a Bohr potential. This arises from point nu-

clei, each partially screened by a rigidly fixed elec-
tron cloud held so firmly in place by the respective
parent nucleus that it is negligibly distorted by the
other atom. At longer ranges, the interaction ener-

gy goes over to a Born-Mayer type, which somehow
takes into account the Pauli contribution to the en-

ergy as the two electron clouds overlap, thus mak-

ing it a polarization contribution to the energy. At
still larger internuclear separations, the van der
Waals attraction, which is also a polarization con-
tribution, dominates. That term will, however, be
omitted from the present discussion, so that the
atom-atom potential is of the form

where Rq and R~ are the distances from the He nu-

cleus to the respective protons. This cannot, how-
ever, be the full interaction. The second term on
the right-hand side of Eq. (5) has been characterized
as a polarization term, due to the overlap of elec-
tron wave functions and the Pauli exclusion princi-
ple. Being a polarization term, it should therefore
alter when two hydrogen atoms combine to form a
molecule, since the H2 molecule has an excess elec-
tron distribution between the two protons drawn at
the expense of the electron distributions centered on
each proton. Consequently, one would expect the
strength, A, of the two-body polarization term for
the He-Hq system to be reduced from that which
was found for the He-H atom-atom system. This
reduction should be compensated by the appearance
of an additional term of the form A'exp( —AzR) to
take into account the electron distribution of the H2
which is centered midway between the two protons,
i.e., at R =0. One additional correction must be
made. The point R =0 has no potential singularity;
it is a perfectly ordinary point in the eigenvalue
equation for the electronic wave function. There-
fore, it cannot have a discontinuous slope at R =0,
so that the R-dependent polarization should be of
the form

A3e ~ —Be
—A, R bR

with

(6a)

A3ip ——Bb (6b)

in order to ensure continuous derivative at R =0.
Thus, the parametric form suggested here for the
SCF contribution to the interaction energy is

VscF ——ZHZH,

—A, R~ —A, R~C C

+
Rg Rg

—A, Rg —A, R~+22(e ~ "+e ~ )

—A, R bR+A3e ~ —Be

where A2 describes the strength of the additive
two-body contribution to the polarization interac-
tion, while A3 describes the three-body correction
term, with B and b characterizing the saturation of
that term in the vicinity of R =0. Table II and Fig.
2 show the best fit of the parametric form (7) for
VscF with the ab initio calculations, obtained with
ZHZH, ——2, k, =3.20, A2 ——1.2, A, =1.742,
A3 ——2.76, B =2.18, and b =2.2, all quantities being
given in atomic units.

It can be seen from Fig. 2 that the parametric
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~SCF ZHZHe

—A, R~ —A, R~C C

+
Rg Rg

+A(e ~ "+e ~ )
—A. R~ —A, R~

+A3e ~ —Be
—A, R bR

form (7) describes the energy surface for small
values of R quite well. That is to be expected since
the small-R region is dominated by the core-core
repulsioris and is insensitive to minor details of the
electron distribution. On the other hand, the fit at
larger values of R, although adequate to describe
most collisions in the keV energy range, is not up to
the standards demanded by chemists, who must
deal with very low-energy collisions. They require
better accuracy in the large-R region (R &2 a.u.),
where the parametric form (7) consistently over-
states the angular dependence of the energy surface.
The fault lies not with the general concept of the
model here proposed, but rather with the specific
form suggested in Eq. (7). There, the excess elec-
tron distribution between the two protons has, for
simplicity, been taken into account by a spherically
symmetric distribution centered at R =0. As Fig. 2
shows, even this rough approximation goes a long
way toward describing the energy surface. Howev-

er, an even better approximation of the distorted
electron distribution in H2 can be obtained by
centering the electron distribution for each H not on
the nucleus itself, but at some point between the
two protons in addition to the distribution centered
at R =0. With the centers of the displaced distribu-
tions at +fr/2, the improved parametric form is

given by

where

Rq [R——+(frl2) fr—R cosy]~~

Rs [R——+(frl2) ~fvR cosyj'~

(9a)

(9b)

It should be noted that the Bohr term, which de-

scribes the contributions of the nuclei plus that part
of the electronic distribution rigidly held by each
nucleus, is still a function of Rz and Rs. Only the
polarization terms have centers shifted to lie be-

tween the two nuclei. The subscript 2 on the
strength of this potential has been dropped, since it
is no longer a two-body contribution. Figure 3 and
Table III show the fit obtained with the parametric
form given by Eq. (8) with the parameters listed in
Table III. The interaction energies which follow
from Eq. (8) are presented in the columns labeled

Vp 2 For comparison, the values from Table II,
which follow from Eq. (7), are listed in the columns
marked Vp„~. The ab initio calculations from
Table II are also listed. The potential form given by
Eq. (8) gives a poorer representation of the energy
surface in the small-R region than does Eq. (7), and
for good reason. When the He nucleus penetrates
into the H2 interior, the Hz electron distribution will

further distort, with at least some of the excess dis-
tribution between the two protons being forced out.
To avoid the complexity of parameters which are R
dependent in this work, the small-R region has been
omitted from consideration in Fig. 3 and Table III.

Although the second term of Eq. (8) is continu-

ous, it has unphysical discontinuities in derivative
at the ordinary points Rq ——0 and Rz ——0. A realis-
tic potential, generated by a nonsingular electron

50—
—Vpar

Vnr

V( R, r, y)

5.0—

V pnr

Vaunt

V(R, r, y)

~ I 0—
4)c

LLI

c0
+

O
ID

.01
0

I I

I 2 3 0 I 2 3 0 r 2 3 4

R(a. u. )

.Or
I

0 I 2 3 0 I 2 3 0 I 2 3 4
R( a. u. )

FIG. 2. He-H2 interaction energy. Results of the ab
initio calculations are taken from the columns labeled

E;„,of Table II, and are shown as the solid black circles.
Curves show the fit obtained with the parametric form
Eq. (7) with the parameters listed in Table II.

FIG. 3. He-H2 interaction energy. Results of the ab
initio calculations are taken from the columns labeled

E;„, of Table II. For convenience, these results are re-
peated in the columns labeled E;„, in Table III. Ab ini-
tio calculations are shown as the solid black circles.
Curves show the best fit obtained with the parameteric
form Eq. (8) with the parameters listed in Table III.
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TABLE III. He-H2 interaction energy. Interaction energy as a function of R, r, and y. Columns labeled E;„,give
the ab initio calculations. Columns labeled Vp„2 give the results of the parametric fit, Eq. (8), with ZHZH, ——2,
A~ =1.742, and b =2.20. Remaining parameters are r dependent. For r =1.2, f=0.7, A = 1.70, A 3

——1.73, and B = 1.37;
for r =1.4, f=0.8, A =1.50, A3=2. 51, and 8 =1.99; for r =1.6, f=0.85, A =1.30, A3=3.74, and 8 =2.96. Columns
labeled Vp„~ are repeated from Table II for ease of comparison.

E.

y=O'
Vparl

Eq. (7)

y= 30' y=60 y=90'
Vpar2 Vpar 1 Vpar2 Vpar l Vpar2 Vpar 1 Vpar2

(8) Ejttt Eq. (7) Eq. (8) E;.t Eq. (7) Eq. (8) E;.t Eq. (7) Eq. (8)

1.0 1.2 2.35
1.4 3.64
1.6 6.59

2.31
3.57
6.42

2.31
3.57
6.42

1.36
1.47
1.51

1.36
1.50
1.59

1.42
1.58
1.71

0.84
0.78
0.70

0.77
0.73
0.69

0.87
0.83
0.83

0.78
0.73
0.68

0.64
0.59
0.55

0.75
0.69
0.70

1.5 1.2 0.52
1.4 0.60
1.6 0.74

0.53
0.64
0.80

0.52
0.64
0.81

0.45
0.47
0.49

0.43
0.47
0.52

0.44
0.49
0.56

0.37
0.37
0.35

0.32
0.32
0.31

0.35
0.35
0.37

0.36
0.35
0.34

0.28
0.27
0.26

0.32
0.31
0.32

2.0 1.2 0.20
1.4 0.22
1.6 0.23

0.19
0.22
0.25

0.19
0.22
0.26

0.18
0.19
0.20

0.17
0.18
0.20

0.17
0.19
0.22

0.16
0.16
0.17

0.14
0.14
0.14

0.15
0.15
0.16

0.15
0.15
0.16

0.12
0.12
0.12

0.14
0.14
0.15

3.0 1.2 0.030 0.033
1.4 0.036 0.036
1.6 0.042 0.040

0.031
0.036
0.042

0.029 0.030
0.033 0.032
0.038 0.034

0.029 0.025 0.026
0.033 0.028 0.026
0.038 0.032 0.026

0.026 0.024 0.024
0.028 0.026 0.023
0.031 0.029 0.023

0.025
0.026
0.028

distribution would be perfectly regular at these
points. It is not difficult to modify the potential to
rn. ake the derivative continuous, as was done for the
R-dependent potential. However, since this poten-
tial is not being considered in the vicinity of R& or
Rz equal to zero, no attempt was made to do so. It
should be made clear that the term "potential" has,
for heuristic reasons, been used rather loosely in the
above discussion. It is certainly not an electrostatic
potential energy arising from a charge distribution.
Rather, it is a term in the adiabatic electronic ener-

gy and includes kinetic energy of the electrons as
well as electrostatic potential energy. Nevertheless,

despite the fact that the adiabatic electronic energy
is more complicated, any symmetry in the electron-
ic wave functions will show up as a symmetry in

the energy surface and the energy surface must be

regular at any point in space where no singularity
exists. That is really all that was said.

Finally, attention should be drawn to a peculiar
feature of the energy surface in the vicinity of
y=90'. With the He nucleus along the perpendicu-
lar bisector to the H2 axis, a repulsive potential, in

addition to pushing the He and H2 away from each
other, would also be expected to push the two H
atoms apart. Thus, E;„, should decrease as r in-

creases; the gradient of the energy surface with

respect to r should be negative. The ab initio calcu-
lations for E;„,in Table II indeed show the expected

behavior at small values of R for R less than 2.0ao.
However, at about 2.0ao, a crossover occurs and for
larger values of R, the gradient with respect to r is
positive. In this large-R region, the helium atom,
while pushing the entire H2 system away from it
(BE;„,/BR is negative for all R), is actually drawing
the two H atoms closer to each other. It can be
seen in Table III that the improved parametrization,

V~„2, exhibits the proper behavior at y= 90',
whereas V~„~ does not. It is also evident that for
y=0, BE;„,/Br is always positive. Such behavior is,
however, expected even from purely repulsive po-
tentials. The He repels the closer H with a larger
force than the one further away, thus pushing the
two H atoms toward each other. It is therefore not
surprising that both parametrizations exhibit the
proper behavior at y=D'. At intermediate angles,
the situation is ambiguous, so that no qualitative
conclusions can be drawn. Only at 90' is the differ-
ence in behavior clear cut. The qualitative agree-
ment of V „2 with the ab initio calculations may
not be taken as a strong verification of the
parametric form given by Eq. (8), since r-dependent
parameters are used in the fit. The main thrust of
the argument is that the behavior of the energy sur-

face at large R calls for r-dependent parameters.
There is, moreover, good physical justification for
having the parameters in the polarization terms
dependent on r, since the amount and distribution
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of the excess central distribution of the electrons in
the H2 molecule does, in fact, depend on r.
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