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A Kubo relation relates the transport coefficient D
with the correlation function of A(x). Introducing
the normalized correlation function and its Laplace
transform for discrete processes'
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one obtains

+o' t 'g

2D= ([8b,(x)]') 2C, o+i J C, cot(z/2)dz/2zr

For the map b, due to its symmetry, one has v = 0.
If a is an integer, p'(x) =1, we find zero memory,
and the calculation of the diffusion coefficient by
means of (4) is simple. D = (a —1)a (2a —1)/
[3(4a —1)] = a 2/6.

The asymmetric map c shows many interesting
properties of deterministic diffusion very clearly. For
integer a again p'(x) = I; we find from (2) and (4)
that u = (a —1)/2 and D = (a —1)(a +1)/24. For
large a D is —, of the diffusion coefficient for the

symmetric map b. This reflects the reduction of the
86 scale by 2 in (4).

The onset of diffusion happens at a, = 1. It is
((53,) 2) = (Az) —(6)2= (5) —(6) ' since b =0 or I
if 1 ~ a ( 2. Therefore 2D =—o = (&) .

The diffusion coefficient is given by the length
5 = (a —1)/a of the x interval leading to a jump and
the stationary probability to hit it.

b1
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0.78215)

0.732644

end of b~
superst. period 2

onset of diffusion,
a=1, laNl =1

FIG. 3. The nondiffusive hierarchy bands b; for
1 & a & 2 containing stable period-2 cycles.

fusion:

2D = lim (1/t) X X (56 (x,)85 (x„))

~=iim(I/t) X(X, , -X,) =(&(x)) .
0

The average ( ) has to be taken over the station-
ary distribution p'(x) of the g map, defined by

p'(x) = H p' = JI 5(g (y) —x)p'—(y) dy .

0 is the Frobenius-Perron operator.
The variance is ((X,—(X,))') =2Dt for not too

small t. The diffusion coefficient can be calculated by
the formula (85 —= 5 —(b ) )

2D =5x p'(x e I,) .

This general formula covers many special cases. For
a parabolic map (as, e.g. , a) 5~ (a —I)'tz. If the
maximum is of order ~x —x~ ~' we get 8 ~ (a —1) 'i*.

For the sawtooth map z =1, 8= (a —1)/a. The
probability density p'(x C I&) may tend to a finite
constant with 5 0, i.e., a 1, as happens for the
maps, a, b. %e then recover the result8 D = const
x p'(x ) (a —a, )'i*.

Corrections show up if p' gets singular for a l.
This happens for the sawtooth map c.

2D = u = (a —I)/[a [1—ln(a —1)]}

This is correct to lowest order in a —1. Corrections
due to memory of A(x) are still negligable. [The ex-
pression is based on an exact calculation of p' (see
Refs. 4 and 10) if —ln(a —1)/lna is integer. ]

Note added in proof While this pape. r was in press
we received a manuscript by M. Schell, S. Fraser, and
R. Kapral [Phys. Rev. A 26, 504 (1982)] in which
similar conclusions for the sinusoidal map are reported.

(4)

In particular, if the jump number A(x) is random
with zero memory we find

2D = ([5a(x)]') .
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