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Nonlinear resonant coupling between shear and heat fluctuations
in fluids far from equilibrium
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Fluctuating hydrodynamics is used to show that in fluids with large temperature gradients the
shear mode couples to the heat mode in a resonant manner that results in a very large increase
in the amplitude of the central peak of the spectrum of scattered light, in agreement with the
results of Kirkpatrick et al. [Phys. Rev. A 26, 995 (1982)].

Recently, much attention has been devoted to the
study of fluctuations in simple systems in nonequili-
brium steady states (NESS).' '0 With few excep-
tions, ' ' most of the work has focused on systems
close to equilibrium. Here we consider fluctuations
around a steady state with large gradients, specifically
large temperature gradients. As will be shown below,
fluctuating hydrodynamics leads to a coupling of the
shear to the heat mode which results in a large in-
crease in the Rayleigh peak in the light scattering
spectrum, in agreement with the results of

i(o(yp5pk „—yr5Tk „)=iku'k „+yrOT v k „,

Kirkpatrick, Cohen, and Dorfman " Moreover,
the enhancement is nonlinear in the gradients
characterizing the steady state.

To see how the effect arises we start from the fluc-
tuating nonlinear hydrodynamic equations linearized
around the steady state with a fixed temperature gra-
dient 0 T. We write the equations in terms of the
pressure, temperature, and velocity fields, in Fourier
representation. We denote u'-„„=k/k v -„„and
v k „=(k/k) & v k „, where k is the wave vector
and v -„„is the Fourier component of the velocity
field. The equations are
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where the first equation comes from the continuity
equation after the change of variable 5p = po(y~5p—y r5T), the second equation is the linearized
Navier-Stokes equation v, = rt/po and (vl —v, ) = ((
+

3 q)/po, where q and g are the shear and bulk
1

viscosities, po is the mean density, and Vis the ran-
dom stress tensor. The third equation is the linear-
ized heat conduction equation where X is the thermal
diffusivity, Cp is the heat capacity per unit volume,
and q is the random heat flux. The use of such
equations far from equilibrium has been discussed
and justified in Ref. l. By applying the projection
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where k=k/k. Using this solution for v-„„we can
write a 3 x 3 matrix equation for the variables

in the form
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We see that the source term on the right-hand side
(RHS) of Eq. (5) has a pole at co = k =0 which will

be shown to significantly affect the central spectral
line of scattered light. Note that this contribution
comes from the coupling of the "transverse" velocity
to the longitudinal modes. From Eq. (5) we can
solve for v'-„quite easily. Then we can use the
linearized continuity equation to write

jMSp g =(kv-„„+yy V T v~ „
0
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Once we decompose v q „into its transverse and
longitudinal parts, and use Eq. (4), we get
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We can now employ the expression for v'-„„, which

is obtained from Eq. (5), to write
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where A(k, ro) is the determinant of the matrix ap
pearing in Eq. (5).

The calculation of the density autocorrelation func-
tion (and hence the light scattering intensity) follows

when the random flux correlations are specified.
From the work presented in Ref. 1, we know that a
local equilibrium assumption should adequately
describe these correlations. Physically, this is due to
the fact that the random fluxes represent fast micro-

scopic processes which have only to probe their local
environment.

Thus'"

(&'-„& ) = (gasjm+5jjgim i ig/gm )
J
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where ( )- -, is used to denote the spatial Fourier

k —k
transformer at wave vector k —k of the quantity in-
side the brackets and where 5& denotes a Kronecker
5. In writing out Eqs. (11)—(13), overall factors of
(2m ) ' have been dropped, since they are unimpor-
tant in measuring relative intensities.

In the experiment, the temperature profile is one
dimensional (i.e., '7 T ~ e3', a unit vector in the z
direction). From Eqs. (11)—(13), it follows that the
components of k and k orthogonal to '7 T must be
equal, since the system is translationally invariant in

these directions. The calculation for k and k x 0 T
is simplified, although the essential novelties remain.
Treating all material parameters as constants [with

the exception of T(z)] and using Eqs. (7) and

(11)—(13) gives
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where the "bar" over T and T denotes the spatial

average of the quantity.
It is easy to see from Eqs. (8)—(10) and (14) that

the Brillouin peaks have exactly the same structure as
in equilibrium when k, k i. 0 T. The new features
are contained in the central region of the spectrum,
i.e., for ~ —Xk', co && kc0 where c0 is the adiabatic
sound speed. In this region,
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which, when used in Eq. (14), gives
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The first term on the RHS of Eq. (18) is the usual

equilibrium Rayleigh peak. The second term in non-
linear in the spatial gradients. How large is the term?
For water at 20'C, p0=10' kg/m', v, —10 m'/sec,

C, —4.2 x10'I/m'deg, x=1.47 x10 7 m2/sec (the
Prandtl number /X v—r7). In Fig. 1, the exact spec-
trum is plotted [i.e., Eq. (14)] for a variety of tem-

perature gradients. We have taken T/P = (293
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FIG. 1. Rayleigh peak (arbitrary units) for water at room
temperature. The peak is symmetric about co=0. Tempera-
ture gradients were for curve a 0.0 K/cm, curve b 50 K/cm,
curve c 75 K/cm, and curve d 100 K/cm. In all cases,
k = 2500 cm '.

IRayleigh ~ &'

T c,l»l'
Cz T~ ppX(X+ v, )k

Thus the contribution from the coupling to shear in-
creases dramatically for small scattering angles (small
k). In fact, in water (under the conditions described
above) with k=10'm ' and VT=5000 K/m, the

K) '. This system corresponds to the one studied in
Ref. 10. The effect is pronounced. As the tempera-
ture gradient increases, the overall intensity increases
and the line narrows. From Eq. (18) we see that
there is a strong '7Tdependence and an even
stronger k dependence (i.e., k~).

In Eq. (5), we found that the effective longitudinal
equations of motion do not have only random "white
noise" sources. The coupling of the shear mode to
the longitudinal variables by the temperature gradient
produces a driving term whose power spectrum peaks
exactly where the heat mode's does, This leads to a
resonance which is reflected in the expression for the
spectrum Eq. (18). Since it comes out so simply
from the fluctuating hydrodynamical equations, its
experimental verifications puts the applicability of
these equations to fluids far from equilibrium to an
important test.

The anomalies in the Brillouin peaks lead to no net
increase in total intensity. This is not the case for
the Rayleigh peak. From Eq. (18) it follows that the
total intensity under the central peak is equal to

new term is 24 times larger than the equilibrium
term. Perhaps more important is the connection
between the total central peak intensity and the static
density autocorrelation function. In two dimensions
(remember k, k'J. 9T) the inverse Fourier transform
of Eq. (19) grows like r, while in three dimensions it
grows like r.

We conclude this work with a few comments:
(1) Kirkpatrick, Cohen, and Dorfman, " " using

kinetic theory and mode coupling theory, have also
examined the Rayleigh peak for large '7 T. The
result derived here, i.e., Eq. (18), agrees with their
calculation. It must be stressed that the fluctuating
hydrodynamics calculation is quite different. Our
basic equations [Eqs. (1)—(3)] are linear, the non-
linear equations having been linearized around the
steady state. The justification for this is given in
Ref. 1. Moreover, the fluctuating hydrodynamics ap-
proach has lead to a new simple explanation of the
enhancement in the central peak, namely, the
resonant coupling to shear fluctuations.

(2) In writing Eqs. (1)—(3), we have neglected the
spatial variation of the coefficients. This is justified
as long as they are constant over the mean free path
of the modes (i.e., their decay length). For sound, a
propagating mode, this poses some problems. On the
other hand, for shear and heat modes (both dif-
fusive), the typical decay length is I = (v,/cu) ' '
= 10 cm in small-angle light scattering experiments.
Thus the neglect of the spatial variation of the coeffi-
cients should be valid as long as I Pin T~ && 1 (for
water at 300 K this implies V T « 3 x 10 K/cm).
This is easily satisfied in general.

(3) In establishing the connection between the light
scattering intensity and the density autocorrelation
function, some care must be exercised in treating the
finite size of the incident beam. In short "' ' we
require l &( the beam diameter, for Sq „to be sim-

ply proportional to the scattering intensity. This is a
strong limitation for the Brillouin peaks (1-5 cm)
but not for the diffusive modes considered here
(I —10 ' cm). In addition, the frequency resolution
of today's experiments is not yet able to resolve the
central peak. The width 2v, k is about 10" sec ' for
the scattering angles under consideration. The total
intensity is still measurable and thus the large
enhancement should be observable.

(4) The effects of surfaces have been neglected.
This is justified in the calculation of the spectrum
since the modes under observation have extremely
short decay lengths. [See point (1) above. ] The total
intensity involves an integration over all frequencies,
the dominant contribution coming from co —v, k' or
Xk'. For large enough k, the decay length (I —k ')
is small and the restrictions mentioned here and
above are easily satisfied. On the other hand, as
k(I) is decreased (increased), either surfaces and/or
the spatial variation of the coefficients discussed
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above must be considered. The effect of surfaces has
been considered in Ref. 12 for the Brillouin peaks. A
strong dependence is found (I is large). The
anomalies are much smaller when I & L, the dimen-
sion of the sample. Since I for the central peak is

roughly equal to k, we expect Eq. (19) to hold as
long as kL && 1. Thus the growth of the static
correlation will be modified by the surfaces when
k —L '. %e expect that as soon as k —L ' the stat-
ic correlation will cease to increase. This was exactly
the case for the Brillouin peaks. "

In summary, fluctuating hydrodynamics linearized
about a NESS with a large temperature gradient has
led to a simple explanation of the large enhancement

in the Rayleigh peak. The temperature gradient
causes shear mode fluctuations to drive in a resonant
fashion, the heat mode, thereby causing the large in-
tensity increase. This couplng not only changes the
line shape, but changes the total integrated intensity
and thus makes it experimental verification easier.
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