Diffusion in discrete nonlinear dynamical systems

S. Grossmann and H. Fujisaka

Fachbereich Physik, Philipps-Universität, D-3550 Marburg, Federal Republic of Germany (Received 25 February 1982)

Diffusive processes in one-dimensional discrete chaotic systems are considered. Drift and diffusion coefficients are calculated, which show critical behavior including logarithmic corrections. A Kubo formula for the diffusion coefficient in terms of the time-correlation function is given. Nondiffusive states may exist in certain parameter windows showing drift with broken symmetry or strict localization. Period-doubling bifurcations and states of periodic chaos describing chaotic but nondiffusive drift occur.

One-dimensional discrete nonlinear mappings $X_{\tau+1} = F_a(X_{\tau})$ of an interval I into itself may have solutions $\{X_{\tau}(a)\}_{\tau=0}^{\infty}$ which seem to model the dynamics of certain physical systems (for instance, Rayleigh-Bénard cells with small aspect ratio¹ or anharmonic LRC circuits²). As a function of the parameter a there are stationary states, perioddoubling cascades of periodic states,^{3,4} as well as chaotic states in which time correlations decay and spectra show broad-band noise.^{4,5} Varying a one finds an infinity of nested hierarchies, each starting at some $a_0^{(m)}$ via tangent-type bifurcation with an *m*periodic stable state in a certain a interval, followed by the period-doubling cascade $m2^n$, n = 1, 2, ... in adjacent *a* intervals, converging geometrically^{3,4} to an $a_{\infty}^{(m)}$. For $a > a_{\infty}^{(m)}$ there is a corresponding sequence of *discrete* parameters $\tilde{a}_{n}^{(m)}$ at which the trajectories are period- $m 2^n$ cycles with superimposed pure chaos.⁴ The $\tilde{a}_n^{(m)}$ are also the band-merging points of the corresponding hierarchy. $\tilde{a}_0^{(m)}$ is the end of that hierarchy. In the open intervals between these $\tilde{a}_n^{(m)}$ other such hierarchies appear, etc. The "width" $\tilde{a}_0^{(m)} - a_0^{(m)}$ of a hierarchy decreases

The "width" $\tilde{a}_0^{(m)} - a_0^{(m)}$ of a hierarchy decreases rapidly with increasing order *m*. For the parabolic map $F_a(X) = 4aX(1-X)$ the basic hierarchy (see Fig. 10 of Ref. 4) extends from $a_0^{(1)} = 0.25$ to $\tilde{a}_0^{(1)} = 1$, the 3 hierarchy from $\hat{a}_0^{(3)} = 0.958$ (superstable) to $\tilde{a}_0^{(3)} = 0.964$, etc. There is a certain ordering between the different *m* hierarchies,⁶ while each hierarchy itself is governed by scaling parameters δ and α , universally³ connected with the order of the maximum of $F_a(X)$.

What happens if a is increased further, so that some X are mapped outside the basic interval I? That is the concern of this Brief Report for dynamical laws $F_a(X)$, which are periodic repetitions along the diagonal of the map in [0,1] extended to all real X (see Fig. 1).

If the maximum $a(\mu)$ of F is >1 the phase point can hop to adjacent boxes, $N = \pm 1, \pm 2, ...; |\Delta N| \le [a]^7$

Considering the example b the trajectories are ir-

<u>26</u>

1779

regular not only within one box but also irregularly hopping forwards and backwards between the boxes for almost all initial points X_0 . Due to the symmetry F(1-X) = 1 - F(X) there is no net drift; hopping in either direction occurs equally often. In contrast, the map c gives a mean drift with velocity $0 \le v \le [a]$. The ergodic and even mixing character of the map (since |F'| > 1 a.e.) yields a diffusive broadening of the trajectories. The variance increases linearly with t. This will be traced back to the correlation decay by a quantitative treatment of this qualitative description.

But even qualitatively this is not the whole story of deterministic diffusion. Let us consider the map *a*. Its diffusive behavior was described by Geisel and Nierwetberg⁸ at the threshold $a_c(\mu) = 1$ (correspond-

FIG. 1. Unit box of some periodic maps. (a) $F(X) = X + \mu \sin 2\pi X$. (b) Sawtooth map, slope $\pm \mu$. (c) Nonsymmetric sawtooth, slope *a*.

© 1982 The American Physical Society

ing to $\mu_c = 0.732\,644\ldots$). They calculated the diffusion coefficient by adding external noise. This hides the vivid structure of the trajectories if $a(\mu) > 1$, in particular the singular nature of a_c near which very regular motions can be stable.

We describe the trajectories by $X_{\tau} = N_{\tau} + x_{\tau}$. N_{τ} is the box number at time τ , $x_{\tau} \in [0, 1)$ is the position within the box. Each map $F_a(X)$ is equivalent to the coupled dynamical laws

$$N_{\tau+1} = N_{\tau} + \Delta_a(x_{\tau}), \quad x_{\tau+1} = g_a(x_{\tau}) \quad . \tag{1}$$

 $\Delta_a(x_{\tau})$ is an integer number, describing the magnitude of the jump. $g_a(x_{\tau})$ is the fractional part of the phase at $\tau + 1$; $0 \le g_a(x) < 1$. Δ and g are independent of the box number by translational invariance. Note Fig. 2.

The reduced map g(x) determines the character of a trajectory starting from x_0 . ($N_0=0$ by definition.) If g(x) has stable fixed points, say x^* , there is regular drift $v = \Delta(x^*)$. If it has stable periodic orbits, say period 2, there is regular drift $v = [\Delta(x^*) + \Delta(y^*)]/2$, etc. If g(x) is chaotic it depends on the attractor whether there is regular drift again or $\Delta(x_\tau)$ is an integer stochastic variable, leading to irregular hopping with diffusive broadening of the trajectory. We will give examples for both situations.

In the sinusoidal mapping there are precisely five bands b_i , i = 1, ..., 5 containing stable period-2 cycles as indicated in Fig. 2. One finds them by looking carefully at g(x) or by considering the second iterate $g^{(2)}(x)$.

b₁ starts with period 2 via tangent-type bifurcation. $x_{+}^{*} \in I_1, y_{+}^{*} \in I_2$ so $v = \frac{1}{2}$ or $x_{-}^{*} \in I_5, y_{-}^{*} \in I_4$ so $v = -\frac{1}{2}$. There is regular drift, a hopping each second step, but no diffusive broadening. There are two attractors each displaying broken drift symmetry; stochastically both together give zero drift, expected from the symmetry of the dynamical law $F_{\mu}(X)$. Increasing μ leads to a slope-type bifurcation cascade and the corresponding noisy-periodic states. Evidently $g^{(2)}(x)$ near these attractors is conjugate⁴ to the parabola map, so the whole family of nested hierar-

FIG. 2. g(x) for two $a(\mu)$. Stable cycles are indicated. For 1 < a < 2 the unit interval is decomposed into five I_i .

chies governed by δ , α appears and constitutes the band b_1 . All states are nondiffusive and show broken symmetry v = 0.5 or -0.5. The width of the band is $\Delta \mu \approx 0.004$.

 b_2 starts with an interval $1 \le \mu < (1 + \pi^{-2})^{1/2}$ displaying a fixed point in I_2 and another one in I_4 as separate attractors. We have symmetry breaking, v = +1 or -1, respectively. For example, the solution hops forwards from x^* in box N_τ to x^* in box $N_\tau + 1$, etc. x^* bifurcates to a period-2 cycle, etc. The hierarchy band b_2 ends with a purely noisy period-1 state with attractor $(\underline{x} = 0.179076, \overline{x} = 0.369678) \subset I_2$ or $(1 - \overline{x}, 1 - \underline{x}) \subset I_4$. There is deterministic, regular hopping from $N_\tau \rightarrow N_\tau$ $+ 1 \rightarrow N_\tau + 2...$ but superimposed small scale noise with amplitude $\overline{x} - \underline{x} = 0.190602$. The width of the whole hierarchy band b_2 is $\Delta \mu = 0.108230$ or $\Delta a = 0.106986$.

The structure of the hierarchy bands b_3 , b_5 is qualitatively similar to that of b_1 . All three are very narrow. The position of all b_i is summarized in Fig. 3.

The hierarchy band b_4 shows an interesting new feature. It starts (tangent-type bifurcation) with a symmetric period-2 cycle. Since $\Delta(x^*) = 1$, $\Delta(y^*) = -1$, the phase X_{τ} is hopping forwards and backwards between two neighboring boxes. The trajectory is strictly *localized*. There is no diffusion. (This μ regime is the analog of the first stable b_2 interval with two separate period-1 fixed points.) At $\mu = \frac{3}{2}$ by slope-type bifurcation two period-2 cycles emerge, being asymmetric after the bifurcation. These cycles correspond to the two period-2 cycles which in b_2 bifurcated off the two fixed points. The trajectory remains localized. The total width of b_4 is $\Delta \mu = 0.076\,604$ or $\Delta a = 0.076\,173$.

It is clear that from considering $g_{\mu}^{(m)}(x)$ one finds hierarchy bands based on cycles of higher periods *m*. They are expected to be increasingly small with increasing order *m*. For instance, there is a small period-4 band near $\mu = 0.86$, lying between b_1 and b_2 . It is not yet clear how large the measures of the *a* sets are that belong either to hierarchy bands (localized or with $v \neq 0$, broken symmetry) or to diffusive trajectories [v = 0 due to the symmetry of $F_{\mu}(X)$, but nonzero diffusion coefficient]. Adding noise⁸ and averaging over initial values will hide the bands, as it does for maps within an interval.⁹

If a is increased beyond a = 2, similar hierarchy bands show up again and again, being increasingly smaller (roughly $\propto \mu^{-1}$). The drift velocity may get larger, $|v| \leq [a(\mu)]$, localized states may be more extended.

In contrast to the sinusoidal map the sawtooth maps do not have stable periods if |F'(X)| > 1 a.e. To study deterministic diffusion they are particularly suited. The g(x) statistic is ergodic and mixing, certainly at integer a and particular other choices of a. We find the following formulas for the drift and dif-

FIG. 3. The nondiffusive hierarchy bands b_i for 1 < a < 2 containing stable period-2 cycles.

fusion:

$$v = \lim (1/t) \sum_{\tau=0}^{t-1} (X_{\tau+1} - X_{\tau}) = \langle \Delta(x) \rangle \quad . \tag{2}$$

The average $\langle \cdots \rangle$ has to be taken over the stationary distribution $\rho^*(x)$ of the g map, defined by

$$\rho^*(x) = H\rho^* \equiv \int \delta(g(y) - x)\rho^*(y) dy \quad .$$

H is the Frobenius-Perron operator.

The variance is $\langle (X_t - \langle X_t \rangle)^2 \rangle \cong 2Dt$ for not too small t. The diffusion coefficient can be calculated by the formula $(\delta \Delta \equiv \Delta - \langle \Delta \rangle)$

$$2D = \lim \left(\frac{1}{t} \right) \sum_{\tau=0}^{t-1} \sum_{\lambda=0}^{t-1} \left\langle \delta \Delta(x_{\tau}) \delta \Delta(x_{\lambda}) \right\rangle \quad . \tag{3}$$

In particular, if the jump number $\Delta(x)$ is random with zero memory we find

$$2D = \langle [\delta \Delta(x)]^2 \rangle \quad . \tag{4}$$

1781

A Kubo relation relates the transport coefficient D with the correlation function of $\Delta(x)$. Introducing the normalized correlation function and its Laplace transform for discrete processes¹⁰

$$C_{\tau} = \frac{\langle \delta \Delta(x_{\tau}) \delta \Delta(x_{0}) \rangle}{\langle [\delta \Delta(x_{0})]^{2} \rangle}, \quad C_{z} = \sum_{\tau=0}^{\infty} e^{-iz\tau} C_{\tau}$$

one obtains

$$2D = \langle [\delta \Delta(x)]^2 \rangle \Big(2C_{z=0} + i \int_{-\pi - i\eta}^{+\pi - i\eta} C_z \cot(z/2) dz/2\pi \Big)$$

For the map b, due to its symmetry, one has v = 0. If a is an integer, $\rho^*(x) = 1$, we find zero memory, and the calculation of the diffusion coefficient by means of (4) is simple. $D = (a - 1)a(2a - 1)/[3(4a - 1)] \approx a^2/6$.

The asymmetric map c shows many interesting properties of deterministic diffusion very clearly. For integer a again $\rho^*(x) = 1$; we find from (2) and (4) that v = (a-1)/2 and D = (a-1)(a+1)/24. For large a D is $\frac{1}{4}$ of the diffusion coefficient for the symmetric map b. This reflects the reduction of the $\delta\Delta$ scale by 2 in (4).

The onset of diffusion happens at $a_c = 1$. It is $\langle (\delta \Delta)^2 \rangle = \langle \Delta^2 \rangle - \langle \Delta \rangle^2 = \langle \Delta \rangle - \langle \Delta \rangle^2$ since $\Delta = 0$ or 1 if $1 \le a < 2$. Therefore $2D \cong v = \langle \Delta \rangle$.

The diffusion coefficient is given by the length $\delta = (a-1)/a$ of the x interval leading to a jump and the stationary probability to hit it.

$$2D = \delta \times \rho^* (x \in I_{\delta}) \quad . \tag{5}$$

This general formula covers many special cases. For a parabolic map (as, e.g., a) $\delta \propto (a-1)^{1/2}$. If the maximum is of order $|x - x_m|^z$ we get $\delta \propto (a-1)^{1/z}$. For the sawtooth map z = 1, $\delta = (a-1)/a$. The probability density $\rho^*(x \in I_{\delta})$ may tend to a finite constant with $\delta \rightarrow 0$, i.e., $a \rightarrow 1$, as happens for the maps, *a*, *b*. We then recover the result⁸ D = const $\times \rho^*(x_m) (a - a_c)^{1/z}$.

Corrections show up if ρ^* gets singular for $a \rightarrow 1$. This happens for the sawtooth map c.

$$2D = v = (a-1)/\{a[1-\ln(a-1)]\}$$

This is correct to lowest order in a-1. Corrections due to memory of $\Delta(x)$ are still negligable. [The expression is based on an exact calculation of ρ^* (see Refs. 4 and 10) if $-\ln(a-1)/\ln a$ is integer.]

Note added in proof. While this paper was in press we received a manuscript by M. Schell, S. Fraser, and R. Kapral [Phys. Rev. A <u>26</u>, 504 (1982)] in which similar conclusions for the sinusoidal map are reported.

One of us (H.F.) thanks the Alexander von Humboldt Stiftung for a grant to stay and study in Germany.

- ¹J. Maurer and A. Libchaber, J. Phys. <u>41</u>, C3-51 (1980).
- ²P. S. Linsay, Phys. Rev. Lett. <u>47</u>, 1349 (1981); J. Testa, J. Pérez, and C. Jeffries, *ibid.* 48, 714 (1982).
- ³M. J. Feigenbaum, J. Stat. Phys. <u>19</u>, 25 (1978). ⁴S. Grossmann and S. Thomae, Z. Naturforsch. <u>32a</u>, 1353 (1977).
- ⁵S. Thomae and S. Grossmann, J. Stat. Phys. <u>26</u>, 485 (1981).
- ⁶N. Metropolis, M. L. Stein, and P. R. Stein, J. Comb.

- Theor. A 15, 25 (1973).
- ⁷[a] denotes the largest integer $\leq a$.
- ⁸T. Geisel and J. Nierwetberg, Phys. Rev. Lett. <u>48</u>, 7 (1982).
- ⁹G. Mayer-Kress and H. Haken, J. Stat. Phys. <u>26</u>, 149 (1981); J. P. Crutchfield and B. A. Huberman, Phys. Lett. <u>77A</u>, 407 (1980).
- ¹⁰H. Fujisaka and T. Yamada, Z. Naturforsch. <u>33a</u>, 1455 (1978).