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Theoretical expressions for the electric and magnetic susceptibilities and shielding factors
of closed-shell atoms and ions are derived from the point of view of the relativistic

random-phase approximation. These expressions are evaluated to determine electric-dipole,

electric-quadrupole, and magnetic-dipole susceptibilities, and shielding factors for ions of
the noble-gas isoelectronic sequences, as well as for selected ions having closed s, d, and f
shells. Comparisons are given with previous theoretical work and with experiment.

I. INTRODUCTION

A widely used approximation for determining the
susceptibilities and shielding factors of closed-shell
atoms and ions is the coupled Hartree-Fock (CHF)
theory. ' . In this approach, atomic electrons mov-

ing in an external field are described by nonspheri-

cal Hartree-Fock (HF) orbitals which satisfy one-

electron equations determined from a variational

principle. Linearizing the orbital equations in the
strength of the external field leads to expressions
for susceptibilities and shielding factors which in-

clude not only the direct effects of the field on the
unperturbed HF orbitals, but also those indirect ef-
fects due to modifications of the HF central poten-
tial resulting in correlation corrections. In the sense

of many-body perturbation theory the CHF theory
accounts for all of the lowest-order effects of
electron-electron correlation as well as those effects
of higher order that arise from iteration of the
lowest-order terms; it does not, however, account
for all second- and higher-order effects. In systems
such as the noble gases the second- and higher-order
correlation corrections are small and the CHF cal-
culations are remarkably precise; whereas in sys-
tems such as the alkaline-earth atoms, higher-order
correlations lead to substantial modifications of the
CHF predictions.

In the present paper we seek to generalize the
CHF technique to treat atoms and ions of high nu-
clear charge where relativistic effects as well as
correlations are expected to be important. To this
end we employ the relativistic random-phase ap-
proximation (RRPA) which in the nonrelativistic
limit reduces to the random-phase approximation

with exchange (RPAE). The RPAE describes the
linear response of an atom to a dynamic external
field. Since in the static-field limit the RPAE
reduces to the CHF theory, our application of the
RRPA to the static field case leads directly to a re-

lativistic version of the CHF theory.
In the past few years several relativistic calcula-

tions of electric-dipole susceptibilities have ap-
peared. A relativistic core potential was used by
Konowalow et al. ' to calculate the susceptibilities
of the group-IIb elements. Relativistic calculations
of the electric-dipole susceptibilities of the alkaline
earths, the group-IIb elements, and the heavy noble

gases Kr, Xe, and Rn, have been carried out by Sin
Fai Lam" using a relativistic version of the Pople-
Schofield method. Neither of these calculations ac-
count for correlation effects.

Desclaux et al. ' have employed finite-difference
methods in conjunction with one-center molecular
orbitals to evaluate the electric-dipole susceptibili-
ties of atoms with one or two s electrons outside of
closed shells. These calculations are relativistic and
include the same correlation corrections that we in-

clude in the present study. The advantages of the
present formulation are first, that the technique can
be easily applied to study systems with closed p, d,
or f shells; and second, that electric and magnetic
susceptibilities of higher multipolarity can be treat-
ed with the same facility as the electric-dipole sus-

ceptibility.
Although the present calculations go beyond the

previous relativistic calculations, they by no means
represent the best calculations possible, since corre-
lation effects are treated only in a limited way.
Nevertheless, the present calculations do represent a
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complete treatment of RPA contributions to corre-
lations within a relativistic framework, and there-

fore, provide a basis for future studies.
In Sec. II, the static RRPA equations are derived

and reduced to forms convenient for direct numeri-

cal calculations of electric and magnetic susceptibil-
ities and shielding factors. Numerical results ob-

tained from our calculations together with compar-
isons with other theoretical and experimental values

for the susceptibilities and shielding factors are
presented in Sec. III.

II. THEORY

Consider a closed-shell atom or ion in a static
electric multipole field described by a scalar poten-
tial Pq(r) or in a static magnetic multipole field
described by a vector potential Aq(r). The mul-

tipole potentials have one of the two forms

QJ( r )=r Yzp(r ) (electric case)

AJ(r)=r YJJQ(r) (magnetic case),

where Yap(r) is a vector spherical harmonic. The
applied multipole field induces a multipole moment
in a closed-shell atom which gives rise to a second-

ary field described by potentials PJ"(r) or AJ '(r)
with the same symmetry as the applied field. These
potentials fall off at large distances as

PJ '(r) ~ aJYqp(r)lr—

the nuclear charge. The quadrupole shielding fac-
tor y2 commonly referred to as the Sternheimer
shielding factor, ' may take a negative as well as
positive value, in which case it is referred to as the
Sternheimer antishielding factor.

We describe the unperturbed closed-shell atom or
ion by Dirac-Fock (DF) wave functions. The indi-
vidual DF orbitals u;(r) satisfy one-electron Dirac
equations

(ho+V)u;=e;u;, i=1, . . . , N (4)

X [(uj' uj ) ui —(uj ug )~uj ] r

while the parameter e; is the energy eigenvalue for
the ith orbital. In the expression for ho, p is
momentum operator, a and P are Dirac matrices,
and m is the electron mass.

The interaction between the atomic electrons and
the external field is described by the Hamiltonian

N

Hq= g v(r;),

with

where hp ——a p + pm —e Z~/r is the Dirac Hamil-
tonian. The DF potential V in Eq. (4) is given by

Vu;= pe~ f

or (2)
ePJ( r ), electric,

v(r)= —e a.AJ( r ), magnetic.
(6)

AJ"(r) XJYgJp(r)lr +' .
r m J

The proportionality constants aq and X~ are the
electric and magnetic susceptibilities, respectively.
Near the nucleus the secondary potentials reduce to

pJ"(r) ~ 'YJps(r)—

or

AJ (r) ~ —0JAJ(r) .

The dimensionless parameters yJ and crJ are electric
or magnetic shielding factors. On general grounds
the electric-dipole shielding factor y& has the value

yi ——N/Z, where N is the number of electrons and Z
I

The individual electron orbitals u; are perturbed by
the external potential v. To first order in the exter-
nal field we have

uI ~uI +WI ~ (7)

where the perturbed orbitals w; satisfy the linear-
ized DF equations

(hp+ V—e;)w; = —(v+ V'")u;+ g A~;uj . (8)
J

In Eq. (8) V is the DF potential and V"' is the
first-order correction to V induced by the external
field. This first-order potential V'" which corre-
lates the various electrons u; is given by

3 I

V'"u;= ge f [(wjuj)'u;+(ujwj)'u; (a~u;)'uj—(uju;)'w~—] .
fr —r'f

(9)
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QJ"(r)= , f r Rq"(r)dr

+r f J,RJ"(r)dr YJO(r"),
p I+I (13)

where RJ"(r) is defined in Eq. (A19). The secon-

dary field due to j "'(r ) may be written similarly

Ag (r)= J, f r SJ"(r)dr

+r J f i SJ"(r)dr Yqqo(r), (14)
P' r +

where SJ"(r) is given in Eq. (A22). From the
large-r behavior of Eqs. (13) and (14) one finds on
comparing with Eq. (2} the expressions for suscepti-
bilities:

uJ ——— dr r R~ (r),J (I)

Xg —— f dr r JSg"(r) .J+] O

From the small-r behavior of the induced fields one
finds on comparing with Eq. (3):

The parameters A&,
. are Lagrange multipliers which

ensure that the perturbed orbitals m; are orthogonal
to the ground-state DF orbitals

(w;~ui)=0, ij=l, . . . , N.
One finds from Eqs. (4) and (8) that

A,, =(j
~

0+v"'~i & .

Equations (8) are the RRPA equations for the case
of a static perturbation u(r); in the present form
they provide a relativistic version of the CHF equa-
tions.

The first-order corrections to the charge and
current densities of the atom are

p'"(r) =e g (w, u, }+c.c. ,

j "'(r)=e g(wj auj)+c.c.
J

These induced charge-current densities are the
sources of the secondary fields {)}q"and AJ".

In the Appendix we reduce the RRPA equations

(8) to coupled differential equations describing the
radial wave functions for the perturbed orbitals.
The induced charge and current densities may then
be expressed in terms of the radial wave functions.
The secondary field due to p "(r ) is found to be

(16)

III. NUMERICAL RESULTS
AND COMPARISONS

Values of the electric-dipole susceptibilities al
and of the electric-dipole shielding factors yl from
the present calculation are given in Table I. Suscep-
tibilities for ions of the He, Ne, Ar, Cu, Kr, Pd,
and Xe sequences are shown in the lower triangular
portion of the table and corresponding shielding
factors are given in the upper triangular part.

As in the nonrelativistic CHF theory, the dipole
shielding factor y&

——X/Z, where X is the number of
electrons and Z is the nuclear charge. The devia-

tion of the values of yl from X/Z in Table I serves
as a measure of the numerical accuracy of the
present calculations. The sequences considered are
those with closed 1s, 2p, 3p, 3d', 4p, 4d', and

5p subshells. Read horizontally, the entries show

how the susceptibility varies at different stages of
ionization; read vertically, the variation of a& or yi
with Z along an isoelectronic sequence is shown.
All of the values presented in Table I are from "ful-
ly coupled" RRPA calculations in which all of the
possible dipole excitations are included. In the case
of ions of the He sequence there are two coupled
channels (is~@„,, ls~p„2) in Eqs. (A14) while
for Xe there are 42 coupled channels.

In Tables II and III the electric-quadrupole and
magnetic-dipole susceptibilities and shielding fac-
tors are given in the format of Table I. In these cal-
culations we have attempted to maintain the numer-
ical accuracy at one part in 10 . A more detailed
study of the Ne sequences is given in Table IV,
where we present values of the susceptibilities and
shielding factors for ions from Ne to U +. The
electric-dipole susceptibilities and shielding factors
o,

&
and yi listed in columns 4 and 5 are from nine-

channel calculations. In column 6 we tabulate X/Z
which can be compared with y~ to check the accu-
racy of our numerical methods. The quadrupole
susceptibilities a2 and the Sternheimer antishielding
factor y2 are given in columns 7 and 8. These quad-
rupole calculations involve 13 coupled channels.
Results for the magnetic susceptibility are presented
in column 9. In the Pauli approximation Eqs.
(A15) and (15) reduce to the van Vleck relation'
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TABLE IV. Susceptibilities and shielding factors for ions of the Ne isoelectronic sequence. Z is nuclear charge, Z;
is the ionic charge. a~, g~, and gNR are in units ao. a2 is in units ao. y~, y2, 0 ~, and ONR are dimensionless.

Ion Z Zj N/Z r2 10'y, 10 +NR 10 0'l 10 gNg

Ne
Na
Mg
Al
Si
P
S
Cl
Ar
K

10
11
12
13
14
15
16
17
18
19

2.38
0.945 7
0.469 8
0.2649
0.1624
0.105 7
0.07205
0.05093
0.03708
0.027 67

1

0.9091
0.8333
0.7692
0.7143
0.6667
0.625
0.5882
0.5555
0.5263

1

0.9091
0.8333
0.7692
0.7143
0.6667
0.625
0.5882
0.5556
0.5263

6.425
1.521
0.518 3
0.215 6
0.102 1

0.05308
0.029 6
0.01746
0.01077
0.006 899

—9.145
—5.097
—3.432
—2.544
—2
—1.637
—1.379
—1.187
—1.04
—0.9239

—83.1

—56.83
—41.79
—32.17
—25.6
—20.88
—17.37
—14.68
—12.58
—10.9

—83.11
—56.85
—41.8
—32.19
—25.61
—20.9
—17.39
—14.7
—12.59
—10.91

0.05586
0.06322
0.0706
0.07802
0.0854$
0.093
0.1006
0.1082
0.1159
0.1237

0.055 34
0.062 53
0.069 72
0.07691
0.084 1

0.091 29
0.098 5

0.105 7
0.113
0.1202

Ca
Sc
T1
V
Cr
Mn
Fe
Co
Ni
CU

20
21
22
23
24
25
26

28
29

10
11
12
13
14
15
16
17
18
19

0.02108
0.01636
0.012 89
0.0103

0.008 325
0.006 803
0.005 615
0.004676
0.003 924
0.003 318

0.5
0.4762
0.4545
0.4348
0.4167
0.4
0.3846
0.3704
0.3571
0.3448

0.5
0.4762
0.4545
0.4348
0.4167
0.4
0.3846
0.3704
0.3571
0.3448

0.004563
0.003 101
0.002 159
0.001 535
0.001 111
8.18(—4)
6.112(—4)
4.628(—4)
3.547(—4)
2.749(—4)

—0.83
—0.7527
—0.6882
—0.6336
—0.5868
—0.5464
—0.5111
—0.4802
—0.4527
—0.4283

—9.531
—8.407
—7.471
—6.683
—6.012
—5.437

4 94
—4.507
—4.128
—3.794

—9.548
—8.425
—7.489
—6.7
—6.029
—5.454
—4.957
—4.524
—4.146
—3.812

0.1316
0.1395
0.1475
0.1557
0.1639
0.1722
0.1807
0.1892
0.1979
0.2067

0.127 5

0.1348
0.142 1

0.1494
0.156 8
0.164 1

0.1715
0.179
0.1864
0.1939

Zn
Br
Kr
Rb
Nb
Mo
Ag
Cd
I

Xe

30
35
36
37
41
42
47
48
53
54

20
25
26
27
31
32
37
38
43
44

0.002 824
0.001 371
0.001 203
0.00106
6.61(—4)
5.92(—4)
3.545(—4)
3.221(—4)
2.053(—4)
1.885(—4)

0.3333
0.2857
0.2778
0.2703
0.2439
0.2381
0.2128
0.2083
0.1887
0.1852

0.3333
0.2857
0.2778
0.2703
0.2439
0.2381
0.2128
0.2083
0.1887
0.1852

2.152(—4)
7.181(—5)
5.889(—5)
4.859(—5)
2.373(—5)
2.007(—5)
9.206(—6)
7.959(—6)
4.01(—6)
3.523(—6)

—0.4064
—0.3246
—0.3123
—0.3009
—0.2634
—0.2556
—0.2237
—0.2185
—0.1966
—0.193

—3.499
—2.43
—2.274
—2.133
—1.678
—1.586
—1.22
—1.161
—0.9198
—0.8801

—3.517
—2.447
—2.292
—2.15
—1.695
—1.603
—1.237
—1.178
—0.9373
—0.8976

0.2157
0.2628
0.2727
0.2828
0.3255
0.3366
0.3967
0.4096
0.4795
0.4947

0.201 4
0.239 5

0.247 2

0.255
0.286 5

0.2945
0.335 2
0.343 6
0.3862
0.3949

Cs
Ba
Tb
W
Pt
Au

Hg
Pb
Rn
U

55
56
65
74
78
79
80
82
86
92

45
46
55
64
68
69
70
72
76
82

1.734(—4)
1.598( —4)
8.094(—5)
4.453(—5)

3.485(—5)
3.284( —5)
3.097(—5)
2.758(—5)
2.204( —5)
1.6(—5)

0.1818
0.1786
0.1539
0.1352
0.1282
0.1266
0.125
0.122
0.1163
0.1088

0.1818
0.1786
0.1538
0.1351
0.1282
0.1266
0.125
0.122
0.1163
0.1087

3.103(—6)
2.738(—6)
9.694(—7)
3.878(—7)
2.66(—7)
2.426( —7)
2.216(—7)
1.853(—7}
1.309—7)
7.948(—8)

—0.1895
—0.1862
—0.1637
—0.1503
—0.1465
—0.1458
—0.1451
—0.144
—0.1425
—0.1424

—0.8427
—0.8074
—0.5643
—0.409
—0.3574
—0.3458
—0.3347
—0.3136
—0.2761
—0.229

—0.8602
—0.8249
—0.5818
—0.4264
—0.3748
—0.3632
—0.3521
—0.331
—0.2934
—0.2464

0.5103
0.5263
0.6943
0.9243
1.055
1.091
1.129
1.21
1.394
1.744

0.403 7
0.412 6
0.496 7
0.5902
0.635 6
0.6474
0.659 5

0.684 1

0.7362
0.822 5

2

&NR= ——' Xi2i. +ll&"&.
6 mc

where the summation is over all atomic subshells u.
In column 10 we give values of XNR determined
from the van Vleck formula using DF wave func-

tions to evaluate the expectation values (r ), . The
differences between the values in columns 9 and 10
at high Z are due to the failure of the Pauli approx-
imation. In column 11 we give values of the mag-
netic shielding factor 0.~. The values of O.NR tabu-
lated in column 12 are determined from the Lamb
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formula'

+NR 3,X i2J. + ~ i( —„). (18)

TABLE V. Susceptibilities and shielding factors for
Yb+ and Hg. a~, g~, gNg are in units ao. a2 is in
units ao.

which follows from Eqs. (A15) and (16) in the Pauli
approximation. Again, in Eq. (18) the expectation
values are evaluated using DF wave functions. It is
interesting to note that the value of oN~ for U + is
in error by more than a factor of 2.

Two miscellaneous examples are given in Table
V: Yb2+, which has a closed 4f ' valence shell and

Hg, which has a closed 6s valence shell. As a re-

sult of the large number of channels involved, we

reduced our accuracy criterion for these particular
calculations to one part in 10 .

In Table VI we compare the present electric-
dipole susceptibilities with those obtained from oth-
er relativistic calculations. The values of Desclaux
et al. ' listed in column 4 were obtained using one-
center DF molecular orbitals; they are expected to
be in good agreement with the RRPA values. The
differences between the RRPA and Desclaux results
in Table VI are in part due to the fact that Desclaux
et al. omit contributions from the atomic core, and
are in part due to differences in numerical tech-
nique. The results of Sin Fai Lam" shown in
column 5 were determined using a relativistic ver-

sion of the Pople-Schofield approximation. These
values illustrate characteristic features of relativistic
calculations such as the decrease in value of ai
from Cd to Hg which are not obtained in nonrela-
tivistic calculations. In column 6 we list values of
ai from Konowalow et al. , ' who use an empirical-

Atomic property Yb2+4f 14
Hg 6s2

a&

$1
N/Z
lXp

y2
10'y,
10 +NR
10 0)
10 aNR

6.39
0.972
0.971

13.9
—89.5

—314.0
—314.0

1.18
0.885

44.9
0.997
1.00

337.0
—47.0

—551.0
—552.0

1.61
1.10

ly determined core potential and solve the equations
for the valence electron perturbations using a rela-
tivistic MCSCF method. This semiempirical pro-
cedure leads to values of ai within 10% of the
values recommended by Miller and Bederson.

The influence of relativistic effects on the
electric-dipole and -quadrupole susceptibilities and
shielding factors is illustrated in Fig. 1, where we
compare the results obtained in the present calcula-
tion for ions of the Ar sequence with accurate non-
relativistic CHF calculations by McEachran et al. '

One finds small but systematic changes in the
electric-dipole susceptibilities and in the electric-
quadrupole susceptibilities and shielding factors
which remain below 5% for Z(30. For heavier

TABLE VI. Comparison of RRPA dipole susceptibilities with other relativistic calcula-
tions (units ao).

Element Desclaux' Sin Fai Lamb Konowalow'

He
Be
Mg
Ca
Zn
Kr
Sr
Cd
Xe
Ba
Hg

2
4
12
20
30
36
38
48
52
54
80

1.322
45.6
81.2

182.8
50.8
16.5

232.6
63.7
27.0

324.0
44.9

1.327
45.6
81.0

180.0
50.3

228.0
62.0

316.0
43.0

223.5
52.1

21.1

286.1

66.0
36.4

400.3
51.8

35.1

42.5

31.8

'Desclaux et al. , Ref. 12.
Sin Fai Lam, Ref. 11.

'Konowalow et al. , Ref. 10.
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6 8 IO I 2
( Z -17)

FIG. 1. Percentage difference between the RRPA cal-
culations and the CHF calculations of McEachran et al.
(Ref. 16) are shown for members of the argon isoelectron-
ic sequence. Quantities a& and a& are dipole and quadru-
pole susceptibilities and P2 is the Sternheimer shielding
fa««p2= y2.

elements the modifications due to relativity are ex-

pected to be more substantial. An extrapolation
based on Fig. 1 leads one to expect 40% changes in

a~NR and a2NR and a 60% change in PqNa at
Z=92. As a further illustration of the influence of
relativity on the dipole susceptibilities, in Table VII
we compare the present RRPA calculations for
various neutral atoms with nonrelativistic CHF (or
equivalent} calculations. One sees that for the

I I I l I I I I I I I

4— ~k—
a~

O ~+22 ~a&NR

2— ~ ~~~
S2II ~~
C ~~~

ARGON SEQUENCE

0~0
C 0~
X ~ P2 P2 NR ~O~

0

lighter elements through Ar and for the heavier no-
ble gases Kr and Xe the effects of relativity are
small. On the other hand, for the heavier alkaline
earths and for the group-IIb elements, where the
outer ns valence shell gives the most important
contributions, the effects of relativity are substan-
tial. The most striking example is mercury where
relativistic effects reduce the susceptibilities by
roughly a factor of 2. It is clear that for such sys-
tems nonrelativistic calculations are completely
inadequate. We also list in Table VII the recom-
mended values of the susceptibilities given by Miller
and Bederson. For the noble gases the RRPA
(and the CHF) values are in good agreement with
the recommended values, while for the remaining
elements where correlations play a more important
role the agreement is not satisfactory.

The principal limitation of the present calcula-
tions is the failure to include all of the effects of
electron-electron correlation to second order in the
sense of perturbation theory. The second-order ef-
fects are most pronounced in atoms such as the al-
kaline earths and are less significant in the noble
gases. The importance of these correlation effects is
illustrated in Table VIII where we compare ai, a2,
and Ji with more sophisticated nonrelativistic cal-
culations.

The problem of determining accurate values of
the susceptibilities of an atom such as Hg is clearly

TABLE VII. Comparison of RRPA dipole susceptibilities with nonrelativistic CHF calculations and with recom-
mended values (and error estimate) of Miller and Bederson (units ao).

Element al &&NR Recom. ' Error'
(%)

He
Be
Ne

Mg
Ar
Ca
Zn
Kr
Sr
Cd
Xe
Ba
Hg

2
4
10
12
18
20
30
36
38
48
54
56
80

1.322
45.6

2.38
81.2
10.8

182.8
50.8
16.5

232.6
63.7
27.0

324.0
44.9

1.322'
45.6

2.38'
81.2'
10.8'

182'
53.4'
16.5'

241'
75'
27.1'

359'
80'

1.383
37.8

2.67
71.5
11.1

169
47.8
16.7

186
40.5
27.3

268
34

2
2

2
0.5
8

2
0.5
8

50
0.5
8

50

'McEachran et al. , Ref. 16.
Lahiri and Mukerji, Ref. 4.

'Desclaux et al. , Ref. 12.
S. Kaneko and S. Arai, J. Phys. Soc. Jpn. 26, 170 (1961).

'Miller and Bederson, Ref. 6.
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TABLE VIII. Comparison of RRPA susceptibilities with nonrelativistic calculations which include correlation beyond

the CHF theory. Units: (a&, gl) in ao, a2 in ao.

Element al a1 carr 10 g) 10 gl„ ap azcotY

He
Be
Ne

Mg
Ar
Ca

1.322
45.6
2.38

81.2
10.8

182.8

1.383'
37.8
2.68'

713
11.1d

153 9

—21.0
—154.0
—83.1

—262.0
—231.0
—499.0

—21.2
—145
—85.7

—250.0
—233.0
—475.0

2.33
342.

6.43

2.27'
302'

7.73

"'Exact" value, Ref. 6.
C. Laughlin and G. A. Victor, in Atomic Physics, edited by S. J. Smith and G. K. Walters (Plenum, New York, 1973),

Vol. 3, p. 247.
'Werner and Meyer, Ref. 7.
Reinsch and Meyer, Ref. 7.

'A. Dalgarno, W. D. Davison, and A. L. Stewart, Proc. R. Soc. London, Ser. A 257, 115 (1960).
Reinsch and Meyer (1978), Ref. 7.

very difficult. On the basis of the comparison given

in Table VII between relativistic and nonrelativistic

CHF calculations one finds a 50% change in a~ be-

cause of relativity, while from Table VIII one finds

that for Ca, which has a similar ground-state struc-

ture, there is a change in a~ of 20% due to correla-

tion effects. Thus, to make a reliable calculation of
a& for Hg, one must certainly consider the effects of
relativity and of higher-order correlations simul-

taneously. Since the effects of correlation are less

severe for the noble gases we expect our results for
these elements and for their ions to be more reliable.

The error due to correlation in the results presented

in Tables I—IV is estimated to be less than 10% on

the basis of comparisons given in Tables VII and

VIII.
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APPENDIX

In the paragraphs below we reduce the RRPA
equations (g} to coupled radial differential equations
using standard angular-momentum analysis. Let us
first consider the DF orbitals u;(r}. We describe
the ith orbital as follows: n is the principal quan-
tum number, a is the angular quantum number

1 . 1[ir=+(j+ —,) for j=l+ —,, where I is the orbital an-

gular momentum and j is the total angular momen-
tum], and m is the angular-momentum projection
quantum number. We write u;(r) with i=(n, s,m)
as

iG„„(r)Q„(r}u;(r)=-
r F„„(r)Q „(r)

G„„(r)
f„„(r)= F (r)

J

(A2)

Using a single subscript a =(n~) to refer to the elec-
trons in the subshell (n, a) the DF potential of Eq.
(5) may be written

where G„„and F„„are the large- and small-

component radial Dirac functions and where

Q„(r) is a spherical spinor. For convenience we

introduce a single two-component radial function

2 2

Vf, = g (2j s+1) —Yo(b, b, r)f, —g Ai(a, b) Yi(a, b,r)fs-
b

(A3)
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The summation index b ranges over occupied sub-

shells while the index l is limited by the selection
rules in the angular coefficient Al(a, b). The Har-
tree screening function Y~(a, b, r) in Eq. (A3) is given

by

Y&(a,b, r)= —,I ref, fbdr»l 0

Ze
m — +V

r

Ka

dr r

d Ka

dr r

Ze—m — +V

Introducing the radial Hamiltonian

(A7)

+» l+ ) bd» (A4)
the DF equations (4) may be written

(II, —e, )f, =0, (A8)

(A5)

1 for l, +lb+i, even
n ( l, Ib I)=

0 for l, +lb+i, odd. (A6)

where the large parentheses are a 3-j symbol and
where

where the subscript a ranges over the ionic sub-
shells.

Now let us consider the perturbed orbital w;(r) in
Eq. (g). We take advantage of the fact that an elec-
tric [or magnetic] multipole PJ(r) [or AJ(r)] will

induce a perturbation in the even parity J=O
closed-shell ion which has angular momentum J,
and parity m =(—1) [or (—1) +']. Using the j-j
coupling scheme we expect m„„(r) to have the
form

w„„(r)=g( —1Y (j mj'm—~jj'JO)n(l l'J+k —1)y„„~ (r), (A9)

where y„„~ (r) is a perturbed one-electron orbital
with angular-momentum quantum numbers K' and
m. The parameter A, in the parity factor m takes on
the value A, =1 for electric perturbations and A, =O
for magnetic perturbations. If we designate the
large and small components of y„„K (r) by S„„K(r)
and T„„„(r) then we may write

iS„„„(r)Q& (r)
ytlKK'tn ( )= T („)g ( )

To simplify our discussion we introduce the symbol
a' to represent the perturbed orbital quantum num-
bers nKK' and introduce the two-component radial
function

S, (r)
(A11)

The perturbations y, (r) satisfy a family of coupled
radial Dirac equations to be written below.

For convenience we introduce two angular func-
tions

Cg(a, b)=( —1) ' [j,][js] ~ j m( I, lb J) (A12a)

Ja Jb
'

l
A(a, b,c,d, l,J)=(—1) ' Cl(a, b)Cl(c, d) ' . . J ~(l, l, J)n.(lbld J),

jdA J (A12b)

where [j]=&2j+1,and where the large curly brackets designate a 6-j symbol. Later, we use the notation
a ~—a to represent the replacement K ~—K~ in Eqs. (A12).

Let the radial Hamiltonian be defined as in Eq. (A7) with V the unperturbed DF potential. We introduce
the first-order "direct" potential which is obtained from the first line of Eq. (9) as
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Vz (r)=2+ —YJ(b, b', r),(, ) CJ(, ') e

bb, + r
(A13)

where the sum is over each perturbed orbital b' of each subshell b of the ion. With the above notation the
relativistic coupled Hartree-Fock equations become the following.

(i) Electric case:

(H, e, )y—, +CJ(a,a') Vz"(r)f,
2 2

A (a,b,a', b', 1,J) YI(—a, b, r)yl, +( —1) 'A (a,b', a', b, l,J) Y~(—a, b', r)fl,
bb I r

CJ(a,—a')r f, + g A,, If&, (A14)
b

(ii) magnetic case:

(H, —e, )y,

2 2

A ( —a, b,a', b'—, I,J) YI(a,b—,r)yI, +( —1) ~ A ( —a, b', a', b,—l,J) Yt(a, b—', r}fq
bb'I r

=(K +K )Cz( —a,a')r g, + g I,, sf~ . (A 15)
b

F,(r)
g~(r)= G ( )

(A16)

In the magnetic equations (A15) we have introduced
the notation

I

with the sum over all perturbations of all ionic sub-
shells. In a similar way we find that the induced
current density

j "'(r)=e g (w„„au„„)+c.c. (A20)
L

in the driving term.
To obtain the electric susceptibilities and shield-

ing factors in terms of the solutions to Eq. (A14) it
is only necessary to note that the induced charge
density

p"'(r) =e g (w„„u„„)+c.c. (A17)
n~m

may be written

may be written

-. (i) 2J+1 1 (i)j (r)= —Sq (r)YJJO(1'),r'

where the radial current density Sz" '(r) is

SJ (r)= g Cq( —a,a'}()) 2e Icg +Kg

(A21)

p"'(r)= RJ"(r)YJO(r—),4n. r 2
(A18) X(S,F'. +T..G. ) . (A22)

where the radial charge density R "' is given by

22
RJ"(r}= g Cq( , a)(aS, 6, +T, F, }2J+1 ...

(A19)

The perturbed potentials PJ"(r) and AJ '(r) can
now be easily worked out from Eqs. (A18) and
(A22} for the perturbed charge and current densi-
ties. Expressions for these potentials are given in
Eqs. (13) and (14) in the main body of the text.
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