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Positron production in heavy-ion collisions. II. Application of the formalism to the
case of the U + U collision
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The method developed in the preceding paper is applied to the calculation of the spectra
of positrons produced in the U+ U collision. Matrix elements of the radial derivative

operator between adiabatic basis states are calculated in the monopole approximation, with

the finite nuclear size taken into account. These matrix elements are then modified for the
supercritical case with the use of the analytical method presented in paper I of this series.
The coupled differential equations for the occupation amplitudes of the basis states are
solved and the positron spectra are obtained for the U+ U collision. It is shown that the
decomposition of the production probability into a spontaneous and an induced part de-

pends on the definition of the resonance state and cannot be given unambiguously. The re-

sults are compared with those obtained by Reinhardt et al.

I. INTRODUCTION II. CALCULATION OF THE MATRIX
ELEMENTS

In the first paper' of this series (hereafter referred
to as I) we presented an analytical approach to treat
the resonance which appears in the positron contin-
uum during a collision between very heavy ions.
We described a method to calculate matrix elements
which appear in the coupled differential equations
for the occupation amplitudes of the adiabatic
single-particle states.

In the present paper the method developed in I is
applied to the calculation of positron production in

U+U collision. Although a calculation for this
particular reaction has already been reported in Ref.
2, we believe that the present calculation, carried
out along the lines of I, and a comparison with the
results obtained previously, is useful in view of the
very significant experimental effort that has been
devoted to the measurement of positron spectra in
heavy-ion collisions. As mentioned in I, the collid-
ing nuclei are assumed to move on a classical trajec-
tory, and the electron-electron interaction is neglect-
ed. The potential generated by two nuclei is ap-
proximated by its monopole part with the finite nu-

clear size taken into account.
In Sec. II the matrix elements appearing in the

coupled differential equations are calculated. In
Sec. III we solve the coupled differential equations
for the collision of two U nuclei. A brief sum-

mary is given in Sec. IV.
dE„gV

dR "
BR

{2.1)

We calculate in this section the matrix elements
of the operator iBIBt H[R(t)]—which appear in
the coupled differential equations (I.2.10) [Eq. (2.10)
of I] and (I.6.2) for the occupation amplitudes of
the adiabatic single-particle states. First, the time-
independent Dirac equation (I.2.6) for fixed internu-
clear distance R must be solved. Since we adopt the
monopole potential (I.2.5), which is generated by
uniformly charged spheres of a radius R„=rg '~

with ro ——1.2 fm, analytical solutions are known for
both the regions r &R {Ref. 3) and r &R+ (Ref.
4), where R+ ——R+R„. (The subscript i is omitted
because only symmetric projectile-target combina-
tions are considered in the present paper. ) For the
intermediate region R &r &R+, the Dirac equa-
tion is solved numerically and the solution is
matched to the inner and outer analytical solutions
which satisfy appropriate boundary conditions. In
this manner we obtain bound-state energies E„(R),
and continuum and bound-state wave functions.
The normalization (I.2.7) of the continuum wave
functions is obtained via the knowledge of the
asymptotic property of the outer solutions. In order
to normalize the bound-state wave functions we use
the equation
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which holds for a normalized wave function Ip„. It
is shown below that the use of Eq. (2.1) enables us
to normalize y„by carrying out a numerical in-

tegration only for the intermediate region
R &r &R+. For the supercritical case (R &R„),
the energy Ep and the width I (Ep,Ep) of the reso-
nance in the positron continuum must be calculated.
These are obtained by fitting the energy dependence
of the normalization factor for the inner part
(r &R ) of the wave function in the energy range

Ep —I &E & Ep + I in terms of the square root of
a Lorentzian function. Figure 1 shows the binding
energies of the lowest eight s&&z and pi&& states cal-
culated for the U+ U system. It is seen that their
R dependence can be well described by a power of
R for R &300 fm except for the 2pl~z state, for
which the deviation is rather large. The 1s&&q state
becomes a resonance in the positron continuum for
R &R„=32.6 fm.

In order to obtain matrix elements of the radial
derivative operator 8!BR, we evaluate the integral
(I.7.2). Since the integration up to r =R can be
done analytically, the numerical integration is car-
ried out only for the intermediate region
R &r &R+. For the supercritical case R &R„,
we have to evaluate also matrix elements which in-

volve the resonance state y, and/or the modified
positron continuum state XE . The evaluation of

y(EO) =1 (EO,Ep)/P(ED) . (2.3)

The product P(E )y(Ep) gives the width
I (E,Ep) and accordingly determines the weight
function aE, Eq. (I.5.4). Figure 2 shows the re-

duced width for different values of n as a function
of the resonance energy. Values corresponding to
n =2 and 4 are used in the following. The dashed
line with n =0 is shown to demonstrate that the re-
duced width corresponding to the WKB penetrabili-
ty is approximately given by y' '(Eo)=0.45 ~EO I

[see Eq. (1.4.11)j.
As discussed in I, the derivative of the width

dI (E,E ) dP(E )
y( o) (2.4)

gives the order of magnitude of the error associated
with the approximation made in evaluating the ma-
trix elements which involve (p„and/or gE . In

Table I are listed some values of dI (E,Ep)/dE
for the resonance energy Ep ———1.6 (R =16 fm),
and for n =2 and 4. We see that the overall trend is
better for the case of n =2 and the derivative is
mostly less than l%%uo even for n =4. It should be
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these matrix elements proceeds in the following
way. We first choose a penetrability P(E ) of the
form [see (1.4.12)]

P(E )=P' '(E )( —E —1) " (n )2), (2.2)

where P' '(E ) is the WKB penetrability (1.4.10),
and then obtain the reduced width y(Ep) from the
equation
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FIG. 1. Binding energies, 1 —E„, of the lowest eight
siqq and pl~a states as functions of internuclear distance
R between two ' U nuclei calculated in the monopole
approximation. A uniformly charged sphere is assumed
for the charge distribution of uranium.
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FIG. 2. Calculated reduced width of the 1s&zz reso-
nance for the U+ U system as a function of the reso-
nance energy Eo. The three lines correspond to dif-
ferent values of n in the definition of the penetrability
(2.2). The values with n=2 and 4 are used in the calcu-
lation.
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TABLE I. dI (E,EO)/dE for the resonance energy
Eo ———1.6 (R =16 fm) and for the U+ U system. See
Eqs. (2.2)—(2.4).

E (mc ) dI /dE (n=2) dI /dE (n =4)

—1.1
—1.2
—1.4
—1.6
—1.8

—3

—0.0008
—0.0081
—0.0105
—0.0041
—0.0001

0.0016
0.0015
0.0007

—0.0200
—0.0342

0.0061
0.0095
0.0062
0.0036
0.0003
0.0001

-1.0
0
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FIG. 3. Matrix elements VE =(q&, ~H(R) IXE ),
Eq. (I.5.7), with the cutoff energy E,= —2.1, as func-
tions of E for different internuclear distances and dif-
ferent values of the power n in the definition of the
penetrability.

stressed that the values listed here correspond to the
worst case for the U+ U system. They fall off ac-
cording to —IEo I( ~Eo I

—1)" as IEo I
decreases

(i.e., R increases) because of the presence of the fac-
tor y(EO) in Eq. (2.4).

Figure 3 shows the matrix element VE, Eq.
(I.5.7), which causes the spontaneous decay of the
positron resonance state, calculated for R =16 and
24 fm and n =2 and 4. It is noted that (1) VE de-

pends significantly on the choice of n although it
has a unique value —[I (Eo,E&&)/2n]'/ at the reso-

nance energy [Ep(16 fm) = 1.59 Eo(24 fm)
= —1.24]; (2) the dependence on E is given by
[P(E )]'/, so that the shape of the curve does not
change with R; (3) VE has a sharp cutoff at E„
with a value of E, chosen to be —2. 1 unless speci-
fied otherwise. The latter two features distinguish
our VE from the corresponding matrix element of
Ref. 2.

Using VE obtained above and Eq. (I.7.21), we
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FIG. 4. Matrix elements (+E
~

8/BR
~
qo„), Eq.

(I.7.9), with E,= —2. 1 as functions of R for (a) n=2
and (b) n =4. For E &E„ these are equal to
(ps I

8/BR
~ q, ) of Eq. (I.7.16) and do not depend on

n in the present approximation. The dashed lines indi-
cate negative values and the dotted lines the critical in-

ternuclear distance R„=32.6 fm.

can calculate the matrix elements of 8/BR which
involve the basis states y, and/or XE, Eqs. (I.7.9),
(I.7.13), (I.7.16), and (I.7.20). Figure 4 shows the
matrix elements (X~ I

i) /BR
I q&„), Eq. (1.7.9),

which are responsible for the induced decay of the
positron resonance. As can be seen from the figure,
these matrix elements depend on the value of n.
While for n =4 they are continuous at R=R„,
those for n =2 are not [see the discussion below Eq.
(I.7.12)], and smaller than the former by a factor
3—20 in the supercritical region R &R„. There ap-
pears a singularity due to R/[E&&(R) —E ], cf. Eq.
(I.7.9). This singularity does not, however contri-
bute to the solutions of the coupled differential
equations (I.6.2) because it is multiplied by slowly
changing factors: At the point Eo(R)=E, (1) the
phase factor exp[i(Hz —Hp)] becomes stationary;

{2) the relative change of the amplitude co,
~

co I
'dc&&/dR I, does not exceed =0.03 fm

practical applications (see the example described in
Sec. IV); (3) the same holds also for the amplitude
cE . Consequently we can use approximate matrix

elements which are smoothly interpolated across the
principal-value singularity.

Figure 5 shows the matrix elements
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ci 0(t)=1

c'ig, E (t)=0,
(3.1)

"induced" part is ambiguous and depends on the
choice of the resonance wave function. To demon-

strate this ambiguity, let us consider a positron pro-
duction process assuming that there was initially a
hole in the 1s&&q state. We solve the equations for
the occupation amplitudes, Eqs. (I.2.10) and (I.6.2),
in first-order perturbation, which is adequate for
this situation. Putting the zeroth-order amplitudes

-1.2 -1.4

(Xs
~

BIRR ~yE ), Eq. (I.7.20), withE =1.5 for

(a) n =2 and (b) n =4. Both of them are continu-

ous at R =R„ in contrast with those of Fig. 4. It is
noted that here, too, the matrix elements with n =2
are smaller than those with n =4 in the region
R &R„. Small dips at the internuclear distance
where Eo(R) becomes equal to E are due to ap-
proximations made in evaluating the first term in

the square bracket in Eq. (I.7.20).
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FIG. 5. Matrix elements (Xx
~

B/BR (q&s ), Eq.

(I.7.20), with E+ ——1.5 and E,= —2.1 for (a) n=2 and

(b) n=4. For E &E„ these are equal to the unmodi-

fied matrix elements ((ps ~
8/BR

~
qrx ). It is ap-

parent that the latter do not depend on n. The dotted
lines indicate R„.

into the right-hand side of Eqs. (I.2.10) and (I.6.2),
we obtain the first-order solution

ci', s (+ ae ) = —f dt((7(s
~
qr„)+i' )

)& exp[i'(Hs —Hp) ],
(3.2)

where the sum in the parentheses should read

(qs ~j„) for R(t))R„. Since (Xs ~y„)
((ys ~y, )) and VE are odd and even real func-

tions of time, respectively, each contribution to the
integral is purely imaginary [see also Eq. (I.2.9)].
Figure 6 shows Im c'&,"E (+00) for n =2 and 4.

The components labeled "induced" and "spontane-
ous" correspond to the contributions which come
from the first and second term in the parentheses in

Eq. (3.2). It can be seen from the figure that this
decomposition depends strongly on the value of n,

x10cm-2 s ' ' s ~ I r & r
I

& s s s

6— (a)+(b)

III. POSITRON PRODUCTION
IN U + U COLLISION

In this section we calculate the positron produc-
tion probability for a head-on collision of two U
nuclei with a laboratory projectile energy E/A =5.9
MeV. For R(t), we use a Rutherford trajectory. In
order to suppress the well-known spurious coupling
in the asymptotic region, all the matrix elements of
8/BR for R & 1500 fm are multiplied by a Gaussian
damping factor exp[ —[(R —1500 fm)/750 fm]~ j as
in Ref. 2.

A. Spontaneous and induced decay
of the 1s ized resonance

It was explained in I that the decomposition of
the reaction amplitude into a "spontaneous" and an

0, —

8
+ x10 2— (a) ~ (b)

0
I I I I I I I I I I I I I I I I I I I

-1.0 -1.5 -2.0 -2.5 -3.0
E (mc~)

FIG. 6. Imaginary part of the production amplitude

for a positron of energy E emitted in a head-on collision
of U+ U with E/A=5. 9 MeV, and evaluated using a

first-order perturbation calculation with E,= —2.1, as-

suming an initial hole in the 1sI/~ state. The solid lines

give the full amplitude, the square of which yields the
positron. spectrum.
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while the total amplitudes coincide with each other
very well. (The difference between the two total
amplitudes is 1% at E = —1 ~ 2 and only 0.1% at
E = —2. These values should be compared with

the values of dI /dE listed in Table I. They are
&3% for E = —1.2 and &0.4% for E = —2.)
This shows that no physical meaning can be at-
tached to the above-mentioned decomposition in a
heavy-ion collision.

Table II shows the dependence of the positron
production amplitude on the cutoff energy E, [see
Eq. (I.4.3)]. For the cases E, )E, the correspond-

ing amplitudes are calculated by using only the ma-
trix element (q&z

~ g, ) without introducing either

the modified continuum state XE or the spontane-

ous coupling VE . We note from the table that the

dependence on E, is very weak (- l%%uo for
E = —2).

Lastly, a comparison can be made between those
contributions to the integral (3.2) which come from
R (t) & R„and 8 (t) &R„. These are about the
same for —1.5)E ) —2.5 within a maximum
difference of -20%.

B. Solution of the full coupled
differential equations

In this section the full coupled differential equa-
tions (I.2.10) and (I.6.2) are solved for the
s&/2(sr= —1) and p&/2(~=1) channels which give
the most important contributions in the collision
under consideration. Neglecting the coupling
among positron continuum states which is about 2
orders of magnitude smaller than that among the
electron continuum states, we take for each channel
(~=+1) one positron continuum state of energy

E, the lowest eight bound states up to 8si/2 or

9p&&z and twelve discretized electron continuum
states up to E+ ——4 which are equally spaced. We
solve the coupled differential equations with the ini-
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FIG. 7. Positron production probability for a head-on
collision of two U with E/A =5.9 MeV. Initially
filled bound states up to 3s&&2 were assumed and the full

coupled differential equations for the sl&2 channel were
solved.

tial condition

cE,E( —00)=&E,z ~ (3.3)

and calculate the positron production probability
dP +/dE according to Eq. (I.6.5) after multiplica-

tion by a spin degeneracy factor of 2. The lowest
three bound states for each channel up to 3s|~2 (or

4p&&2, respectively) are assumed to be filled initial-

ly. Figure 7 shows the result of the calculation for
the s&/2 channel for the head-on collision of two
' U nuclei with E/A =5.9 MeV. Curve a includes

the contributions from the derivative matrix ele-

ments and VE coherently, and the results of the
calculation with n =2 and 4 agree very well with

each other: They differ by not more than 0.25% at
E = —2. This gives us confidence in the accuracy
of our approximation scheme. On the other hand,
if we switch off the coupling matrix element Vz

which is responsible for the spontaneous decay of
the 1s&&2 resonance, we obtain the curves b or c

TABLE II. Dependence of the positron production
amplitude on the cutoff energy E, ~ The values calculat-
ed for E = —2 and —4 with n =2 are listed.

TABLE III. Dependence of the positron production
probability on the cutoff energy E,. The s&&2 channel
contributions calculated with n =2 are listed.

E,
(mc )

Imc'l,"E (+ )(m ' c ')

E = —2 E = —4

E,
(mc )

dP +/dE (1/mc )

E = —2 E = —4

—1.9
—2.1

—4.1

0.0571
0.0577
0.0577

0.0149
0.0149
0.0152

—1.9
—2.1

—4.1

1.042 X 10
1.061 X 10
1.061 X 10

7.07 X 10
7.07 X 10
7.30 X 10
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TABLE IV. Positron production probability for E = —2 calculated perturbatively. The

s&z~ channel contributions are listed. The values in the second and third lines are obtained

by including only the specified intermediate states.

n=2
dP +fdE

l & —=—& (10 Im~ )

n=4

First order
First and second (1s)
First and second (1s,2s, 3s)
First and second (all)
Full calculation

0.36
0.22
2.37
5.51
1.061

0.78
0.22
3.41
9.32
1.058

which depend considerably on the value of n. This
again demonstrates the ambiguity of the decomposi-
tion of the amplitude. It should be noted that the
positron spectrum of Fig. 7 curve a has almost the
same shape as the squared amplitude obtained in
the Sec. III A. Multiplying the latter by a normali-
zation factor 0.032, which is about one-fourth of
the calculated 1s&~q hole creation probability 0.12,
we find that these two spectra coincide with each
other within an accuracy of +2% for the main part
—1.4 )E & —4 of the spectra.

The cutoff energy E, was chosen to be —2. 1 for
the above calculation. The dependence of the re-

sults on E, is very weak for the present case, too.
As can be seen from Table III, the positron produc-
tion probability changes by -2% for E = —2 ac-
cording to whether E, is smaller or larger than E

We now compare the above results with those of
perturbative calculations. Putting the zeroth-order
amplitude

Figure 8 shows the sum of the s &&~ and p ~ &&
con-

tributions to the positron spectra in head-on col-
lisions of U + U and Pb + Pb with
E/A =5.9 MeV. In order to compare these results
with those of Ref. 2, calculations were performed
with four more electron continuum states which
double the number of states between 1&E+ &2.
This gives about 3% and 4% increase of
dP +/dE at E = —2 for Pb+ Pb and U+U,
respectively. While the value for the Pb+ Pb col-
lision coincides with that of Ref. 2, the value for the
U + U collision is about 8% smaller than the corre-
sponding value of Ref. 2.

IV. SUMMARY

We have applied the formalism developed in I to
the problem of positron production in the U+ U

I I I I
i

( I I I
l

I I I I

cz F(t) =5E,E
(0) (3.4) E I A = 5.9 MBV

into the right-hand side of Eqs. (I.2.10) and (I.6.2),
we obtain the first-order amplitudes cE" ~(t) as a

result of integration. Substitution of the obtained
cz" F(t) into the right-hand side of the coupled

equations then yields the second-order amplitudes

c~ E(t). Table IV lists the results of first- and

second-order calculations together with those of the
full calculation above. First of all we note that the
results of the perturbation calculation depend on the
value of n. This is because the modified positron
continuum state XE depends on n so that the

zeroth-order solution is different for different n.
The production probability increases drastically as
we include more and more intermediate states in the
second-order calculation. It is seen that a simple
perturbative picture does not apply.

Ol
0
E
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D

~ )o-5
(L
D

]o-6 i ( ( I I I ( i I I I ( I (

-1 -2 -3 -4
E (mc&)

FIG. 8. Positron production probability for head-on
collisions of 'U + "U and ' 'Pb + 'Pb with
E/A =5.9 MeV. Initially filled bound states up to 3s&qq

and 4p&~& were assumed and the full coupled differential
equations for the s~qq and p&zz channels were solved.
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collision. It was found that the analytical method
to calculate the matrix elements is quite effective
and simplifies the numerical calculations consider-
ably. The errors associated with the approxima-
tions made in the analytical manipulations are
under good control and estimated to be of the order
of 1%. These matrix elements were used in solving
the coupled differential equations for the occupa-
tion amplitudes of adiabatic basis states. It was
demonstrated that the decomposition of the produc-
tion probability into a spontaneous and an induced

part depends on the definition of the resonance state
and cannot be given unambiguously. The present
calculations were compared with those of Ref. 2.

While the results for the undercritical system
Pb + Pb agree with each other very well, the
present result for the supercritical system U+ U is
about 8% smaller than the corresponding value of
Ref. 2. This might help us understand the absolute
values observed in experiments, ' which are con-
sistently smaller than those calculated in Ref. 2.

ACKNOWLEDGMENTS

I am grateful to Professor H. A. Weidenmuller
for valuable discussions and for his critical reading
of the manuscript. I acknowledge the Max-
Planck-Gesellschaft for financial support.

'T. Tomoda and H. A. Weidenmiiller, Phys. Rev. A 26,
162 (1982), paper I.

J. Reinhardt, thesis, Universitat Frankfurt, 1979 (unpub-

lished); J. Reinhardt, G. Soff, B. Muller, and W.
Greiner, Prog. Part. Nucl. Phys. 4, 547 (1980); J.
Reinhardt, B. Muller, and W. Greiner, Phys. Rev. A
24, 103 (1981).

3A. Messiah, Quantum Mechanics (North-Holland, Am-

sterdam, 1962).
4B. Miiller, J. Rafelski, and W. Greiner, Z. Phys. 257,

183 (1972).
5G. Soff, J. Reinhardt, and W. Betz, Phys. Scr. 17, 417

(1978).
6V. S. Popov, V. L. Eletsky, V. D. Mur, and D. N.

Voskresensky, Phys. Lett. 80B, 68 (1978); V. S. Popov,
D. N. Voskresenskii, V. L. Eletskii, and V. D. Mur,
Zh. Eksp. Teor. Fiz. 76, 431 (1979) [Sov. Phys. —JETP
49, 218 (1979)j.

7D. R. Bates and R. McCarroll, Proc. R. Soc. London
Ser. A 245, 175 (1958).

H. Backe, L. Handschug, F. Hessberger, E. Kankeleit,
L. Richter, F. Weik, R. Willwater, H. Bokemeyer, P.
Vincent, Y. Nakayama, and J. S. Greenberg, Phys.
Rev. Lett. 40, 1443 (1978); C. Kozhuharov, P. Kienle,
E. Berdermann, H. Bokemeyer, J. S. Greenberg, Y.
Nakayama, P. Vincent, H. Backe, L. Handschug, and
E. Kankeleit, ibid. 42, 376 (1979); H. Backe, W. Bo-
nin, W. Engelhardt, E. Kankeleit, M. Mutterer, P.
Senger, F. Weik, R. Willwater, V. Metag, and J. B.
Wilhelmy, GSI Scientific Report, 1979 (Darmstadt,
1980), p. 101.

E. Berdermann, F. Bosch, M. Clemente, F. Giittner, P.
Kienle, W. Koenig, C. Kozhuharov, B. Martin, B.
Povh, H. Tsertos, W. Wagner, and Th. Walcher, GSI
Scientific Report, 1980 (Darmstadt, 1981), p. 128; H.
Bokemeyer, H. Folger, H. Grein, S. Ito, D. Schwalm,
P. Vincent, K. Bethge, A. Gruppe, R. Schule, M.
Waldschmidt, J. S. Greenberg, J. Schweppe, and N.
Trautmann, ibid. , p. 127.


