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The anisotropic conductivity of a semi-infinite free-electron solid-state plasma having a
sharp boundary is calculated assuming specular electron surface scattering. Explicit ex-

pressions for the conductivity-tensor components are presented for a fully degenerate

plasma with special emphasis on the near-local regime. With the assumption that the
monochromatic electromagnetic plane wave penetrates the surface at an oblique angle the
reflected and transmitted fields are determined. By combining Maxwell's equations and
the nonlinear Boltzmann equation the energy transport in the plasma is studied. With
spatial dispersion effects taken into account, the cycle-averaged Poynting vectors of the
plasma, originating in the induced dc mass transport of the conduction electrons, and of
the electromagnetic field are determined. A particular investigation is devoted to the case
of TE-mode propagation in the near-local regime, with emphasis on (i) a discussion of the
angular deviation of the plasma Poynting vector from the electromagnetic Poynting vec-

tor and (ii) a calculation of the ratio between the magnitudes of the energy flows. The
"problem" of the violation of the principle of energy conservation at a sharp boundary is
considered.

I. INTRODUCTION

The main purposes of the present study are
three. One object is to calculate the electromagnet-
ic field inside a spatially dispersive solid-state plas-
ma of semi-infinite extension, in the case where a
monochromatic, plane electromagnetic wave is in-

cident on the surface at an oblique angle. This
part of the investigation has been undertaken to
give a more general and sound basis for kinemat-
ic' and dynamic ' nonthermal light-scattering
studies in the cases where the scattering from the
plasma bunching or the screening of the scattering
from the lattice waves are of importance. The
second aim is to investigate the stationary energy
flow which is associated with the dc displacement
of the free-carrier distribution, and which is in-
duced by the penetrating electromagnetic wave.
This part of the work is complementary to studies
of energy flow associated with acoustic and opti-
cal ' lattice waves coupled to transverse or longi-
tudinal electromagnetic fields in spatially disper-
sive absorbing media. The third purpose is to
point out the crucial importance of the surface for
nonlocal plasma-optic problems.

In Sec. II a rigorous calculation is given of the
conductivity tensor o(k, co) in the empty-lattice (or
spherical Fermi surface) approximation assuming
the conduction electrons to be specular scattered at
the sharp surface of the semi-infinite solid-state
plasma. The conduction-electron bunching is
described by the Boltzmann transport equation and
the arguments are generalizations of the "mirror-
image" considerations given originally by Reuter
and Sondheimer for normal incidence. Explicit
expressions for the components of the conductivity
tensor are presented for a fully degenerate plasma
in Sec. III, where a particular calculation of the
conductivity tensor in what we shall call the near-
local regime, i.e., the region where spatial disper-
sion effects are included in lowest (second) order, is
also given. In Sec. IV the general expressions for
the reflected and transmitted electromagnetic fields
are derived, assuming the incoming TE or TM
mode to penetrate the surface at an oblique angle.
Simple, approximate formulas for oblique in-
cidence have been presented recently by Hutchison
and Hansen in the case of free-electron metal
films.

In Sec. V the cycle-averaged Poynting vectors of
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the plasma and the electromagnetic field are exam-
ined. The cycle-averaged Poynting vector of the
plasma, originating in an induced dc electronic
mass transport, is calculated on the basis of the
nonlinear Boltzmann equation. Rigorous results
are given for oblique incidence. Steady-state ener-

gy Aow in absorbing dielectric as well as in con-
ducting media, in which the effcx:t of spatial
dispersion is neglected, has been studied in consid-
erable detail. ' " Previously, in spatially dispersive
media only the energy flows carried by ultrasonic
waves and transverse optical lattice waves gen-
erated by transverse radio-frequency and optical
electromagnetic waves, and the energy flow carried

by free carriers coupled to longitudinal, nondisper-
sive lattice vibrations, have been investigated. In
all the above studies normal incidence has been as-
sumed.

In Sec. VI we emphasize an investigation of
TE-mode propagation in a fully degenerate plasma
in the near-local optical regime. The explicit mode
expansion of the electromagnetic field and the plas-
ma bunching is discussed. The question of the
determination of the appropriate mode expansion is
analogous to the problem of additional boundary
conditions (the so-called ABC} treated in different
contexts. ' ' The wave vectors of the modes are
determined by the dispersion relation for TE-mode
propagation in an unbounded medium in the case
of specular electron surface scattering. In contrast
to the studies in the domain of exciton polaritons,
where two (transverse) allowed modes are propagat-
ing in the spatially dispersive crystal, ' a mul-
timode field pattern are, in general, obtained far
from the local limit in the plasma-optic case. The
wave-vector components parallel to the surface are
equal, whereas the perpendicular components are
different. In the near-local regime only a single
transmitted plane-wave mode is excited. The
Poynting vectors of the plasma and the elec-
tromagnetic field, as well as the ratio between
these, are determined on explicit form. It is shown
that, in general, the directions of the two Poynting
vectors are different. The angular deviation is cal-
culated and discussed. Finally, the "problem" of
energy conservation at a sharp boundary is con-
sidered, and the question of second harmonic gen-
eration of light is touched in this connection.

II. THE CONDUCTIUITY TENSOR
APPROPRIATE TO SPECULAR ELECTRON

SURFACE SCATTERING

To determine, in the empty-lattice approxima-
tion, the electromagnetic field inside a solid-state

plasma one has to solve the driven wave equation

a2
p2

C2 Qf 2 E(r, t)

g exp ~ i
Cp

Z

be incident on the surface at an oblique angle. The
component of the real wave vector parallel to the
surface has been denoted by kll. By assuming in-

finitesimal translational symmetry of the solid in
directions parallel to the crystal boundary, the elec-
tric fields of the reflected (r) and transmitted (t)
electromagnetic waves take the forms

E (r' }=E (kll co}exp[i(k

N
)& exp —i

Cp

'2 1/2

Z ' j

and

Eg ( r, t}=E,(k ll, co,z)exp[i( k ll. r —cot)] . (4)

By writing the free-carrier current density on the
analogous form

J(r, t) = J(kll, co,z)exp[i(kll. r —cot)],

the Fourier transform of the driven wave equation
is reduced to

2
N

. 1 i + — —k
ll

—OO E,(kll, co,z)
dZ Cp

I

ipoco J(kl—l,co,z}, z &0

where the operator 0 is given by

-+
O=ik()+ ez

dZ

a J(r, t)=—Pp at

where E(r, t) is the electric field, J (r, t) is the
free-carrier current density, co is the vacuum velo-

city of light, po is the vacuum permeability, V is
the gradient operator, and 1 is the unit tensor of
dimension 3)(3. Let us assume that the solid-state
plasma occupy the half-space z & 0, the rest of
space being vacuum, and let a harmonic plane elec-
tromagnetic wave of angular frequency co, i.e.,

E;(r,t) = E (kll'co}exp[i
2 1/2
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e, being a unit vector in the z direction.
Further progress in solving Eq. (6) is obtained by

deriving a constitutive relation between the free-
carrier current density and the self-consistent elec-
tric field. Restricting our treatment to electromag-
netic wavelengths that are long in comparison to
the characteristic electron deBroglie wavelength the
constitutive relation is determined by means of the
Boltzmann transport equation, which under the as-

sumptions that a relaxation-time approximation
holds, and that terms involving the magnetic field
are negligible, takes the form

"c)f Bf e - Bf
Bt Br I* Bv

where —e, m*, and v are the charge, the effective
mass, and the momentum relaxation time of the
free carriers, respectively. Note that the empty-
lattice assumption is modified slightly by introduc-
ing a scalar effective mass of the conduction elec-
trons. The electronic relaxation time can depend
on the free-carrier velocity, i.e., r=r(v ) By .mak-

ing the following ansatz for the distribution func-
tion of the conduction electrons:

f('v =fo v +f~ kll co z v)exp[i(k

where fo(v) is the thermal equilibrium distribution function, the linearized ac part of the Fourier-
transformed Boltzmann equation takes the form

Bfi (k ii, co,z, v ) e - ~fo(v)
v, +[r '(v)+i(k(( v co)]f)(k—(),co,z, v)=, E,(k((,coz), z )0

Bz

U, being given by U, = v e, .
Let us assume that the electrons experience specular scattering at the surface (z=0). Redefining

E(z) =E(—z} for z& 0, the distribution function satisfying the boundary condition f~(k~~, co,z~ ao, v }=0
is given by

(10)

e ~fo(v)
fl(k[[ co z v)= ' Et(k[[ co z }exp

Pl Uz Q V

I

[r '+i(k() v . co—)] dz', u, &0
Uz

~fo( v) z, z' —z
f](k~~, co vz)= . E(k~~, coz')exp [r '+i(k~~ v —co)] dz', u, &0 .

m*U, Qv 00 Uz

Inserting the above expression for the free-carrier distribution function into the equation for the Fourier
transform of the current density

J(k~~, co,z)= —e f f f vf&(k~~, co,z, v)d v,

the nonlocal constitutive relation between J and E, can be written

J(k((,co,z) =f cr(k)~, co,z —z') E, (k)~, co,z')dz', z )0

with the ij-component of the response function cr(k~~, co,z —z') (or conductivity-tensor kernel) is given by

[cr(k(~,co,z z')] 1 =[—cr„(k((,co,
~

z —z'
~
)]1[M(z z')] 1, —

where

3e' m' vv ufo(ic')
~„(k~~,~, (z —z ()=—, f f f

(14)

and

)(exp [r +i(k~~. v —co)] d u,3

Uz



MATERIAL AND ELECTROMAGNETIC ENERGY FLOWS. . . 1745

115
M(z —z'}= 1 1 5

551
with

5(z —z') =8(z —z') —8(z' —z),
8 being the Heaviside unit step function. In Eq. (16) we have introduced the Fermi-Dirac distribution func-
tion

fo(l') = exp +1g —p
kgT

p being the chemical potential, and w'= —,m "v the free-carrier kinetic energy. To derive Eq. (16) use has

been made of the relation

af, ( v) 2(m*) Bfo( g')

Bv h

It should be noted that the integration in Eq. (16) extends over half the velocity space, i.e., U, & 0.
The explicit expression for the Fourier integral transform of real kz,

o(k((,kq, co)= f cr(k((, co,z)exp( ikqz)dz, —

(20)

(21)

is obtained via Eq. (15). Thus,

cr (k[[ kJ co) =f o „(k~~,co,z)exp( ikjz)d—z
'3

e m* ufo(~}fff-„„. 1

(v)+i[(kll+ k~).v —co]

and

[ cr(k~~, k&,co)]cj= f [ o(k((,co,z)]jexp( ikzz)d—z
'3

e m* ufo(&}fff-, „,

+ ~ ~ d V
1 3

'(v)+i[(k~~ —kq) v —co]

1

'(v)+i[(k~~+kq} v —co]

(22)

1

'( v )+i [(k
~~

—k~). v —co]
V

(i,j)=(1,3);(3,1);(2,3);(3,2). (23)

It follows by inspection of Eqs. (15), (22), and (23) that cr(k~~, kz, co) can be written in the compact form

5 o(@')

—e m ce Qg
cr(k, co) =

4~' " 1+i(k v co)r(v)— (24)

where k =k
~ ~

+ k j, kz ——kz e, .
It should be noticed that the integration extends over the entire velocity space. The result in Eq. (24}

which has been obtained by a direct calculation could have been anticipated, since specular scattering of the
electrons at the surface makes the semi-infinite solid-state plasma almost equivalent to an infinite extended
plasma, for which an expression identical to that in Eq. (24) can easily be derived.
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By rotating the coordinate system around the z axis until kI
I

lies in the xz plane, and by assuming that the
electronic relaxation time depends on the energy of the free carrier only, i.e., r=r(Ã), it follows readily
from Eq. (24) that the conductivity tensor has the form

o (k~~, k„~)
-(k~~,k„)= 0

o (k~~, k~, co)

aye(k(~, k~, co)

0

„,(kii, k, )

0

o (k~~, k~, co)

(25)

and is symmetric, i.e., o (k~~, kz, co)=cr (k~~, kz, co). It should be noticed that the presence of the surface
makes the conductivity anisotropic in the nonlocal regime.

III. ANISOTROPIC CONDUCTIVITY TENSOR OF A FULLY DEGENERATE SOLID-STATE PLASMA

In the limit where fully degenerate Fermi-Dirac statistics can be applied, i.e.,

af, (g ) = —5(5' —8'~) =—, 5(u —u~),
Ptl VF

(26)

where 5 is the Dirac delta function, and 8'F and uF are the Fermi energy and Fermi velocity of the conduc-
tion electrons, respectively, the tensor components of the conductivity given in Eqs. (24) and (25) can be ex-
pressed in terms of a single one-dimensional integral. Thus, by decomposing the wave vector into a com-
ponent (k~~ ) parallel to the surface and a component (kj ) perpendicular to the surface

k=klI' +kI"
one obtains, as shown in Appendix A, if the free-carrier relaxation time is assumed to be energy indepen-
dent,

(27)

3 &IIo (k~~, kg, co) =
1 —l Q)V

(c2x+ —, ) dx
1— —

& (c,x'+c,x+c,)'" (28)

—2

g (ki i,ki, co) =

(coax

+cpx +c3 ) dx —I
3~+Ii 1/2

1 lNV —1
(29)

3oo & x dx
o (k,ki, co) =

4( I —&co&) —' (C&x +c2x +c3)'
(3O)

and
1

3jg~ 1 X(C2X+
&

)dX
o (k,kj, co)=

2(l E'cor) ——' (c)x~+C2X +C3)'~'

where we have introduced the abbreviations The dimensionless complex quantitites zII and zI
which are given by

2 2c]=
4 (zii +zJ )

1

C2= 2 lzl ~ (33)

kIIuF~
z

II ~

1 —l CO'7
(35)

c3 ———,(1+z~() . (34)
kIUFV

ZI
1 —l co%

(36)
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are, as we shall see, very convenient as parameters
in characterizing the qualitative behavior of the
conductivity tensor. The dc free-carrier conduc-
tivity has been denoted by op.

A. Perpendicular incidence

The integrals in Eqs. (28)—(31) can be solved ex-

plicitly, in the case where the electromagnetic wave
is traveling perpendicular to the surface. Thus, for

kll 0 (or equivalently, zll 0) one gets

2 2

(c)x +c2x +c3 ) =c2x + —,+ . (37)2 ]/2 1 1 —x
1+2c2x 4

By substituting this expression into Eqs. (28) —(31),
performing the integrations and taking the limit

zll ~0 one obtains the longitudinal response func-
tion

30p
o~(kj, co) = 3 (zg —arctanzg), (38)

(1 icos)zq—

and the transverse response function

0'~ ( kg, cij ) =0'yy (k g, co )

3~p

2( 1 i c—or)z ~

X [(1+zq )arctanzq —zq], (39)

in agreement with the results obtained by Lind-
hard. ' No mixing of longitudinal and transverse
modes occur at perpendicular incidence since

o (kz, co) =0,

cr~(co) =0'yy(co) =o' (co) =Op/(I icos)—.

as expected.
In the local limit (z~~0) we retain the isotropic

result

B. Long-wavelength region

(41)

and then performing the integrations in Eqs. (28)—(31). Thus, after somewhat tedious, but straightforward
calculations one obtains to second order in z~, zll, and (z~zll)' the result

2 2 2
1 ——,(3zll+zg) 0

5 zllz~

Of special importance for plasma-optical experiments at oblique incidence is the behavior of the conduc-
tivity tensor at long wavelengths (

~
zj ~, ~ zll ~

&& 1). In this case explicit expressions can be derived by mak-
ing a Taylor expansion on the right-hand side of the equation

(c~x +c2x+c3)'~ = —,[ I+2izqx +zll —(zq+z
ll

)x ]'

~(kl, ,k„~)= 1 ——,(z
ll

+zq )
2 2

1 ——,(zll+3z, )
2 2

Op

1 —lNS
(42)

In the limit of local optics the amsotropies of the conductivity stemming from the presence of the boundary
and from the distinction between longitudinal and transverse modes disappear.

IV. REFLECTED AND TRANSMITTED
ELECTROMAGNETIC FIELDS AT OBLIQUE INCIDENCE

To determine the transmitted and the reflected electromagnetic fields, it follows by combining Eqs. (6)
and (14) that one has to solve the integro-differential equation

d d' 00.E~(k
I I

'~'z 'P pro ~ k
II
'~'z z E~ k

II
'm, z')dz',

dz 00
(43)

where the linear tensorial operator W is given by

d d ~ d N
kII co, , 2

=1
2 +

dz dz p
L

2—kII —OO.
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Now, Eq. (43) implies that

00

kII, co, d, 2
.E,(kII, co,z)exp( &k—iz)dz

Z dZ

00

ip—oco exp( iki—z) o(kII, co,z —z') E,(kII,co,z')dz'dz . (45)

By integrating by parts the left-hand side of this equation once and twice, and by inverting the order of in-

tegration on the right-hand side one obtains in matrix notation the following set of inhomogeneous algebraic
equations for the Fourier amplitudes of the electric field:

' BE,„(k
I I,co,z +0+—)

az

Cp

2 BE,y(kII, co,z +0+-)—k 1+ipococr(kII, ki, co)+ kk .E,(kII,ki, co)=2
BZ

(46)

Thus, it is realized that the total electric field in the solid-state plasma is given by

00

E,(r, &)= exp[i(kII r —co&)] E,(kII,ki, co)exp(ikiz)dki,2' 00

where

BE,„(kII,co,z~0+ )

(47)

E,(kII, ki, co) =2.
Cp

BE,y(kII, co,z~O+ )—k 1+kk+ipoco™cr(k
BZ

(48)

The unknown field derivatives BE,„(kII,co,z 0+)/Bz and BE,~(kII,co,z~O+)/Bz, and the Fourier ampli-
tude of the reflected field E„(kII,co) can be determined in terms of the amplitude of the incident electric field
via the usual boundary conditions for the electromagnetic field at a sharp, nonmoving surface. By decom-

posing the incident and the reflected fields into their TE and TM components, continuity of the tangential
component of the electric field implies the following relations among the Fourier amplitudes:

and

k
II

~~ +E~ k
II

~~ O' I2'

2 1/2

[Ec (kII, co)—E„(kII,co)] 1—TM ]
'

ce

E,(k II,ki, co)dki

(49)

(50)

where e; denotes a unit vector along the Cartesian axis i =x,y. The continuity of the tangential component
of the magnetic field

B=(ico) 'V &(E=(ico)

'

BE, BE„BE,

across the boundary gives by means of Eqs. (2), (3), and (47) the conditions
' 2 1/2

and

[E; (kII, ) —E„(kII, )]
Cp

00

ey E,(k ll, ki, co)kidk (51)

Cp
[E™(kII,co)+E™(kII,co)]= J (kie„—kII e, ).E,(kII,ki, co)dki . (52)
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For shortness, we introduce

:-(k,co) =2.
Cp

—k 1+.k 4+i pocoo(k', co) .

and note that = has the general matrix form

0

:-(k,co)= 0:-yy 0 (54)

where =~ ==~. In terms of:- the transmitted field in Eq. (48) takes the form

BE,„(kll,co,z~0+ )
( k, co)

az

BE, (kll, co,z 0+)
E,(kll, ki, co) =:-~(k,co)

az

BE, (kll, co,z 0+)
:-~(k,co}

z

(55)

It follows directly from inspection of Eqs. (49)—(52) and Eq. (55) that E„(kll,co) and
BEty(kll, co,z~O+ )IBz are determined by solving Eqs. (49) and (51) separately, and E™(kll,co) and

BEt„(kll,co,z~O+)/Bz by solving Eqs. (50) and (52}. Thus, as one would expect, the components of the
electric field parallel and perpendicular to the plane of incidence are uncoupled. For TE-mode propagation
the final expression for the amplitude refiection coefficient (r ) becomes

k
, =„(k„,k„)dk,

k',

kg
1+ o =yy(kll, ki, co)dki

kP N'

ll~ ETE kqf 1 + o yy(kll ki co)dki

For TM-mode propagation the amplitude reflection coefficient takes the form

cpkq cpk
II

(kll, ki, co) dki
N :-~(k ll, ki, co)—

cpkjTM
TM

TM
=

cpk& ~ cpk
I I -„

o -~(kll, ki, co) — =~(kll, ki, co) dki
cpki

and the appropriate normalized field gradient is given by

where ki ——[(co/co) —

All�

]'~ . On normalized form the corresponding field gradient is given by

BEt y(klli ~co~ZO+ )

t (km)= B 4m

(56)

(57)

(58)

BE,„(kll,co,z~O+ )

TM az
t (kll, co) =

E;TM
cpkg ~ cpkII+ 0 -~ kl 1~k»~ -~ kll~ki~m) dk J

cpk&

(59)
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V. POYNTING VECTORS OF THE SOLID-STATE PLASMA AND THE ELECTROMAGNETIC FIELD

A. General considerations

In a spatially dispersive solid-state plasma the total energy-flux density vector S is composed of a contri-
bution from the electromagnetic field and a contribution from the conduction-electron system, i.e.,

in the empty-lattice approximation. Of practical interest for monochromatic modes is the cycle-average
Poynting vector

(S)z =S(klan, c0,z) .

The contribution from the solution [Eq. (9)] of the linectrized Boltzmann equation to the cycle-average
plasma Poynting vector is zero. Thus, to calculate the energy flow in the plasma one cannot neglect the
nonlinearities in the transport equation. In the present work we shall examine the energy transport by re-
taining in the Boltzmann equation the contribution from the nonlinear term

E,(r, t) df~(r, v, t)ldv

only. Thus second and higher harmonics in the free-carrier distribution function and the electric field are
neglected. In consequence of the above considerations it follows that the cycle-average free-carrier Poynting
vector is given by

(S (r, t))r=S (k((,c0,z)= If I v vfg (k)(,co,z, v)d v, (61)

where the nonlinear (NL) dc contribution to the free-carrier distribution function is

fq, (kii, co,z, v)=,E', (kii, co,z) V,f&( kii, co, zv) +cc.
4m*

(62)

By inserting Eq. (62) into Eq. (61) and integrating by parts one obtains, assuming w to be velocity indepen-
dent, the alternative expression

S (kii, ce,z)= — E*, (kii, cv,z). 1+vv f&(kii, co,z, v)d v +c.c.
4 f

00
(63)

To proceed further we transform the expressions for f&(k ~~, co,z, v ) given in Eqs. (11) and (12) by inserting
in these the Fourier integral transformations of E, (k~~, co,z ). By interchanging then the order of integration
and performing the straightforward integration over z', and by making use of Eq. (20), one gets for all v the
following expression for the ac part of the conduction-electron distribution function:

'3
Bfo( 8') 1 E,(k ~~, kq, c0)exp(ikqz)dk Jfi (kii, co,z, v ) = V'

4m & ~& 2~ —" 1+i(k v cv)r(v)— (64)

Finally, by combining Eqs. (63) and (64) the time-average material Poynting vector can be written

e v-(I )
2~ 4 3

S (kii, ca,z)= — f J E, (kii, ki, cv) T(kii, kj,co).E,(kii, kg, c0)
8 h'

Xexp I i [kj —(k z )')z J dk j dk~+ c.c. , (65)

where the third-order tensor T is given by
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(g )
vl+VVV

T(k, ki, co) = 1+i(k.v co)—r
Note that T~k

——T;kj ~

The cycle-averaged electromagnetic Poynting vector of the transmitted field is given by the expression

(S',(r, t))r—=S c(k~~, coz)= , E,—(k~~,co,z)XH, (k~~, coz)+c c.
where

(66)

(67)

and

00

E,(kii, co, z)= Ec(k~~ ki co)exp(ikiz)dk J2'

k~~
Hc(k~~, co,z) = ( e, e~ —e„e,) E,(k

PpCO

(68)

+ (e~e„—e e~) f Ec(k~~, k„m)kiexp(ikzz)dk J
2&ppco

(69)

B. TE-mode propagation

Let us assume that a TE mode is incident on the plasma. By inserting

E,(k((,ki, co)=:-y (k,co)t (k((,co)E; (k((,co)ey

into Eqs. (68) and (69) one obtains via Eq. (67) the following expression for the cycle-averaged electromag-
netic Poynting vector of the transmitted field:

/

t (kii, co)
i /

Eg (kii, co)
i

t (k[(~co~z)
(4n) poco

X f f (k~~ e„+kie, ):-* (k~~, ki, co):- (k~~, ki, co)expIi[kJ (kJ )']zJdk J dki+c C.

(70)

The cycle-averaged plasma Poynting vector corresponding to TE-mode propagation can readily be ob-
tained by combining Eqs. (65) and (66). Thus, one gets

8

X f f ":-~Y(k~~,ki, co):-~~(k~~,ki, co)W (k~~, ki, co)expIi[ki (ki)']zIdkid—ki+cc.
(71)

where

c)fu(g') uy(u e +u e )d u

%yy ——

1+i(k v co)r. —
&s expected, it is realized from Eqs. (70)—(72) that the Poynting vectors are confined to the xz plane.

(72)
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VI. EXAMPLE: TE-MODE PROPAGATION IN A FULLY DEGENERATE
SOLID-STATE PLASMA IN THE NEAR-LOCAL REGIME

In the following, the general theory described in the preceding sections is applied to a study of the ampli-
tude reflection coefficient (r ), the normalized field gradient (t ) at the surface, and the cycle-averaged
electromagnetic (S,' ) and plasma (Sf' ) Poynting vectors in the case where an electromagnetic TE mode is
incident on the surface at an oblique angle. The main emphasis will be given to a calculation of the above
quantities in the limit where nonlocal transport effects are included in lowest order. It will be assumed that
fully degenerate Fermi-Dirac statistics can be applied.

A. The transmitted electromagnetic field

The transmitted field is given by

(73)E, (k~~, to,z}=eiE; (k~~, co)t (k~~, co)(2n) J =zz(k~~, ki, co)exp(ikiz)dki, z &0

where the normalized field gradient (t ) is given by Eq. (57). The function -"~~ is readily obtained by com-
bining Eqs. (25) and (53). Thus,

:-yy(kii, ki, a)) =

Cp

'2
—

k~~
—ki+ipot oui, (k~~~ki, ~)

(74)

o~~( k, co)=]+i
6'()CO

(75)

in combination with ki ——(k —
k

)'~ . By denoting the complex wave numbers obtained from Eq. (75),

k' = [(k„' } —k ]'~ (Imk' & 0)

the transmitted electromagnetic field becomes

The integral along the real ki axis in Eq. (73), in principle, can be evaluated by contour integration in the
upper part (Imki &0) of the complex ki plane (see Fig. 1). The poles of the integrand, which for a given
frequency co contribute in the residue calculation, are determined by the dispersion relation for TE-mode
propagation in an unbounded medium, i.e.,

2
cpk

E, (r, t)= eyE; (k~(,co)t (k~(, co)

X ga„(k(),to)exp[ —(Imk;"„)z]expIt [(k~~+ e,Rek,""„).r —an't] I,2K ~
(76)

where the amplitudes a„(k~~,to) in the mode expansion (see Fig. 2) of the transmitted electromagnetic field
are given by

kg —kg"„
'2

ioyy(kt~, ki, co)
1+

FICOCp

a„(k((,co) =47rl llm'
kg~k j ~ Q) —k(( —kq

(77)

assuming simple first-order poles.
I,et us consider the mode expansion close to the local region in the fully degenerate plasma, where accord-

ing to Eq. (42) one has

os(k[[~ki~co) =o'o[l ——,(z~~ +zi)]/(1 thor) . —2 2

The explicit expressions for r, t, kz"„and a„can be derived in this near-local regime by noting that the
poles are determined by the equation
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Imk]

Rekg

A (kii, c0)(ki")'=, Imki")0
B(co)

where

(78)

FIG. 1. Contour integration along an expanding
semicircle in the upper half (Imk» 0) of the complex
k& plane. The poles are determined by the dispersion re-
lation for electromagnetic-mode propagation in an un-

bounded medium, and lie in the first quadrant, because
the amplitude attenuation coefficients and the real parts
of the wave vectors are positive.

FIG. 2. Mode expansion of the transmitted elec-
tromagnetic field in a case where, for a given frequency,
three wave vectors are obtained from the dispersion rela-
tion for TE-mode propagation. Note that the com-
ponents of the real parts of the incident, reflected, and
transmitted wave vectors parallel to the surface are
equal.

2
CO 2 . +0

A ( k
i i, c0 ) = —k

i i
+ E poN

Cp 1 —I,N7

2
k//UFV

5 1 —lN7
(79)

and

i pWcro(UF&)
B(c0)=1+—

(1 i cow)—
(80)

Contour integration along an expanding semicircle in the upper half plane (see Fig. 1) applied to Eqs. (56)
and (57) shows that the amplitude reflection coefficient is given by

'2 1/2

—kii
Cp

2 1/2

—kg"

(81)

Cp

—kii +k res

and the normalized field gradient at the surface is given by
' 2 1/2

t (k co) =2i(AB)'
Cp

'2
CO

Cp

—kii

1/2
+kres

(82)

In the present case the transmitted field consists of a single mode. Thus,

-+TE t E
E, (r, t)= exp( —zimki )expIi[(k~~+e, Reki ) r —cot]J .

i (AB)'
(83)

It is a straightforward matter to show that one obtains for the amplitude reflection (r ) and transmission
[t i(iA'~ B'~ )] coefficients the well-known results from local optics' in the limit I =u+r~0.
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B. Poynting vectors of the plasma and the electromagnetic field

The general expression for the cycle-averaged electromagnetic energy flux in the plasma in the case of
TE-mode propagation in the near-local region is obtained from Eq. (70) by contour integrations (see Fig. 1)
quite analogous to those leading to the results of Eqs. (81)—(83}. Thus, one obtains

2[x,"(k((, ) [' (k,')'
S,' (k~~, co,z)= 0 „, „, [(e„k~~+e,Reki")exp( —2zlmki")], (84)p~ (ki+Reki") +(Imki")

In the local limit 1~0 the above expression for the electromagnetic energy flux reduces to the well-known
elementary result. '

To determine the mass flow an explicit calculation of W~"= 8'~~e„+ 8'~~e, for a fully degenerate solid-
plasma, i.e.,

df (8')idS'= —5(Ã —W' )

(85)

has to be carried out. This tedious calculation, of which a few details are pointed out in Appendix B, leads
to the following final expressions:

4
47TUF

2 1/2 & 2 2W„(kii, ki&co)—,3 (I+2cqx)(cix +cqx+c3) dx+T(zi —zii) —1

and

WP(k
~
(,ki, ro) =

4
4~UF i 1/2zi — x(cix +cpx+c3) dx

m.
z~

(1—ico1 )
(86)

(87)

and

where the abbreviations introduced in Eqs. (32)—(36) have been used.
In the near-local regime

~
zi ~, ~ z~~ ~

&& 1 one can make a Taylor expansion of the square roots in Eqs.
(85) and (86) as shown in Eq. (41). Doing this one obtains to lowest order in the nonlocal effects

4%l UFZ I

~$V„" (k)),ki, co)=, +0(
/ z(( /, /

zi
[ ),m*(1 ivor)—

UFZi
WP(kii, ki,co)=, +0( /z)( f, uzi /

) .
m'(1 icos)— (88)

Two features should be remarked about these results. The one is that W~~ and WP are of first order in the
nonlocal parameters zi and z~~, in contrast to the nonlocal corrections to the conductivity tensor [see Eq.
(42)], which are of second order in these parameters. The second thing is that W„depends on k~~, and 8'P
on kq, only.

The integrals in Eqs. (85) and (86) can be evaluated exactly in the case where the electromagnetic wave
penetrates perpendicular into the plasma. Thus, for k~~ ~0 (i.e., z~~ ~0) one obtains, by making use of the
expansion in Eq. (37), %~~=0, as expmted, and

4
2&lVF P 3 28'P(ki, co)=, ~ [—,zi+zi —(1+zi)arctanzi] .m'(1 ivor)zi—

Finally, by inserting Eqs. (87} and (88) into Eq. (71) one obtains after contour integrations the plasma
Poynting vector

fTF 1677 e (m ) rUF (kJ)(k, io,z)= ~E; (k,~o) ~' exp( —2zImk;")k3[1+( )2]2 ' ll' (ko+R kres) +(I k P

(89)

X(2cork~~ e„+I2cor Reki" +[1 (roe) ]Imki" I
e—,), (90}
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C. Angular splitting of the electromagnetic
and the material Poynting vectors

Since Reki &0, it follows from Eq. (84) that
the component of the transmitted, cycle-averaged
electromagnetic energy flux perpendicular to the
surface is always directed away from the surface.
This result is, of course, not restricted to the near-

local regime, but holds in general. In contrast, the
component of the time-averaged material energy
fiux perpendicular to the surface can have either
sign. Thus, if the inequality

i~~ (a)

~ (c)

(b)

&r.

~~~ (d)

~r

ge, TE
t

Rek'," (ter)
mk res

(91)

holds, the material energy flow is directed towards

the surface at an oblique angle, in general. If the

above inquality is not fulfilled the plasma energy

flow is away from the boundary. Let us choose

k~~ &0. The angular deviation of the Poynting vec-

tors is thus

gf, TE

FIG. 3. Schematic diagrams showing the Poynting
vectors of the transmitted electromagnetic TE field and
the solid-state plasma in some characteristic cases. (a)
Angular splitting of the Poynting vectors implies that
the sharp surface acts as a sink of energy, whereas in (b)

it acts as a source. (c) Two Poynting vectors are shown
in a collinear configuration which, in the near-local re-
gime, corresponds to co~=1. (d) Geometry is anticol-
linear.

&—:& —8'= arctan
2[k~~+(Reki") ]toe+[1 (toe—) ]Reki"Imki"

(92}

where 8 and 8' are the angles between the surface plane, and the plasma and electromagnetic Poynting vec-

tors, respectively. The above considerations are illustrated in Fig. 3. It is especially realized that the two
Poynting vectors are collinear for toe =1, and anticollinear for

Rek i"/Imk i"= [(car) —1]/(4tor) .

It is a general feature in the near-local regime that anticollinearity occurs for cur & 1. For normal incidence,
the two Poynting vectors are antiparallel if the equality (91) holds, otherwise they are parallel.

D. Ratio of the magnitudes of the plasma and the electromagnetic Poynting vectors

In the near-local regime the ratio of the material and the electromagnetic cycle-averaged Poynting vectors
is independent of the depth below the surface. By making use of the relation 3n. No ——(rn'UF) /fi, where

No is the dc free-carrier density, and by introducing the screened plasma frequency to& [Noe /(m'e——o)]'~,
the ratio of the cycle-averaged Poynting vectors given in Eqs. (90) and (84} can be written

i

Sf' (kii, to,z)
i

I S, (k((,~,z)
I

'2
2 UF q (toe)

for 'r
co [1+(cog) ]

k +[Reki + Imki ]
1 —co'r

2N7

k((+(Rekl }

' 1/2

(93)

The result of Eq. (93) is particularly simple in the case of collinear material and electromagnetic energy
flows. Thus, cor= 1 implies in the near-local regime
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(94)

(95)

Note that under the above assumptions the ratio in the anticollinear case always is smaller than in the col-
linear case.

where Ar
——2mcolcoz is the plasma wavelength and l =vFr is the mean free path of the conduction electrons.

For the anticollinear case obtained for a frequency say c&) =co«one finds

~
y

~

8iiz l (t&i„r)

~
S,'

~

5 l(r [1+(to„w) ]2

VII. THE "PROBLEM" OF ENERGY CONSERVATION AT A SHARP BOUNDARY

It is obvious from the derivation presented in Sec. IV that

1+r (k((&o))=t (k(~&c0)(2ir)
' I =ys(k(~&ki&oi)dki, (96)

a relation which in the linear theory expresses the continuity of the electric field across the boundary, and
which in turn leads to the energy conservation law for the TE part of the electromagnetic field at the sur-

face, i.e.,

e, S," (k((,c&))=e, S,' (k((,co)+ e, .S", (k~~, ,to=z0), (97)

in the linearized approximation. A similar conclusion of energy conservation for the linear part of the elec-

tromagnetic TM field does, of course, hold. In the near-local regime where spatial dispersion effects are in-

cluded in lowest order, one arrives, by approximating the linearized transmitted field by the single mode of
Eq. (84) and the linear amplitude reflection coefficient by Eq. (81), at the conclusion in Eq. (97). Thus, the
separate energy-conservation law for the linear part of the electromagnetic field at the surface is not violated
in the near-local regime.

It appears from Eq. (90) that the cycle-averaged free-carrier Poynting vector, in general, is different from
zero at the surface (z=O). In vacuum

~

S~'
~

is, of course, zero. Thus, the correct energy-conservation law
which must include the energy transported by the electromagnetic field and the plasma is violated if one just
considers the linear part of the electromagnetic energy flow together with the nonlinear flow of energy in
the plasma system.

One could imagine that energy conservation would be restored if nonlinearities, i.e., second harmonics and
higher harmonics, were included in the electromagnetic field. In a forthcoming paper we shall study the im-

portant question of harmonic generation in metals and show that even if one includes the energy flow carried
by second and higher harmonics in the electromagnetic field (and in the plasma) the energy-conservation law
will not be restored. As an example, it is easy to see that, in general, the dominating part of the nonlinear
electromagnetic energy flux is carried away from the surface by the second harmonics in the reflected and
transmitted fields, so that when the material energy flow is away from the surface the energy conservation
law is still violated.

By denoting the fundamental and the second harmonic modes by (1) and (2), respectively, it will be shown

in the forthcoming paper that the Fourier amplitude of the transmitted second harmonic electromagnetic
field will be given by

E({2)(k
( ~

& k J
'

2CO)

( )(2{k( & lk&&2) '
g (2)( k

~ {
& 2t&),z~0+,Ei )

(2)

I

—ii o(2~)I X(k(~,ki",ki ', co): E{())(k((,ki",to)E{())(k~),ki ' ki",to)dki"—

(98)
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where the nonlinear third-order response function ™X(k((,kz",ki ', co) describing second harmonic generation
takes the explicit form

with

(i) (i) e ri()n*)2 ao vR(k((, ki",co, v)d u

X(k((,ki,k i,co)=-
n.h 1+i(k' 'v 2—co)~

(99)

R (k((,ki, co, v ) =
()fp($'), () fp($')

1+m* v v
aS' as'

1+i ( k"' v —p) )r

Bfp( 5') ~())k v
QS'

[1+i(k"'v (u)—w]
(100)

The explicit expression for the second harmonic field gradient at the surface, g(2)(k((, 2',z~0+,E;) will not
be given here.

It turns out that "violation" of the law of energy conservation has to do with the fact that, somewhat un-

physica11y, a sharp boundary is assumed. This conclusion is in agreement with that given by Bishop and

Maradudin in connection with their investigation of the generation of optical lattice waves by light. In a
subsequent paper we shall study the penetration of light into a solid-state plasma having a smooth surface

profile and show that no violation of the law of energy conservation occurs when the spatially transient

behavior of the material field in the surface layer is taken into account.
Since the conversion of energy from the incident light beam to the free-carrier system is of order 1:10 or

less in metals and heavily doped semiconductors the amount of energy which a sharp surface model cannot

account for is a very small fraction of the total energy. Furthermore, since the penetration depth of the
electromagnetic field is —10 —104 A. or more, it is expected that the present model fails only in a thin

( & 10 A) surface layer. No continuous build up (or removal) of energy in (or from) surface modes occurs in

the cw steady state when a smooth surface profile is used. A comparison of the energy flows obtained by
means of smooth and sharp surface models in the surface layer will be considered elsewhere.

APPENDIX A: CALCULATION OF cr(k(), ki, co) ON THE BASIS
OF DEGENERATE FERMI-DIRAC STATISTICS

To derive the explicit expressions for the components of the conductivity tensor spherical coordinates

u„=u sin8cosg, uz
——u sin8sing, and u, =u cos8 are introduced. Then by combining Eqs. (24), (26), and (27),

the integration over the numerical velocity can be carried out. Doing this one gets

2e oui;(rn*) w 2nD(8 'p)dp d8
(T(k,ki, p)) =

0=p G(8)cosp+H(8) '

where

(Al)

and

G(8)=ik((u, r sin8,

H(8) =.1 ico~+ik—iuFr cos8,

(A2)

(A3)

D(8,$)=
sin 8cos P

0
sin8 cos8 cosP

0 sin8 cos8 cos(()

sin 8sin P 0

0 cos 8
(A4)

Next, the integrations over P can be performed. The integrations in o~ are done by substituting

u =tan(P/2) and decomposing the integrands. Thus,
r

f2ncos2'
G(8)cosg+H (8)

H
(H2 G2)1/2

(A5)
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and

sin PdP
G (8)cos(()+H(8)

(H2 g2)1/2

G2 H
1— (A6)

The integrations in tr and o~ are carried out by making use of the formula

dP 2n.

G(8)cosp+H(8) (H —g )'

and by integration by parts. The final results of Eqs. (28)—(31) are obtained by making the substitution
x=cos8, and by noting that

(A7)

(H —G )' =2(1 iror—)(cix +czx+cs)' (A8)

APPENDIX 8: CALCULATION OF W(k]i ki 0)) FOR A FULLY DEGENERATE PLASMA

(B1)

and

By introducing spherical coordinates, as described in Appendix A, the integration over the numerical velo-
city in Eq. (72) can immediately be carried out. Doing this one obtains

4
UF e 2e sin 8sin Pcogdgd8

G (8)costtp+H(8)

4 2~ sin 8cos8sin Pdgd8
G (8)cosg+H(8}

By means of the substitution u =tan(P/2) one gets

(B2)

cos PdP n.
1

H
G (8)cosg+H (8) G G

2 'I 3
2m H

(H2 G2)1/2 g (B3)

By combining Eqs. (A6), (A7), and (Bl)—(B3), by introducing the substitution x=cos8, and by utilizing
Eqs. (32)—(36) and (A8) one obtains the expressions for W~s and Wp given in Eqs. (85) and (86).
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