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Disappearance of stable convection between free-slip boundaries
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A new secondary instability has been found for nearly parallel rolls that eliminates all
wavelengths previously thought to be stable for Prandtl numbers less than 0.301 or 0.782,
depending on the circumstances. There is currently no known counterpart to this instability

between rigid boundaries.

Rayleigh-Bénard convection is arguably the most
thoroughly studied example of how turbulence (i.e.,
temporal aperiodicity), can arise through a sequence
of continuous bifurcations.! A number of features of
the convective transition are common to a wide class
of statically stressed nonequilibrium systems. In par-
ticular, as the Rayleigh number R is increased
through the first bifurcation point R., there is an ex-
change of stabilities leading to a time-independent
state of lower spatial symmetry, i.e., convective rolls,
that can assume any wave number ¢ within a band
of order Ve, e= (R —R.)/R. about a critical value
qo-

The precise limits on the band of locally stable
states are set by a variety of secondary instabilities
which either add to the ‘“‘richness’’ of the problem or
constitute an annoying complication depending on
one’s perspective.2™* While careful consideration of
such ‘“‘imperfections’’ as roll curvature® or rigid la-
teral boundaries® can introduce a second rather long-
time scale on which the O (e?) band collapses, there
has been no theoretical reason not to believe such a
band exists in an infinite container for straight rolls.
In this Brief Report we point out a new secondary
instability that follows from the amplitude equations
of Ref. 7 and eliminates all stable states between
free-slip boundaries for sufficiently small Prandtl
numbers P. A plausible but uncontroiled modifica-
tion of our free-slip equations suggests that this insta-
bility might be of interest for rigid boundaries and
P < 0O(1) although in this case some stable states
undoubtedly remain close to onset.

The correct amplitude equations® for free-slip
boundaries are conveniently phrased in terms of a
complex amplitude A4, describing the modulation of
the roll pattern, and the vertical vorticity Q,. In

scaled units for rolls parallel to the y axis,
9,4=4+3,—i8})%4 141’4 B4 , (1a)
(324 (eYeNB2Q, =—gd,[4"(8,—i0)4 +cc] ,

(1b)

where
g=2(1+P)/P?, (10
B,=—09,0, [82+(£Y/EDd =0, (1d)

and we have introduced length scales &5 2= 3m2€¢/8,
¢}=¢,/(V2m). The scale factors applied to the time
and field amplitudes are given in Ref. 7. To avoid an
unphysical lack of uniformity in the limit of a y-
independent perturbation, the full two-dimensional
Laplacian appears in (1b) and (1d) even though the
x variation is of higher order in € (i.e., £}/¢2~ €'/?).
There would be no error made by insisting on a strict
€ expansion provided all variation in the y direction
was on a scale set by £,.

To study the linear stability of parallel rolls we set

A=0-g)expli(gx +¢)1(1+u) ,

and linearize in u, B, and the gradients of ¢. Note
that in our units ¢ =0 corresponds to the first un-
stable mode and g2=1 is the parabolic approximation
to the curve of R, versus wave number. The cross-
roll and Eckhaus instabilities are unchanged by the
inclusion of vertical vorticity and render unstable all
qzz% with the precise value depending on the
Prandtl number.? The zigzag instability eliminates a
portion of the states with ¢ < 0 provided P > 10
(Ref. 7).

The remaining instabilities have eigenmodes that
involve both the x and y wave numbers k,, k,; the
general condition being [with L = k2 + (£%/¢2) k21,

[2(1 —¢?) + k& +2gk) + k! 1Lk + 2k, + k' + 28 (1 — gD kL] — 4k (g + kD g + k2 +g (1—gDKYL2 <0 .
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The skew-varicose instability found in Ref. 7 follows
from the long-wavelength limit of (2), i.e., k4,
k, << min(1,P~2). It destabilizes all ¢ > 0 but
disappears in a finite box as P — . Both the skew-
varicose and zigzag instabilities can be described in
terms of an effective equation for the phase since u
follows ¢ instantaneously.

One further instability that was overlooked in
Ref. 7 occurs only for k, ~ 0 (1), k,~ 0 (lql), and
P small. The time scales for ¥ and ¢ are thus com-
parable. Considering only ¢ =<0, one finds analyti-
cally that ¢ =0 is unstable for g =3 +2+2 or
P <0.782. The corresponding eigenmode has
k2=2+2+2 and k>~ O (&%) but otherwise resem-
bles skew varicose since the induced velocity By
tends to accentuate the bulges in the rolls. The other
points in Fig. 1 have to be found numerically. The
last stable state disappears at P =0.301. In the more
conventional picture of e versus the unscaled wave
number, § =qo+q/&,, and for 0.782 < P < 10, all
§ =< qo within the parabola allowed by the cross-roll
instability are stable. For 0.301 < P < 0.782 a second
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FIG. 1. Stability diagram for free-slip boundaries as a
function of a Prandtl number P and a scaled wave number
q = (G —qg)€,, where § is in physical units, o= 'n-/\/i, and
&, is given below Eq. (1). The cross-hatched regions are el-
iminated by the indicated instabilities; ZZ is zigzag, SV is
skew varicose, E is Eckhaus, and CR is cross roll. The
skew-varicose line is dashed for large P since an infinitely
large container is required as P — oo. The lower boundary is
new to this paper.

parabolic boundary enters the § < g, region (points
within it are unstable), and only values of g between
the limits specified in Fig. 1 are stable. Note, too,
that the wave vector of the most unstable mode lies
well outside the band of stationary states suggesting a
complete breakdown in the array of parallel rolls as is
characteristic of convection in large containers.

It has by now been noted in a variety of ways that
a roll pattern with an O (1) variation in orientation is
only stationary for a nearly unique wave number
which tends to g, at onset.’ Between free-slip boun-
daries such a pattern would be expected to become
time dependent below P =0.782. The analogs of
Egs. (1a)—(1d) have been derived for an approxi-
mately circularly symmetric pattern in polar coordi-
nates and yield the same critical Prandtl number at g
as in Fig. 1. This is reasonable and should generalize
to arbitrary textures that vary on a scale greater than
¢, since the instability in question occurs at a finite
wave number.

To treat rigid boundaries we can modify the vari-
ous scale factors to leave (la) invariant® and then in
a physically plausible but ad hoc fashion replace the
left-hand side of (1b) by —Q, and replace g by

g = el (0.51132+P)

-1
0.(3905 4 0.0083

x 10.699 - =

, (3

where ¢; is an unknown constant of order 1.

The strongest argument in favor of our ansatz is its
ability to qualitatively reproduce the positions of the
skew-varicose and zigzag instabilities computed by
Busse and Clever for P < 0 (1).>* It also makes ap-
parent why free-slip boundary conditions render
nonideal roll patterns time dependent even for
P > 0(1). If the orientation varies by an amount of
order 1 on a scale L then (1b) suggests 8B, ~ O (1)
for free slip and O (L7?) for rigid. A Reynolds
number based on L and B, can thus be large for
free-slip but is unavoidably small for rigid boun-
daries.

When we repeat, for rigid boundaries, the calcula-
tion that leads to the lower boundary in Fig. 1, we
find a new low-P instability for

(1-¢Yg' > —-2q +2(1—¢»)'? 4)

that has no counterpart in the catalog of Clever and
Busse.»* At onset, this new instability occurs at
k= k= infinite so that in physical units Eyz/ ke=2qo.
The most unstable wave number is finite (but large)
just above onset so that the perturbation theory we
are using is consistent.

According to Clever and Busse? for small P,
0.1 = P = 1.0, the stable states are confined to ¢ <0
by skew-varicose and €2 < O (P) by the oscillatory
instability. Equation (4) suggests a further restriction
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to €/2 < O (P?) with a constant that varies by no
more than a factor of 2 for ¢ < 0. It is therefore not
out of the question that this new instability could be
responsible for some of the time dependence seen in
moderate-sized cells at small P (Ref. 10).

Lastly we recall that rotating convection between
rigid boundaries!! is analogous to nonrotating free-slip
convection at low P in that there are no stable states
above R.. The turbulence that results in only weakly

nonlinear and presumably spatially disorganized. Its
dynamics may be amenable to theoretical study.
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