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Diffusive processes in one-dimensional discrete chaotic systems are considered. Drift and dif-
fusion coefficients are calculated, which show critical behavior including logarithmic corrections.
A Kubo formula for the diffusion coefficient in terms of the time-correlation function is given.
Nondiffusive states may exist in certain parameter windows showing drift with broken sym-
metry or strict localization. Period-doubling bifurcations and states of periodic chaos describing

chaotic but nondiffusive drift occur.

One-dimensional discrete nonlinear mappings
X,41=F,(X,) of an interval [ into itself may have
solutions {X,(a)}, which seem to model the
dynamics of certain physical systems (for instance,
Rayleigh-Bénard cells with small aspect ratio! or
anharmonic LRC circuits?). As a function of the
parameter a there are stationary states, period-
doubling cascades of periodic states,>* as well as
chaotic states in which time correlations decay and
spectra show broad-band noise.*® Varying a one
finds an infinity of nested hierarchies, each starting at
some a{™ via tangent-type bifurcation with an m-
periodic stable state in a certain a interval, followed
by the period-doubling cascade m2", n=1,2, ... in
adjacent a intervals, converging geometrically>* to an
al™. For a > al™ there is a corresponding se-
quence of discrete parameters @, at which the tra-
jectories are period-m 2" cycles with superimposed
pure chaos.* The &,,("') are also the band-merging
points of the corresponding hierarchy. ao™ is the
end of that hierarchy. In the open intervals between

~ (m) . .
these @, other such hierarchies appear, etc.

The “width” @™ —a{™ of a hierarchy decreases
rapidly with increasing order m. For the parabolic
map F,(X) =4aX (1 — X) the basic hierarchy (see
Fig. 10 of Ref. 4) extends from a¢{" =0.25 to
a{P =1, the 3 hierarchy from 44> =0.958 (super-
stable) to 553) =0.964, etc. There is a certain order-
ing between the different m hierarchies,® while each
hierarchy itself is governed by scaling parameters &
and a, universally’ connected with the order of the
maximum of F,(X).

What happens if a is increased further, so that
some X are mapped outside the basic interval / ?
That is the concern of this Brief Report for dynamical
laws F,(X), which are periodic repetitions along the
diagonal of the map in [0,1] extended to all real X

(see Fig. 1).

If the maximum a (u) of Fis >1 the phase point
can hop to adjacent boxes, N =+1, 2, ...; |AN|
<[al’

Considering the example b the trajectories are ir-
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regular not only within one box but also irregularly
hopping forwards and backwards between the boxes
for almost all initial points X,. Due to the symmetry
F(1—X)=1-F(X) there is no net drift; hopping in
either direction occurs equally often. In contrast, the
map c gives a mean drift with velocity 0 < v < [a].
The ergodic and even mixing character of the map
(since |F’'| > 1 a.e.) yields a diffusive broadening of
the trajectories. The variance increases linearly with
t. This will be traced back to the correlation decay by
a quantitative treatment of this qualitative description.
But even qualitatively this is not the whole story of
deterministic diffusion. Let us consider the map a.
Its diffusive behavior was described by Geisel and
Nierwetberg? at the threshold a.(u) =1 (correspond-

FIG. 1. Unit box of some periodic maps. (a) F(X)
=X +usin2wX. (b) Sawtooth map, slope tu. (c) Nonsym-
metric sawtooth, slope a.
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ing to u.=0.732644...). They calculated the dif-
fusion coefficient by adding external noise. This
hides the vivid structure of the trajectories if

a (u) > 1, in particular the singular nature of a. near
which very regular motions can be stable.

We describe the trajectories by X, =N,+x,. N, is
the box number at time 7, x, € [0, 1) is the position
within the box. Each map F,(X) is equivalent to the
coupled dynamical laws

N7+1=N1+Aa(x1)r x-r+1=ga(x1) . (1)

Ag(x,) is an integer number, describing the magni-
tude of the jump. g,(x,) is the fractional part of the
phase at 7+1; 0=<g,(x) < 1. A and g are indepen-
dent of the box number by translational invariance.
Note Fig. 2.

The reduced map g (x) determines the character of
a trajectory starting from x,. (No=0 by definition.)
If g (x) has stable fixed points, say x*, there is
regular drift v=A(x*). If it has stable periodic
orbits, say period 2, there is regular drift
v=[A(x*)+A(*)]/2, etc. If g(x) is chaotic it
depends on the attractor whether there is regular drift
again or A(x,) is an integer stochastic variable, lead-
ing to irregular hopping with diffusive broadening of
the trajectory. We will give examples for both situa-
tions.

In the sinusoidal mapping there are precisely five
bands b;, i=1, . ..,5 containing stable period-2 cy-
cles as indicated in Fig. 2. One finds them by looking
carefully at g (x) or by considering the second iterate
g(2)( x)'

b, starts with period 2 via tangent-type bifurcation.
xi €l,y}€l;s0 v=% orx*els yX €l so
v= ——;. There is regular drift, a hopping each

second step, but no diffusive broadening. There are
two attractors each displaying broken drift symmetry;
stochastically both together give zero drift, expected
from the symmetry of the dynamical law F,(X). In-
creasing u leads to a slope-type bifurcation cascade
and the corresponding noisy-periodic states. Evident-
ly £ @(x) near these attractors is conjugate? to the
parabola map, so the whole family of nested hierar-
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FIG. 2. g(x) for two a (u). Stable cycles are indicated.
For 1 < g < 2 the unit interval is decomposed into five / -

chies governed by 8, a appears and constitutes the
band b,. All states are nondiffusive and show bro-
ken symmetry v=0.5 or —0.5. The width of the
band is Au = 0.004.

b, starts with an interval 1 <y < (1 +772)1/2
displaying a fixed point in /, and another one in 14 as
separate attractors. We have symmetry breaking,
v=+1 or —1, respectively. For example, the solu-
tion hops forwards from x* in box N, to x* in box
N.+1, etc. x* bifurcates to a period-2 cycle, etc.
The hierarchy band b, ends with a purely noisy
period-1 state with attractor (x =0.179076,
x=0.369678) C I, or (1-x,1—x) C I, Thereis
deterministic, regular hopping from N,— N,
+1—N,+2... but superimposed small scale noise
with amplitude X —x =0.190602. The width of the
whole hierarchy band b, is Au =0.108 230 or
Aa =0.106986.

The structure of the hierarchy bands b3,b5 is quali-
tatively similar to that of b,. All three are very nar-
row. The position of all b; is summarized in Fig. 3.

The hierarchy band b4 shows an interesting new
feature. It starts (tangent-type bifurcation) with a
symmetric period-2 cycle. Since A(x*) =1,

A(y*) =—1, the phase X, is hopping forwards and
backwards between two neighboring boxes. The tra-
jectory is strictly localized. There is no diffusion.
(This u regime is the analog of the first stable b, in-
terval with two separate period-1 fixed points.) At
m =—;— by slope-type bifurcation two period-2 cycles
emerge, being asymmetric after the bifurcation.
These cycles correspond to the two period-2 cycles
which in b, bifurcated off the two fixed points. The
trajectory remains localized. The total width of b4 is
Ap=0.076 604 or Aa =0.076173.

It is clear that from considering g™ (x) one finds
hierarchy bands based on cycles of higher periods m.
They are expected to be increasingly small with in-
creasing order m. For instance, there is a small
period-4 band near u=0.86, lying between b, and b,.
It is not yet clear how large the measures of the a
sets are that belong either to hierarchy bands (local-
ized or with v 5= 0, broken symmetry) or to diffusive
trajectories [v =0 due to the symmetry of F,(X), but
nonzero diffusion coefficient]. Adding noise® and
averaging over initial values will hide the bands, as it
does for maps within an interval.’

If a is increased beyond a =2, similar hierarchy
bands show up again and again, being increasingly
smaller (roughly « u™!). The drift velocity may get
larger, |v| =< [a ()], localized states may be more
extended.

In contrast to the sinusoidal map the sawtooth
maps do not have stable periods if |F'(X)| > 1 a.e.
To study deterministic diffusion they are particularly
suited. The g (x) statistic is ergodic and mixing, cer-
tainly at integer a and particular other choices of a.
We find the following formulas for the drift and dif-



26 BRIEF REPORTS 1781

m
)
1754 ——————— 1742726 a=2,onset
of lANI=2
b 1677640 end of bg
5 vi=5 1677084 superst. period 2

4
5288 onset of periol

v=0

bs 1.274858 end of by
125 =5 1.273179 superst. period 2

1.108230 end of bz
b 1.061443 superst. period 2
2 1.049438 onset of period 2
1.012 286 superst. period |

10075 1.00 onaet of fixed point

by |fe—— 0.78607
vi=5 0.782151

075 )
0.732644

end of by
superst. period 2

onset of diffusion,
a=1,|AN|=1

FIG. 3. The nondiffusive hierarchy bands b; for
1 < a < 2 containing stable period-2 cycles.

fusion:
-1
v=1im(1/0) 3 (X,s1—X,)=(A(X)) . )
T=0
The average ( - - - ) has to be taken over the station-

ary distribution p*(x) of the g map, defined by
p*(x)=Hp*= fs(g ) —=x)p"(May .

H is the Frobenius-Perron operator.

The variance is ((X;— (X,))?) = 2D« for not too
small «. The diffusion coefficient can be calculated by
the formula (A=A —(A))

=1 t—1
2D =1im(1/1) 2 E (8A(x,)8A(x,)) . 3)
7=0 X=0

In particular, if the jump number A(x) is random
with zero memory we find

2D = ([8A(x)]?) . @

1.541891 end of b,
1.516792 onset of period &

150 1.50 onset of period 2,asymm.
”ZZ; 184 superst. pen,og%,symm.

A Kubo relation relates the transport coefficient D
with the correlation function of A(x). Introducing
the normalized correlation function and its Laplace
transform for discrete processes!®

_OAGBGD) %
T ([8A(x9)1% C ‘r-EOe o

one obtains
+mw—in
2D = (188 ) 2Cemo+i [ C,cot(z/2)dz 2

For the map b, due to its symmetry, one has v=0.
If a is an integer, p*(x) =1, we find zero memory,
and the calculation of the diffusion coefficient by
means of (4) is simple. D=(a—1)a(2a —-1)/
[3(4a —1)]1 =a?/6.

The asymmetric map ¢ shows many interesting
properties of deterministic diffusion very clearly. For
integer a again p*(x) = 1; we find from (2) and (4)
that v=(a —1)/2 and D =(a —1)(a +1)/24. For
large a D is —; of the diffusion coefficient for the
symmetric map b. This reflects the reduction of the
8A scale by 2 in (4).

The onset of diffusion happens at a,=1. It is
((3A)%) = (A?) — (A)Y?=(A) — (A)?since A=0 or 1
if 1<a < 2. Therefore 2D =v=(A).

The diffusion coefficient is given by the length
8= (a —1)/a of the x interval leading to a jump and
the stationary probability to hit it.

2D =3 xp*(x €1;) . )

This general formula covers many special cases. For
a parabolic map (as, e.g., a) 8« (a —1)Y2 If the
maximum is of order |x —x,|? we get § < (@ —1)2
For the sawtooth map z=1, 8=(a —1)/a. The
probability density p*(x € I5) may tend to a finite
constant with § — 0, i.e., a — 1, as happens for the
maps, a,b. We then recover the result® D = const
x p*(xp) (a —a)'2

Corrections show up if p* gets singular for a — 1.
This happens for the sawtooth map c.

2D =v=(a-1)/lall=In(a =1)1} .

This is correct to lowest order in ¢ —1. Corrections
due to memory of A(x) are still negligable. [The ex-
pression is based on an exact calculation of p* (see
Refs. 4 and 10) if —In(a — 1)/Ina is integer.]

Note added in proof. While this paper was in press
we received a manuscript by M. Schell, S. Fraser, and
R. Kapral [Phys. Rev. A 26, 504 (1982)] in which
similar conclusions for the sinusoidal map are reported.
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