
. . ::::YS::CA".4:V:::W
GENERAL PHYSICS

THIRD SERIES, VOLUME 26, NUMBER 4 OCTOBER 1982

Bound-state spectrum of the hydrogen atom in strong magnetic fields

H. Friedrich
8'. K. Kellogg Radiation Laboratory 106-38, California Institute of Technology,

Pasadena, California 91125
(Received 23 April 1982)

Energies of the bound states of the hydrogen atom in a uniform magnetic field are calcu-

lated for field strengths greater or equal to B0-2.3S)&10 G. The convergent behavior of
the quantum excesses (negative quantum defects) makes it possible to determine completely

the bound-state spectrum for given values of the field strength B and the azimuthal quan-

turn number m. For
~

m
~

=0, 1, and 2 results are presented which determine to a uniform

relative accuracy of at least 0.1% the energies of all bound states for arbitrary field

strengths from B/Bo ——1 to B/Bo ——SOO or higher, beyond which the adiabatic approxima-

tion is of comparable accuracy.

I. INTRODUCTION

The hydrogen atom in a strong uniform magnetic
field' B=(O,O,B) is accurately described over a
large range of field strengths B by the simple non-
relativistic single-particle Hamiltonian

2 2

H= ——+col, + —,pco (x +y ),
2IM T

where p is the reduced mass of electron and proton
and the oscillator frequency co is half the cyclotron
frequency

co= —,co, =eB/(2pc) .

At a field strength of

B=Bo pe c/fi =2.3——5 )& 10 6
the oscillator energy trito becomes equal to the Ryd-
berg energy

R= , pe /fi =13.—6eV.

In terms of the dimensionless field-strength param-
eter

y =B /B p ——Ace/R,

relativistic corrections ' to the simple model (1}are
negligible for fields with. y&10. On the other
hand, the effects of spin-orbit coupling' can be
neglected for fields with y&10 . The effect of the

nonseparability of the two-body problem in the
presence of an external magnetic field has been in-

vestigated by several authors. ' For fields with

y& 100, this effect is not negligible, but for a hydro-
gen atom at rest it can be accounted for accurately
by a constant energy shift which depends only on y
and the azimuthal quantum number m. For finite
momenta of the hydrogen atom, simple scaling laws
can be used to reduce the two-body problem to the
one-body problem described by (1).

For magnetic fields in the region y=1 and y& 1,
which may be important in astrophysical situa-
tions, the solutions of the Schrodinger equation
governed by the Hamiltonian (1}are still fragmenta-
ry. This is true in spite of the formal simplicity of
the problem and the large amount of attention it
has received. ' ' In the region y&1, accurate cal-
culations of energy levels exist only for a few
discrete field strengths and only for the lowest few
eigenstates for a given azimuthal quantum number
m. The reason for this is that, although axial sym-

metry and conservation of parity m reduce the prob-
lem to a two-dimensional Schrodinger equation in
each m subspace of full Hilbert space, no further
reduction to one-dimensional problems has been
possible except in the adiabatic approximation, '

which is accurate in the region y»1.
The present investigation is based on an expan-

sion of the wave function of relative motion of elec-
tron and proton in Landau orbitals, which has al-
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ready been used as an appropriate expansion for the
high-field case by Simola and Virtamo. In contrast
to all previous investigations, the present calcula-
tion (which is described in Sec. II and in the Appen-
dix} is accurate not only for low-lying states but
also for highly excited states. This makes it possi-
ble to study the convergent behavior of the quantum
excesses (negative quantum defects) in each m sub-

space and thus to completely determine the energies
of all bound states for given values of the field-
strength parameter y and the azimuthal quantum
number m. In Sec. III, results are presented for

~

m
~

=0, 1, and 2 which completely determine to a
uniform relatiue accuracy better than 0.1% the ener-

gies of all bound states for arbitrary field strengths

ranging from y=1 to y=500 or higher, beyond
which the adiabatic approximation is of comparable
accuracy.

II. METHOD

For a given azimuthal quantum number m, the
wave function g(p, z ) [p = (x +y )

' ] can be ex-

panded in Landau states yiv (p) which are eigen-

states of the two-dimensional harmonic-oscillator
Hamiltonian' with radial quantum number N and

oscillator energy (2N+
~

m
~

+1)fico:

t/i(p, z)= g qrN (p)qr~(z) .
N&0

(2)

It is convenient to subtract from the Hamiltonian

(1} the normal Zeeman shift mfico and the zero-

point energy (
~

m
~

+1Hm of the lowest Landau
state (N =0), so that the Hamiltonian no longer de-

pends on the sign of m, and the ionization threshold

lies at E=O in each azimuthal subspace. Inserting
the expansion (2) into the time-independent

Schrodinger equation then leads to a set of coupled
equations for the wave functions yz(z):

2
Pz + Vtt~(z)+2NAa) q)~(z)
2p

+ g Vti~ (z)tii(z)=Et'(z) . (3)
N'QN

The diagonal potentials VNN and the coupling po-
tentials VNiv, NQN', are given by

tial whereas the coupling potentials vanish:

Vivid'(z)- 4—r, iv'e ~
I
z

for ~z
~

—+ao. The deviation of the potentials (4)
from the asymptotic form (5) is appreciable over a
range of the order of the oscillator width
b=&fi jpco which is related to the field-strength
parameter y by

b =ao&2/y (6)
0

ao -0.53 A being the Bohr radius.
For each value of the azimuthal quantum number

m and the parity ~ (with respect to reflection at the
x-y plane) Eqs. (3) constitute a set of coupled-
channels equations, the channels being defined by
the radial quantum numbers N of the various Lan-
dau excitations perpendicular to the direction of the
magnetic field. Neglecting the coupling potentials
in (3) leads to a set of uncoupled ordinary differen-
tial equations for the wave functions priv(z). This is
the "adiabatic approximation" which has recently
been studied in considerable detail by Wunner,
Ruder, and Herold. ' It becomes increasingly ac-
curate as y increases, and in the asymptotic limit

y—+no it reduces to the problem of the one-

dimensional free hydrogen atom which has been
discussed by Loudon. '

By directly solving the coupled equations (3) in-

cluding up to eight channels in the expansion (2),
Simola and Virtamo calculated the binding energy
of the ground state in the subspace m =0+ for
fields with y= 2,20 2 X 10 . Aldrich and
Greene have used a matrix-diagonalization pro-
cedure based on expanding the functions P(p, z) in a
basis of Gaussians of varying widths and have cal-
culated up to six eigenvalues i'n a given m subspace
for y=1, 2, 5, and 10 and for some values y~ l.
Except for the work of Wunner et al., ' who use the
adiabatic approximation, Ref. 9 was up to now the
only calculation which went beyond the lowest two
or three eigenstates in a given m subspace for
fields with y& 1.

The present calculation is based on diagonalizing
the Hamiltonian matrix in a nonorthogonal basis
obtained by expanding the wave functions qn(z) in

(2) and (3) in a basis of displaced Gaussians:

p;(z)=(~nb;) ' exp[ (z z;) /2b; ], —('7)—

(4)

Asymptotically (
~

z
~

~ ao }, the diagonal potentials
approach the one-dimensional pure Coulomb poten-

out of which components of positive or negative

parity are projected according to the sign of m.,

q);+. (z)= —,[y;(z)+q&;( —z)] . (g)
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The basis defined by Eqs. (7) and (8) is complete
if reasonable (e.g., constant) width parameters b;
and a sufficiently dense mesh of displacements z;
are used. ' In the present physical situation it
turned out to be most effective to choose the spac-
ing between neighboring mesh points and the corre-
sponding width parameters to be proportional to the
square root of the distance from the origin z=0,
which for hydrogenlike states near the ionization
threshold means proportional to the de Broglie
wavelength. This is achieved by a basis

z;=eapi, b;=acapi, i =1,2, . . . (9)

defined by two dimensionless parameters: c which
determines the density of the mesh and a which
determines the overlap of neighboring Gaussians.
For positive parity subspaces an additional Gauss-
ian of width bp=acap/2 and centered at zp ——0 is
included in the basis.

Since the basis (9) allows for tight mesh spacing
near the origin, where the wave functions have the
most short-range structure and is more widely

spaced at large distances, it is well adapted to the
description of highly excited hydrogenlike states.
Tests on the negative parity states of the exactly
soluble free one-dimensional hydrogen atom and in
the framework of the adiabatic approximation
showed that a uniform accuracy of about six signi-
ficant figures can be obtained for the lowest n

eigenvalues (in a given m subspace) if 5Xn to
10Xn Gaussians are included in the basis. Within
the adiabatic approximation the present method
reproduces virtually exactly the calculation of
Wunner and Ruder ' "for y= 100. In fact, for the
17 eigenvalues calculated by Wunner and Ruder for
each azimuthal quantum number

~

m
~

=0, 1, and

2, the only deviation in the significant figures given
is for the m =0 ground sty.te, where the present cal-
culation gives a binding energy 7.4937 Ry as op-
posed to the value 7.4940 Ry given in Ref. 12(a).

In the present calculation, up to 100 Gaussians
were used to represent each wave function qz(z)
and up to 25 channels w'ere included in the expan-
sion (2). However, the convergence properties of
the energy eigenvalues or rather of the associated
quantum excesses (see Sec. III) made it possible to
restrict the total dimensions (number of channels
multiplied by the number of Gaussians) of the ma-

trices to be diagonalized to 200 or less. Further de-

tails of the numerical calculation are given in the
Appendix.

III. RESULTS

The ground-state binding energies obtained in the
present calculation are shown (in units of rydbergs)
in Table I and compared with the results of Simola
and Virtamo and Aldrich and Greene, with the
finite-elements calculation of Kaschiev, Vinitsky,
and Vukajlovic, " with the perturbative calculation
of Pavlov-Verevkin and Zhilinskii, ' and with the
variational calculation of Praddaude, who was one
of the first authors to accurately calculate the
lowest few eigenvalues in the region y=1. The re-
sults of the adiabatic approximation are also shown.

The present results agree to within at least 0.1%
with most previous calculations. Whenever there is
a noticeable disagreement between the results of
Ref. 13 and those of Ref. 8, both of which claim
high accuracy for very strong fields, the present re-
sults tend to agree more accurately with Ref. 8. In
fact, the values presented by Pavlov-Verevkin and
Zhilinskii' cannot be accurate to all significant fig-
ures given, because at y=2000 their calculation
gives less binding than the adiabatic approximation.
Binding energies of a few excited states obtained for
y=2 are shown in Table II and compared with the
results of Refs. 7, 9, and 13, as well as with the adi-
abatic approximation.

In Table II and throughout this paper, the bound
states in each m subspace are labeled by the quan-
tum number n which determines the energy of the
state in the asymptotic limit y—+ oo, where the spec-
trum becomes that of the one-dimensional hydrogen
atom'

(10)

for all m . In each m subspace there is one hydro-

genlike state for each value of n=1,2, 3,. . . . In
each positive parity subspace there is an additional
"tightly bound state" which corresponds to n=0
and becomes infinitely bound in the limit y—+00.
In the region y& 1, one quantum number n is suffi-

cient to label all the bound states in each m sub-

space. States which in the adiabatic approximation
correspond to higher Landau excitations
N = 1,2, 3, . . . [see Eq. (2)], are separated from this

lowest set of states by an energy of roughly
2Nfuo =2yR [see Eq. (3)], and all lie above the ioni-

zation threshold at E=O. Owing to the coupling
between the various X channels, these states are un-

stable against decay of the Landau excitations.
Table II shows that the present results agree with

the calculations of Refs. 7 and 13 to within at least
0.1%, with the exception of the n =0 and n=2
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TABLE I. Binding energies in units of rydbergs for the tightly bound state in the subspace
m =0+. Present results are compared with the adiabatic approximation and with the results
of Praddaude, ' Aldrich and Greene (A and G), Kaschiev, Vinitsky, and Vukajlovic (KVV),'
Simola and Virtamo (S and V), and Pavlov-Verevkin and Zhilinskii (P and Z).'

Adiabatic
Praddaude
A and G
KVV
Sand V
P and Z
Present

'Reference 7.
"Reference 9.
'Reference 11.
~Reference 8.
'Reference 13.

1.363 21
1.662 33
1.6620
1.66228

1.661

1.799 55
2.04442
2.043 9
2.04443
2.044
2.028 64
2.044

20

4.298 60

4.407 3
4.4306
4.428 92
4.430 3

9.383 4

9.4540
9.458 08
9.454

2000

18.574

18.609 4
18.548 10
18.608

TABLE II. Binding energies in units of rydbergs of some levels for y=2. Present results

are compared with the adiabatic approximation and with the results of Praddaude, ' P and

Z, and A and G' (see Table I for reference symbols).

m =0+
0
1

2
3
4
5

Adiabatic

1.799 54
0.332 68
0.13466
0.072 189
0.044 878
0.030567

Praddaude

2.04442
0.348 06
0.138 84

P and Z

2.028 64
0.348 16

Aand G

2.0439
0.3473
0.1383
0.0736
0.0445
0.0265

Present

2.044
0.348 0
0.138 6
0.073 73
0.045 63
0.03099

m =0
1

2
3
4

0.587 52
0.19223
0.093 296
0.054 816

0.595 39
0.193 88

0.595 00
0.19364

0.5950
0.1921
0.0910
0.0505

0.595 41
0.19371
0.093 795
0.055 042

m =1+
0
1

2
3

1.154 32
0.281 07
0.121 38
0.066969

1.199 17
0.285 08

1.198 56
0.28494

1.1978
0.2826
0.1191
0.0628

1.19921
0.28490
0.12244
0.067498

m =1
1

2
0.48692
0.173 82

0.490 53 0.49042
0.174 56

0.4893
0.1718

0.49048
0.17458

m =2+
0
1

0.92421
0.255 57

0.94243 0.942 24
0.257 36

0.9414
0.2562

0.942 34
0.257 35

m =2
1

2

'Reference 7.
"Reference 13.
'Reference 9.

0.432 84
0.162 86

0.434 88
0.163 32

0.4321 0.43491
0.163 32
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states in the subspace m =0+. However, if we
look beyond the first two or three states in each m

subspace, the present calculation is obviously a sub-

stantial improvement over the only previous calcu-
lation by Aldrich and Greene. The binding ener-

gies of the excited states given in Ref. 9 are notice-
ably smaller than in the present calculation and, for
larger values of n, even become smaller than the
binding energies in the adiabatic approximation.
This indicates that in Ref. 9 the subspace in which
the Hamiltonian is diagonalized is too small to
describe the more highly excited states. Enlarging
the subspace leads to lower energy eigenvalues
(higher binding energies) of all bound states.

When dealing with hydrogenlike spectra as in the
present case, it is convenient to study not the energy
eigenvalues E„ themselves, but rather their devia-
tions from a pure hydrogen spectrum as expressed
in the quantum excesses 5„:

1.0—

0.8—

0
0 oxoo ~~y ~

~op 0 0
0

ctnpp 0 0

m = 2

m =0' 0

E„= R /(n +—5„) (11)

Each effective quantum number n+ 5„defined by
Eq. (11) will be larger than the corresponding quan-
tum number n, because the true potential in Eq. (3)
is less attractive at short distances than the poten-
tial of the free (one-dimensional) hydrogen atom.
Thus, the quantum excesses 5„are all positive and,
according to Eq. (10), converge to zero in the
asymptotic limit. Except for the plus sign in Eq.
(11) the quantum excesses correspond to the "quan-
tum defects" which are used to characterize the

spectra of alkali-metal atoms, where the potential
seen by the valence electron is that of a free hydro-

gen atom at large distances, but becomes more at-
tractive at short distances. '

The quantum excesses 5„are plotted in Fig. 1

against 1/n for y=2 and for the I subspaces with
m=0, 1,2. The corresponding numbers deduced
from the energy values of Aldrich and Greene are
shown for comparison.

As is expected ' for a potential which differs
from a pure Coulomb potential only at short dis-
tances, the quantum excesses in each m subspace
converge to a finite limit as n~oo. In addition,
Fig. 1 shows that within each I subspace, the
dependence of the quantum excesses 5„on n is very
weak and is very similar in the adiabatic approxi-
mation and in the full calculation, especially if we
look only at states with n ) 1 and do not include the
n =0 tightly bound state in the positive parity sub-

spaces.
The y dependence of the quantum excesses 5o and

5& is shown in Figs. 2 and 3, respectively, for m

subspaces with m =0, 1,2 and for 1&y&500. For

0.6—
Quantum Excesses for y = 2

~ Exact
~ Adiabatic Approximation

~ Aldrich and Greene(1979)

0.5—

0.4—
0~po ~ ~

~~O

3—
0~0 0 0
~W ~ +

0 0.5 1.0 n=0

I/n

FIG. 1. Quantum excesses 5„ for y=2 in the m

subspaces with m=O, 1, and 2. Present results (solid

dots) are compared with the adiabatic approximation

(open circles) and with the results of Aldrich and

Greene, Ref. 9 (crosses).
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&0

1.2—

1.0—

0.9—

0.7—

0.6—

0.5 —,

0.4—

0.2

I I I I I III

I I I I I I III
10

I I I I I I I I)

I I I I I IIII
100

I ! I I I I II

rrI= 2
rn= I

m=O—

I I I I I III
500

reasons discussed by Loudon, ' the asymptotic
(y~ 0D ) convergence to zero is much slower in the
positive parity subspaces than in the negative parity
subspaces. For a given value of the azimuthal
quantum number m, the values of 5o and 5I (for
both values of m) converge to

~

m
~

+1 in the low
field limit y~0.

More-precise values of the quantum excesses 50
and 5~ are tabulated in Table III together with the
results 50 and 5~ of the adiabatic approximation.
The mesh of field-strength parameters y is so dense
that quadratic interpolation of the quantum
excesses as functions of logy gives values of 5II and
5~ at intermediate values of y to within 10,except
in the region near y=1„where the maximum error
is approximately 2)& 10

Once 5I is known for any given value of y, m,
and n, the en. ergies of the higher-lying bound states
can be obtained via Eq. (11) from the quantum ex-
cess differences

e„=5„—5), n =2,3,4, . . . . (12)

1.2 I I I I I I III I I I I I I I I] I I I
I

I I I I

I.O—

0.9—

0.8—

0.6—

0.5—

0.4—

m"= 0

0.2—

0.1—

10
I I I I I I III

IOO
I

500
Y

FIG. 3. Quantum excesses 5& in the m subspaces
with m =0, 1, and 2. Dashed lines show the results of
the adiabatic approximation.

FIG. 2. Quantum excesses 50 corresponding to the
tightly bound states for azimuthal quantum numbers
m =0, I, and 2. Dashed lines show the results of the
adiabatic approximation.

For reasons discussed above in connection with Fig.
1, the quantum excess differences e„are very small,
converge to a finite limit as n~00, and do not
change strongly when going from the adiabatic ap-
proximation to the full calculation. In fact, the
values of e„converge much more rapidly as func-
tions of the numbers of channels included in the ex-
pansion (2) than the corresponding quantum
excesses. This makes the accurate calculation of the
energies of highly excited states possible without di-
agonalizing immense matrices (see the Appendix).
For y&10, the values of e„are already given to
within, less than 10 if the adiabatic approxima-
tion is used for both 5„and 5I in Eq. (12).

The quantum excess differences e„are shown in
Fig. 4 as functions of y for m subspaces with
m=0, 1, and 2. The limiting values of e„as
n ~ oo are given in Table IV for various values of y.

In the negative parity subspaces, the quantum ex-
cess differences converge uniformly to zero with in-

creasing y at roughly the same rate as the corre-
sponding quantum excesses. The signs of e„are all
negative and for a given value of y the magnitudes
increase monotonically with increasing n to a limit
which is roughly one power of ten smaller than the
corresponding value of 5~.

In each positive parity subspace there is a value
of the field-strength parameter y near which all
quantum excess differences change sign. For each
value of m, the zeros of eq, e3,e4, . . . form a
monotonically increasing sequence of numbers
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TABLE III. Quantum excesses Q and 5~ for the m subspaces with m =0, 1, and 2. 50

and S& are the results of the adiabatic approximation.

5p

Positive parity
gad 5) gad

1

Negative parity
5) gad

m=0
1

2
5

10
20
50

100
200
500

1000
2000
5000

0.775 8+2
0.699 5
0.6020
0.53492
0.475 12
0.40705
0.363 23
0.325 23
0.282 70
0.25545
0.231 82
0.205 21

0.85648
0.745 45
0.623 75
O.S4740
0.482 32
0.41058
0.365 30
0.32645
0.283 30
0.255 82
0.23203
0.205 32

0.765 1+2
0.695 2
0.606 6
O.S4694
0.49460
0.435 36
0.39704
0.363 44
0.325 11

0.836 11
0.733 74
0.62446
0.557 33
0.50068
0.438 43
0.398 88
0.36454
0.325 67

0.38673
0.295 95
0.19932
0.143 10
0.09979
0.059 18
0.038 50
0.024 33
0.012 74

0.404 56
0.30463
0.202 57
0.14461
0.10047
0.05941
0.038 59
0.024 37
0.012 75

m=1
1

1.5
2
3
5

10
20
50

100
200
500

1000

1.04645
0.96643
0.913 17
0.843 02
0.762 57
0.66654
0.584 11
0.493 04
0.435 63
0.386 50
0.332 18
0.297 79

1.077 37
0.988 64
0.93076
0.855 70
0.77099
0.671 39
0.586 92
0.49442
0.43643
0.38697
0.33242
0.297 93

0.99620
0.92207
0.873 50
0.81045
0.739 39
0.656 12
0.585 66
0.508 32
0.45942
0.417 16
0.369 63

1.018 31
0.93803
0.88623
0.81977
0.745 71
0.659 88
0.587 90
0.50947
0.460 11
0.417 58
0.369 85

0.555 80
0.478 09
0.427 87
0.363 72
0.293 27
0.214 54
0.152 98
0.093 73
0.062 54
0.040 51
0.021 85

0.566 18
0.485 04
0.433 08
0.367 17
0.295 31
0.215 52
0.15344
0.093 89
0.062 61
0.04054
0.021 85

m=2
1

1.5
2
3
5

10
20
50

100
200
500

1.19005
1.093 59
1.030 14
0.947 32
0.853 23
0.741 98
0.647 22
0.543 23
0.478 02
0.42242
0.361 20

1.20760
1.10626
1.04020
0.95460
0.85809
0.74478
0.648 8S
0.54403
0.478 49
0.422 70
0.361 34

1.117 18
1.028 67
0.971 24
0.897 28
0.814 58
0.718 53
0.637 94
0.55028
0.495 27
0.448 01
0.395 16

1.128 80
1.037 18
0.978 10
0.902 35
0.81806
0.720 62
0.639 21
0.55093
0.495 66
0.448 25
0.395 28

0.666 80
0.575 35
0.51636
0.44099
0.358 10
0.26500
0.191SO

0.11969
0.081 15
0.053 41
0.029 38

0.673 87
0.580 14
0.51997
0.443 42
0.359 55
0.265 71
0.19184
0.11982
0.081 20
0.053 44
0.029 39

f3 f4 ., which are restricted to a small range
b,y and converge to a limit y, . Numerical values of
(y„ lLy) are (18, 0 5) for m=0,. (41, 1.5) for m=1,
and (64, 3) for m =2. In the region y& y, —b,y, the
behavior of the quantum excess differences e„ is
similar to the behavior in the negative parity sub-

spaces. In the region y, —Ay&y&y, all values of
e„are very small, viz. , smaller than approximately
10 . This means that in each positive parity sub-

space there exists a small range of field-strength

parameters for which all quantum excesses 5„with
the exception of the quantum excess So associated
with the tightly bound state, are equal to within ap-
proximately 10 . In the region y&y„ the quan-
tum excess differences in the positive parity sub-

spaces are positive; their magnitudes remain rather
small and depend very weakly on y.

For any field-strength parameter y between unity
and 500, the numerical values of the quantum ex-
cess differences can easily be read off from Fig. 4 to
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O.O I
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I
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I
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I
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0—

&n =co
n=4~n =3
n=2

0.01 I I

I
I I I I

0

n
n

~n
n

"co
=4

=2

-0.0 I—

-0.02—

-0.01
n"-2

-0.03—

-0.02
n=3

n =3
n=4

-0.03—n

n

=4
=5
=6
= 7(
=co

I I I I I I II

10
» II

100
I I I I I I I I l

500

-0.04 —
n = 5
n=6
n=7
n=8

—
n =co(

-0.05 l I l llll
10

I I l l I ll l

100
I l I l l Ill

500

— {c
I I I

I
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FIG. 4. Quantum excess differences e„=5„—5, in the subspaces (a) m =0+, (b) m =1+, (c) m =2+, (d) m =0
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TABLE IV. Limiting values e„of the quantum excess differences e„=5„—5& in the m

subspaces with m =0, 1, and 2.

1

2
5

10
20
50

100
200
500

0+

—0.033
—0.017
—0.0064
—0.0022
+0.0003
+0.0022
+0.0027
+0.0031
+0.0033

—0.0463
—0.0294
—0.0145
—0.0076
—0.0030
+0.0006
+0.0020
+0.0028
+0.0032

2+

—0.0615
—0.0402
—0.0213
—0.0120
—0.0059
—0.0009
+0.0012
+0.0023
+0.0032

0

—0.054
—0.0376
—0.0219
—0.0139
—0.0085
—0.0042
—0.0024
—0.0013
—0.0005

—0.0803
—0.0569
—0.0343
—0.0225
—0.0142
—0.0073
—0.0043
—0.0024
—0.0011

—0.0995
—0.0713
—0.0438
—0.0292
—0.0188
—0.0099
—0.0059
—0.0034
—0.0015

IV. SUMMARY

A straightforward matrix-diagonalization pro-
cedure has been used to calculate the energies of the
bound states of a hydrogen atom in a uniform mag-
netic field of strength B& Bp-2.3 5X10 9G. At
such strong fields the bound-state spectrum for a
given azimuthal quantum number m is similar to
the spectrum of the free one-dimensional hydrogen
atom which it approaches in the asymptotic limit
y=B lBp~ 00.

For finite values of y, the deviations of the spec-
trum from the asymptotic limit are appropriately
described by the quantum excesses 5„, defined by
Eq. (11}.For given values of y, m, and the parity n.
(with respect to reflection at the x-y plane) the
quantum excesses converge to a finite limit and this
makes a complete determination of the bound-state
spectrum possible. An interesting feature in m~

subspaces of positive parity is the existence of a
field strength y, (depending on m) near which all

quantum excesses 5„, with the exception of the
quantum excess 50 corresponding to the tightly
bound state, are virtually equal.

For
i
m

~

=0, 1, and 2 the quantum excesses 5p

and 5i can be determined from Table III with the
help of quadratic interpolation for arbitrary field
strengths in the range y=l to 500, going up to
y= 5000 and 1000 for the 50 quantum excess in the
subspaces m =0+ and 1+, respectively. For more
highly excited states, the quantum excesses can be
determined by reading the values of the correspond-
ing quantum excess differences 5„—5& in Fig. 4.
Table III and Fig. 4 together determine, to a relative
accuracy of at least 0.05%, the effective quantum
numbers n+5„of all bound states for arbitrary
field strengths in the range y= 1 to 500 (to y= 5000
and 1000 for the tightly bound states in the sub-

spaces m =0+ and 1+, respectively). The corre-
sponding energies are determined to a uniform rela-
tive accuracy of at least 0.1% and the relative accu-
racy actually increases with increasing quantum
number n. For higher fields, the adiabatic approxi-
rnation, which reduces the Schrodinger equation to
a set of uncoupled linear ordinary differential equa-
tions in one variable, is at least of comparable accu-
racy.

For azimuthal quantum numbers
~

m
~

=0, 1,
and 2, Table III and Fig. 4 thus determine to a uni-
form relative accuracy of at least 0.1% the energies
of all bound states of the hydrogen atom in uniform
magnetic fields of any strength y ranging from
y=1 to 500 or higher, beyond which the adiabatic
approximation is at least of comparable accuracy.

ACKNO%'LEDGMENTS

I am grateful to J. Avron, S. Koonin, 1.. Mlodi-
now, T. Tombrello, and V. Weidemann for many
helpful discussions. The author (H.F.) is the reci-
pient of a fellowship from the Heisenberg Program
of the Deutsche Forschungsgemeinschaft. This
work was supported in part by the National Science
Foundation Grant No. PHY79-23638.

APPENDIX

For a given azimuthal quantum number m &0
and parity m. let N, be the number of channels in-

cluded in the expansion (2) and n, the number of
Gaussians (7} used to represent each channel wave

function q&~(z):

N —1 n

f(p,z)= g g C~;q)N (p)g);(z), (Al)
N=O 1=1
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where y; are the parity projected wave functions
(8). The coupled-channel equations (3) then reduce
to a discrete matrix-diagonalization problem

N —1 n

g [H (N,i;Mj) EA—(N,i;Mj )]CMf—0
M=O j=1

(A2)

for all N, i. Because of the Gaussian nature of the
basis functions, the Hamiltonian and overlap ma-

with

A(N, i;Mj )=5~~(q);
~

q& }, (A3)

2b;bJ

(b +b,')

' 1/2

exp

1 2——(z —z )l J

(b +b,')

and

trices are easy to calculate. In terms of the unpro-
jected Gaussians (7),

r

2(z —z )
H(N, i;Mj)=(y;

~ qrj ) 5~~ 2Nfuu+ 2 2
1—

2p(b +bi ) b +bj.

2 2 '"+ ' [N!M!(N+m)!(M+ m)!]'~
I(N

v ir ~ o (N L)!(M—L)!L!(m—+L)! (A4)

with

(bx) '[B(1—x)] '
[b2x2+B2(1 x2)] i+ 2+

X exp( —b x /B )dx . (AS)

In (AS), b is the oscillator width (6) associated with
the magnetic-field-strength parameter y and

B =2b;bjl(b; +bj ), 4= —,B 2+b2 b2

(A6)

The parity projected matrix elements appearing in

(A2) are given by, e.g.,

H (N i;Mj ) = , [H-(N, i;Mj )+—H(N,i;M, —j)],
where the minus sign in front of the symbol j means
that zJ is to be replaced by —zj in the explicit ex-
pressions for the matrix elements (A3) —(A6). The
integral (AS}, which reduces to a simple beta func-
tion if b=B and 5=0, is calculated numerically.
For b=8, an accuracy of roughly one in 10 was
achieved with a mesh of 50 points. For 8 &&b, the
number of mesh points had to be increased by a fac-
tor of B/b in order to maintain this accuracy. This
made the calculation of matrix elements rather time
consuming for high values of y.

The nonorthogonal basis (A3) was orthogonalized
with the Schmidt orthogonalization procedure and
the resulting Hamiltonian matrix was diagonalized
with a standard package subroutine. The parame-
ters c and a, which determine the Gaussian basis via
Eq. (9), were determined by minimizing the energy

I

of the first few states in a given m subspace for
each value of y. Typical values were c=0.1 for
@=1and c=0.015 for @=500. Values of a depend-
ed weakly on y and ranged between 2.5 and 4.5.

Using the basis (9},the number of eigenvalues ob-
tained to a given accuracy in a given m subspace
depends linearly on the number of Gaussians used.
In the region y& 1 the first n eigenstates were ob-
tained to about six significant figures with SXn to
7X n Gaussians. For higher fields, the mesh has to
be denser and the number of Gaussians needed to
maintain this accuracy increases and reaches 10'n

to 15Xn at y=500.
The convergence of the energies (and the quan-

tum excesses) as functions of the number of chan-
nels X, is quite slow, especially in the m =0+ sub-

space. The binding energies given in Table I for
y= 1 and 2 are extrapolated to N, = co from values
obtained with N, (25. The values actually calcu-
lated with X, =25 are 1.655 Ry for @=1and 2.041
Ry for y=2.

Despite the slow convergence of the energies and
quantum excesses, the quantum excess differences
e„defined by Eq. (12) converge very rapidly as
functions of the number of channels N, . Except for
the region y&2 in the m =0+ subspace a three-
channel calculation already gives the values of e„ to
within less than 3&&10 . In all m subspaces the
values of e„are already given to within less than
10 by the two-channel calculation for y&S and

by the one-channel calculation (adiabatic approxi-
mation) for y& 10.

This rapid convergence of the quantum excess
differences as functions of the number of channels
makes it possible to determine the quantum excesses
(and hence energies) of highly excited states without
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having to diagonalize huge matrices. In each m

subspace, the low-lying levels are obtained from cal-
culations using only a few Gaussians and large
numbers (up to N, =ZS) of channels. The more
highly excited levels are obtained via the rapidly

converging quantum excess differences with fewer
channels but a large number (up to n, =100) of
Gaussians. The maximum total dimension X, )& n,
of the matrices diagonalized in the present calcula-
tion was 200.

See, for instance, a review by R. H. Garstang, Rep.
Prog. Phys. 40, 105 (1977), and references therein.

K. A. U. Lindgren and J. T. Virtarno, J. Phys. B 12,
3465 (1979).

B.G. S. Doman, J. Phys. B 13, 3335 (1980).
4J. E. Avron, I. W. Herbst, and B. Simon, Ann. Phys.

(N. Y.) 114, 431 (1979).
V. B. Pavlov-Verevkin and B. I. Zhilinskii, Phys. Lett.

78A, 244 (1980); G. Wunner, H. Ruder, and H.
Herold, ibid. 79A, 159 (1980); Astrophys. J. 247, 374
(1981);H. Herold, H. Ruder, and G. Wunner, J. Phys.
B 14, 751 (1981).

J. L. Greenstein and J. B. Oke, Astrophys. J. 252, 285
(1982).

7H. C. Praddaude, Phys. Rev. A 6, 1321 (1972).
SJ. Simola and J. Virtamo, J. Phys. B 11, 3309 (1978).
C. Aldrich and R. L. Greene, Phys. Status Solidi B 93,

343 (1979).
OJ. E. Avron, I. W. Herbst, and B. Simon, Phys. Rev. C

20, 2287 (1979);J. E. Avron, Ann. Phys. (N.Y.) 131,73
(1981).

"M. S. Kaschiev, S. I. Vinitsky, and F. R. Vukajlovic,
Phys. Rev. A 22, 557 (1980).

(a) G. Wunner and H. Ruder, Astron. Astrophys. 89,

241 (1980); (b) Phys. Lett. 85A, 430 (1981).
V. B. Pavlov-Verevkin and B. I. Zhilinskii, Phys. Lett.
75A, 279 (1980); V. V. Burdyuzha and V. B. Pavlov-
Verevkiu, Astron. Zh. 58, 334 (1981) [Sov. Astron. 25,
187 (1981)].

~C. M. Bender, L. D. Mlodinow, and N. Papanicolaou,
Phys. Rev. A 25, 1305 (1982).

~M. Cohen and G. Hermann, J. Phys. B 14, 2761 (1981).
'6J. Cizek and E. R. Vrscay, Int. J. Quantum Chem.

XXI, 27 (19823.
J. D. Talman, Nucl. Phys. A141, 273 (1970).

8R. Loudon, Am. J. Phys. 27, 649 (1959).
~9N. Wiener, The Fourier Integral and Certain of its Ap

plications (Dover, New York, 1933),p. 100.
E. A. Hylleraas and B. Undheim, Z. Phys. 65, 759
(1930); E. C. Kemble, The Fundamental Principles of
Quantum Mechanics (McGraw-Hill, New York, 1937),
p. 415.
M. J. Seaton, Mon. Not. Astron. Soc. 118, 504 (1958);
N. F. Mott and H. S. W. Massey, The Theory ofAtom
ic Collisions (Clarendon, Oxford, 1965), p. 67ff.

2~M. Abramowitz and I. A. Stegun, Handbook of
Mathematical Functions (Dover, New York, 1965), p.
258.


