
PHYSICAL REVIE%' A VOLUME 26, NUMBER 3 SEPTEMBER 1982

Comment on "Weyl's theory and the complex-rotation method applied to phenomena
associated with a continuous spectrum"
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Recent computations of complex-energy resonance poles by Rittby, Elander, and Br5ndas for

a V(x) = ( 2x —J)e ~ +J model potential are compared with results found by a recently-tuc2

developed alternative technique using Milne's method. Differences in the resulting behavior of
the pole string are discussed.

In a recent interesting article' a new method has
been presented for the computation of complex-
energy (Siegert) poles of the S matrix. The method
combines Weyl's theory and the complex-rotation
method. The authors illustrate the capability of their
technique by calculated resonance positions in the
complex-energy plane for the potential

V(x) =(2x2 —J)e ~ +J, J=0.8, X=0.1, (1)

previously studied by Moiseyev et at. ' These results
seem to be the first published computation of a
complex-energy pole string of about 40 complex reso-
nances obtained numerically for a fairly general po-
tential.

Different numerical methods with comparable effi-
ciency have been developed independently by Atabek
et al. , who use the finite difference boundary value
method, and the present authors, ' ' who make use
of Milne's differential equation. Both methods are
also based on the complex-rotation method.

Almost analytical results have been obtained for a
small number of simple cases, including square-
well Coulomb, ' "surface delta ' Morse, ' and
inverse Kratzer —or Fues —[V(r) =a/r —b/r2; a, b)0] (Ref. 14) potentials.

Rittby et a/. ,
' furthermore, define a "complex

threshold, "based on the quite unexpected finding,
that the real part Es of the resonance energy E(n)
=Es(n) + IEI(n) is bounded from above for the po-
tential (1), i.e., there exists a "complex threshold"
E,l,„„h, such that Es(n) (E,h«, h for all n This sug. -

gests a natural partitioning of the poles in two classes:
those before and behind the threshold (compare Fig.
1 of Rittby er al. '), eventually related to resonances
structures and background in the energy dependence
of the cross sections as speculated by Rittby et al. '

It is the purpose of this Comment to point out that
the computational results by Rittby et al. ' above the
complex threshold show a behavior which is incon-
sistent with recent observations of the present au-

thors for the potential

V(r) = Vor2e ', (2)

where the pole string also shows a complex threshold
behavior, but, contrary to the findings of Rittby
et al. ,

' the real part ER (n) is monotonically decreas-
ing for resonances above the threshold, whereas the
resonances computed by Rittby et al. ' for potential
(1) show an oscillatory behavior of the real part.

We therefore computed the resonances for poten-
tial (1) by our complex-rotated Milne method. The
resulting pole string is plotted in Fig. 1 and the reso-
nances for odd values of n are given in Table I. In
Fig. 1 the pole string shows exactly the same behav-
ior as observed for potential (2) in disagreement with
the results by Rittby et al. ,

' which may be due to nu-
merical instabilities in their computations or a conse-
quence of a too limited range of variation of the
complex-rotation angle q(0 & q & m/4). In our cal-
culations we used rotation angles up to q = 50'.

In order to check the validity of the resonance po-
sitions computed by our complex-rotated Milne
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FIG. 1. Complex-energy resonance poles for the potential
(1) (A = m 1) computed by means of the complex-rotated
Milne method.
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TABLE I. Complex-energy resonance poles E(n) =E& (n) + IEI(n) for the potential (1)
(8' m 1) for odd values of n. Exact numerical results computed by means of the complex-
rotated Milne method are compared with a semiclassical (WKB) approximation.

Ez
Exact

E(
WKB

EI

1

3
5
7
9

11
13
15
17
19
21
23
25
27
29
31

1.4210
2.5846
3.2555
3.8243
4.2500
4.5288
4.6619
4.6441
4.5199
4.1968
3.7601
3.1850
2.4730
1.6252
0.6429

—0.4729

—0.5828 x 10 4

-0.1738
-1.1115
—2.4874
-4.1832
-6.1547
—8.3756

—10.8263
-13.4658
-16.3581
—19.4198
—22.6670
—26.0929
—29.6913
—33.4570
—37.3852

1.4413
2.6067
3.2760
3.8432
4.2674
4.5452
4.6769
4.6640
4.5081
4.2109
3.7727
3.1975
2.4853
1.6374
0.6551

—0.4607

—0.5408 x 10 4

-0.1715
-1.1067
—2.4816
-4.1770
-6.1487
—8.3693

—10.8195
—13.4846
—16.3529
—19.4139
—22.6614
—26.0875
—29.6861
—33.4519
—37.3803

method, we have also carried out approximate WKB
calculations of the complex-energy resonances. This
semiclassical approximation ' is not based on the
complex-rotation method and, as expected, the
results are in good agreement with the values given
by the complex-rotated Milne method. Therefore we
suspect that the higher resonances computed by Ritt-
by et al. ' are incorrect.

Finally, we point out that the effect of narrow and
isolated poles on the scattering phase shift and the

partial cross section is we11 understood, but, particu-
larly in view of the currently increasing interest in
complex-energy resonance states, there is a basic
need in the understanding of the typical behavior of
the full pole string (the "poioiogy") for interatomic
or intermolecular potentials with nonisolated overlap-
ping resonances, as well as the implications on ob-
servable (real energy) effects. Some work along
these lines is in progress and will be published else-
where. "
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