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Energy eigenvalues for Yukawa potentials

A. E. S. Green

(Received 2 April 1982)

A simple formula is given for the energy levels of a particle bound by a Yukawa potential

which is accurate at the 1'/0 level over the entire range of Z for a large range of n and l.

The bound states of the Yukawa, Debye-Huckel,
or screened Coulomb potential have been the subject
of many studies' ' in atomic, nuclear, particle,
solid-state, and plasma physics. Recently motivated
by an electron-transport problem, Green et al. " (to
be referred to as GRSSG) developed an approximate
analytic representation for the phase shifts for elastic
scattering by a Yukawa potential. This potential may
be cast in the form

Y= ——-- e'2Z—
r

by using the screening distance d as the unit of length
and t'/2p, d' as the corresponding unit of energy.

The GRSSG study provided an accurate formula

ergy (E„t=0). These are given to within 0.4%
(Zt, —=0.839908 is exact2) by

Z„I= (JZ~ + [(n —l —1)/Sl] j' . (4)

Thus Eq. (4) can serve as a precise boundary condi-
tion in formulas relating energy eigenvalues to Z.

Our approach to the representation of nonvanish-
ing eigenvalues largely rests upon an observation that
the arrays of E„I given in Tables I and II of GRH
take on a simpler behavior when represented by the
combination variable

Y„,= Z(1+n'E„,) .

This is illustrated in Fig. 2 where the dots represent

v = (JZ —JZi)SI+ I (2) 10

for the number of bound states of a given angular
momentum, I, sustainable by a given Z, where

ZI=Zp(1+ul+PI ), S(=Sp(1+pl +SI ), (3)

and Zp=0. 839908, a=2.7359, P=1.6242, Sp
=1.1335, y =-0.019102, and 5 = —0.001 684.

Figure 1 illustrates this relationship. The points
represent 45 data points given in Table III of Rogers,
Graboske, and Harwood" (to be referred to as
RGH). Equation (2) is represented by solid straight
lines. The dashed lines represent the loci of points
with the same total quantum numbers n = v+ 1.

Equations (2) and (3) may also be applied to other
short-range potentials by the use of appropriate con-
stants.

In GRSSG, Eq. (2) was incorporated into analytic
formulas for the phase shift to insure satisfaction of
Levinson's theorem. For our present study of bound
states we may invert Eq. (2) to solve for the critical
values Z„& which just lead to bound states at zero en-
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FIG. 1. Number of bound states vs critical X=JZ
values for various angular momentum states. The solid
curves represent iso-l lines. The dashed curves represent
iso-n lines (adapted from Ref. 15).
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(8) to apply to Eq. (9) by determining the depen-
dence of the parameters in Z„i, Z,„, and Bupon H.
Generalizations for neutrals and positive ions should
also be straightforward.

When 2Z/r in Eq. (9) is replaced by 2Z (i.e., r is
replaced by I or the scale length) Eq. (9) encom-
passes the Einstein-Bose function (H ~oo), the
Maxwell-Boltzmann function (H = I) and the
Fermi-Dirac function (H « I). In the latter case
the potential has the flat bottom and diffuse boun-
dary characteristics of nuclear potentials. The resem-
blance of Fig. 2 to Figs. 3—7 of Green and Lee"
suggests that Eq. (4) can serve a critical role in the
development of eigenvalue formulas for a variety of

nuclear potentials including the Woods-Saxon' po-
tential. Such formulas and Eq. (8) should greatly fa-
cilitate the process of inferring approximate potentials
from experimental binding energies.
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