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Linear and nonlinear hydrodynamics of low-friction adsorbed systems
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A model is proposed which interpolates between the diffusive picture for particles ad-

sorbed on a surface and the full hydrodynamics of a compressible fluid. 'The model is the
Navier-Stokes equations modified by a friction term. When the friction parameter 0. is set

equal to zero, the Navier-Stokes equations obtain, but for large o., Fick s law and diffusive

behavior for the density emerge. It is found that for o small enough, the dynamic structure

factor should display sound peaks in a certain wave-number range. It is also shown that
the infrared divergences that signal the breakdown of hydrodynamics for two-dimensional

fluids are regulated by the friction term. The possibility of observing the sound modes and

the nonlinear corrections to the transport coefficients is discussed.

I. INTRODUCTION

It is well known that the hydr odynamical
behavior of particles adsorbed on a solid surface is
governed by particle diffusion. It is also by now
well established' that conventional hydrodynamics
breaks down for strictly two-dimensional fluids.
Since if one were to turn off the interaction between
the particles and the substrate one should obtain
such a two-dimensional fluid, it would seem natural
to seek models that interpolate between the two
cases—between, say, fluctuating Navier-Stokes hy-
drodynamics and the hopping of particles on a sub-

strate. Such a model would, in its simplest form,
contain a friction coefficient3 tr representing the in-

teraction between the "fluid" and the substrate.
Setting 0. to zero would yield the equations of fluc-
tuating hydrodynamics for a compressible fluid.
For large 0. the description would correspond to the
hopping of particles from site to site, giving a dif-
fusion equation for the density.

We construct and study in this paper such an in-

terpolating model at both the linear and nonlinear
levels. In the linearized model, we find a crossover
from diffusive to sound-mode behavior for the den-

sity as the friction coefficient is decreased. In other
words, if the friction coefficient of a system is small

enough, we find that it should display sound modes
for a certain range of wave numbers. This feature
persists when nonlinearities are taken into account.
The effects of the breakdown of hydrodynamics
however do not show up in a very striking fashion,
since the small-wave-number properties of the sys-

tern are for the most part regulated severely by the
friction parameter. Nevertheless, there are distinct
departures from the linearized theory in the small

friction limit. It is uncertain whether there are
physical systems with friction coefficients small

enough for these effects to be observable.
The breakdown of hydrodynamics for dimen-

sionality d &2 is associated with infrared problems
which are due to the convective nonlinearities, that
is, the mode-coupling terms in the conservation
equation for the current. Precisely at d=2, the
physical viscosity is predicted to diverge logarithmi-

cally with the size of the system. Friction with the
substrate (thought of as a rough surface) should

regulate the infrared singularities. That this is the
very mechanism that brings about diffusive
behavior for the density is clear, since the friction
term renders the current "short ranged"; the parti-
cles move only in bounded hops, which, in the large,
is diffusion.

While our model cannot be quantitative on a mi-

croscopic scale, it should give a reasonable descrip-
tion of the long-time, large-scale properties of the
system. We shall discuss our model in the next sec-
tion. In Sec. III, we discuss features of the linear-
ized version of the model. We shall show that for
o@0, the dynamic structure factor displays vestiges
of sound-mode behavior for k and o small enough.
This behavior, moreover, persists when the mode-

coupling effects are included. In Sec. IV, we
present a perturbative calculation (reliable for d =2
for this model) of corrections to the transport coef-
ficients, and discuss the qualitative effects produced
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by these corrections. We examine the transport
coefficients (the shear viscosity and the sound at-
tenuation) (a) as functions of the friction parameter
for small, fixed wave number and (b) as functions of
wave number for small, fixed friction parameter,
and show that there are indeed departures from the
linearized theory, but that these effects are not ex-
traordinarily strong. They tend to be regulated, in

(a) by the nonzero wave number and in (b) by the
nonzero friction coefficient. At strictly zero wave

number, moreover, the frictional damping dom-
inates everything else.

We close in Sec. V with some remarks on the
wave number and parameter ranges in which the ef-

fects described here should be seen.

II. THE MODEI.

(phonons) are very fast compared to the hydro-
dynamic processes of interest for the adparticles,
then we may average over them and summarize
their effect and that of the adsorption sites in a sim-

ple friction coefficient. In the absence of a sub-
strate the current obeys a conservation law. With a
substrate present, there is a frictional "force" on the
adparticles due to collisions with the substrate,
which breaks the conservation law. It is this effect
that is contained in the friction term. These argu-
ments lead us to a model for "fluids" on a substrate
which, formally, differs very little from ordinary
hydrodynamics. The only departure lies in the
damping term, which, in addition to the viscous
damping, proportional to k in momentum space (k
being the wave vector) contains a purely dissipative
term, independent of wave number. The equations
are the continuity equation for the density

We would like a description of the hydrodynam-
ics of adsorbed particles. We want therefore to
average over the fluctuating degrees of freedom of
the substrate. If the substrate degrees of freedom

Bn +V (nv)=0
Bt

and the momentum equation

Bv.
+(cr5J+QJ)uj+(5kVJ+ —,5JkV;)(ujuk)+ V;n+ i V;(n )=g;(x, t) . (2)

Here n(xt) is the density, no its average (quiescent) value, n is n no, u; —is the fluid velocity field, c is the
speed of sound in the fluid (we have assumed a simple equation of state p =nc ), and g;(xt) is the random
force,

Qv [vT(5tJV VtVJ. )+v—LV;VI],

where vr and vt are the shear and bulk viscosities, respectively. For fluctuations about equilibrium, g; satis-
fies (when Fourier transformed)

where

k;kJ k;kj
Q- =vT 5-.— +vlIJ &J k

=vTH;J(k)+ vt B;J(k) .

We have for simplicity ignored heat diffusion in our
discussion. The effects of the substrate are all con-
tained in the friction coefficient cr. Setting o. to
zero yields ordinary nonlinear hydrodynamics. It
should be noted that the equations are assumed to
hold only down to some length scale cutoff A '. In
natural units where the shear viscosity sets the time-
scale (t~vTt), the temperature sets the scale for the

I

velocity field [u;~(no/ka T}'~ u;], and density fluc-
tuations are measured in units of no, and where the
noise, transport coefficients, and sound speed are
appropriately rescaled, the natural coupling param-
eter multiplying the nonlinear terms in (1) and (2) is

1/2

(6)
VT Plg p

It has dimensions (length) '+ ~, and is dimension-
less for d=2. This power-counting tells us that the
upper marginal dimension for the problem is 2. For
d&2, there are no divergences. For d=2, there are
logarithmic divergences for o.~0, but these can be
calculated in ordinary perturbation theory. For
d&2, an expansion in @=2—d must be used to
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supplement the perturbation theory to get accurate
results on the nature of the singularities for 0.~0.
We shall concentrate on d =2, that being of
relevance for adsorbed systems. We can therefore
simply use perturbation theory.

%'e shall study the linearized problem first, then
estimate perturbatively the renormalized transport
coefficients for small 0, k, and co. We shall not go
into great calculational detail here, the methods be-

ing fairly standard.

III. LINEARIZED THEORY

(5n(k, co)5n( —k, —co) )
(2~)d+'5d+'(0)

2k (o+vck )

(co —c k ) +co (cr+v k )

(L; (k,co)L/( —k, —co) )
C;.(k, co) —=

(2~)'+'5'+'(0)

2co (cr+vr k )B;J(k)
(co —c k ) +co (o+vc, k )

(1 la)

(1 lb)

If the nonlinear terms are neglected, the equa-
tions of motion read

7g + ))J 'v =0,
u;+(cr5;J+Q,J )u~+c2V;n =g; .

(7a)

(7b)

We can then see that for times much longer than
0 ', and for long wavelengths (or large scales), 7(b)
becomes, averaging over the noise in some appropri-
ate nonequilibrium ensemble

cr&u;) = c'V;—(n)

or

3 C
(5n &

—= V'(5n),
Bt 0. (9a)

C(;)=——V( ),0

which is Fick s law. This, inserted into 7(a), gives

(T;(k,co)T~( —k, co))—
C; (k, co)—=

(2n. ) +'5 +'(0)

2(o+vrk )9';J(k)
(1 lc)

co +(cr+vrk )

(5n(k, co)L;( —k, —co) )
C„c,(k, co) —=" i '

(2 )d+15d+1(())

2cok;(cr+vr k )

(
2 —c2k2)2+ 2( + k2)2

(1 ld)

y= (cr+vc, k ),2

ck
(12a)

These are the only nonzero two-point correlation
functions to this order.

Let us fix our attention on the density-density
correlation function, which might be measured, for
instance, in inelastic neutron-scattering experi-
ments. We shall study its behavior as o is changed
from zero to large values. First, define

which is the diffusion equation for the density, with
a diffusion coefficient (=co/ck . (12b)

Du c /0 . —— (9b) Then

If, however, cr were zero, we could not take the lim-
it t y&0. '. The long-time, large-scale limit then
easily gives the wave equation for the density

82
&5n&=c'V'&5n& .

at2
(10)

That is, sound modes are the dominant hydro-
dynamic behavior.

In more detail, if we define J; and T; to be the
longitudinal and transverse components of the velo-

city, and 9',J and B,J defined by (5) are the trans-
verse and longitudinal projectors, then an easy cal-
culation shows

C„„(k,co)= 1

c k (g —1) +gy
For y ~2, C„„hasmaxima at g'=+(1 ——,y )'~,
for fixed k, i.e., at

(13)

' 1/2
(cr+vr k )

CO=+Ck 1—
2f 2

These are clearly remnants of sound-mode
behavior, and are displayed in Fig. 1(a). As is in-
creased, the peaks move in until they coalesce into a
single peak at )=0, for y =2, as seen in Fig. 1(b).
The correlation function then becomes
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C„„(k,co}= vZ
ck +1

(14}

o &V2ck —vqk =—oa(k) . (15)

Since for a given system, o is fixed, this is really a
condition on k. That is, the sound modes can be
seen only for

which is not a I.orentzian. For large y (y»2), the

g term begins to overwhelm the P term, and a dif-
fusive peak (width ak ) develops at (=0 [Fig. 1(c)].
The condition y &2 corresponds, in terms of the
original parameters, to

CO+-
C)

CA

~ ~
C

ha

O
CA +-

~ —O

CD
C

I I I

0.2 0.4 0.6 0.8 I.O l.2 l.4 I.6

Rescaled Frequency

k &k &k+, (16a)

where

v 2c+(2c' 4ov —)'"
k+ ———

»t.
(16b)

For o large enough, i.e., o & o, =—c /2vL they can-
not be seen at all, since the discriminant in (16b) is
negative. Thus, not all systems are expected to
display these residual sound modes.

The qualitative features of the linearized theory
are summarized in Fig. 2. It should be noted that
nonlinearities will affect this picture only slightly,
since, as we shall see, they alter vI only by some ad-
ditive terms of the form ln(cr+vik }. To deter-
mine whether the diffusion-sound crossover can be
observed in experiments we must examine the con-
dition o & o, =c /2', or

C)

tf)+-
CD

+

+ h

cn +:
V O
E
C)
C:

CD
I I I I I I I

0.2 0.4 0.6 0.8 I.O I.2 I.4

Resca led Frequency

I.6

Dp) 2vL, (17)

to see if it can be realized. Consider a system with
a fairly large diffusion coefficient (Da ——3 X10
cm /s) discussed by Banavar et al. , namely,
tungsten on tungsten (W-W). Using low-density
kinetic-theory expressions

kgT
C

PP2

C

2~ndn

(18a}

(18b)

Thus (17) is satisfied only if nod &0.1. Increasing
the density would help only a little. For large
enough densities, the viscosity increases [i.e., finite-
density corrections to (18) become importantj and

where d is the diameter of the adatoms, assumed to
be about 4 A, we find (in cm /s)

1.7X10-4
Vt =

7l pd

C3
C

C5
I I I I I I

0.2 0.4 0.6 0.8 I.O l.2

Rescaled Frequency

I

l.4 l.6

FIG. 1. Evolution of the dynamic structure factor as
the friction parameter is varied. (a) cr/ck =0.35. (b)
o./ck =1.5. (c) 0./ck =2.0.

hence the sound regime shrinks. A system with a
much larger diffusion coefficient (0.03 to 0.3
cm /s), on the other hand, would make the
diffusion-sound crossover much easier to see. It
does appear, though, that the %-%' system is a can-
didate.



LINEAR AND NONLINEAR HYDRODYNAMICS OF LO%'-. . . 1739

D= I lim [ik lim C„„(k,z)]]
k-+0 z-+0

for the diffusion coefficient, and

I = —lim [ImC„„(k,z)]
z~ck

(20a)

"Diffusion" for the sound-attenuation coefficient. Using these
relations in the linearized theory gives

= ~c
D =Do c /r——r,
I =CF+VL k

(21a)

(21b)

Wave number

FIG. &. Qualitative features of the linearized theory:
the diffusion-sound crossover.

IV. MODE-COUPLING EFFECTS

The presence of nonlinear (mode-coupling) terms
in our equations means that the observed transport
coefficients are no longer the bare parameters seen
in the linearized theory, but are "renormalized. "
They are now wave-number and frequency depen-
dent, and, as we shall see, their dependence on o. is
also different from that in the linearized theory.
We shall study, to second order in perturbation
theory, the renormalized coefficients for diffusion
and sound attenuation, which are extracted from
the renormalized correlation functions by means of
the Green-Kubo relations. We find it convenient,
in the perturbation theory, to use a memory func-
tion approach, which entails working with
Laplace-transformed correlation functions defined

by

[z6 p M~tt—(z)]CD(z) =g~q, (22}

where X~„is the full static susceptibility, M~ti can
be interpreted as a matrix of physical transport
coefficients, and self-energy corrections to C~tt(k, z)
appear precisely as contributions to M tt(z). M~tt
can be evaluated in perturbation theory using
methods described by Mazenko, Nolan, and Freed-
man, and the renormalized correlation functions
thus determined. This method has the advantage
that it separates the static and dynamic effects,
since the full (renormalized) static correlation func-

tion is used as an input to the dynamic calculation.
In our case, however, the statics are trivial.

We evaluated the corrections AM p to the
memory function to second order (i.e., we calculated
the lowest-order self-energy graphs) and used the
Green-Kubo relations on the resulting correlation
functions to extract the renormalized transport
coefficients.

Inverting Eq. (22) and using the Green-Kubo re-

lations shows that the leading corrections are

as expected.
The memory function M ti(z) is defined by a

Dyson equation

C p(k, z)=i f dte' C tt(k, t)

i f dt e' (—P„(k,o)tI}tt( k, t) ), —

sr =i(aM„„+aM„.)„,„

for the sound attenuation and

LU) = hM„„k2

(23a)

(23b}

where (P~) are any of the fields (n, L;,T;) in the
problem. In terms of C~p(k, z), the Green-Kubo re-
lations are

for the diffusion coefficient. In the limit
co ((vTA, k ((A, 0 ((vTA we find

c' AT v A
D c =Do+Ad)= + —ln

o 8irmno&L, (o+vt k ) +co
(24a)

I'I'"=I'I +b,I I-(o+vt k )+ k lnren (0) k~T c A

~pyg7g 0 vT 4O 2+c2k 2

21 c A 20 4c A
— ln — + ln4' u2+c2k2 c2 ~2c2

(24b)
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ATI r'"=(o+vrk')+ k'
4mmno 4&T

vTA o2

+—ln
o+vT k2 c

2+2

(o+vrk )
(24c)

Notice that I L'" contains a logarithm that is not re-
gulated by o, which is quite surprising. It is clear
that as o. goes to zero, the logarithmic corrections
to the diffusion coefficient are overwhelmed by the
bare c /cr term. We therefore turn to the sound at-
tenuation and the damping of the transverse mode
(which is not strictly a viscosity, since it now can-
tains a wave-number-independent part) to see what
nonlinear effects show up in the small friction limit.

Let us look first at the transverse damping as a
function of o. Assuming a small, fixed wave num-
ber k, we define rescaled (dimensionless) quantities
using vz k as an inverse time scale:

yT=I'r/(vrk ) x=a/(vrk ) . (25a)

Also define

k2kg TATa:— b—=—
216mmno&T 2~n p~c

Then

yr ——x+(a+bx)ln +G,1

1+x

(25b)

(26)

6 being a constant (independent of x).
Assuming that we are working at low densities,

we may use (18) to determine a and b in terms of
microscopic py.rameters:

k
a =4mnod, b =

27Tn 0
(27)

The low-density assumption means that a/4ir must
be sma11, and a hydrodynamic picture holds only if
b is small. Relaxing the low-density condition does
not help much. The viscosities decrease for a while,
with increasing density, but then start to increase,
making the nonlinear corrections smaller. So we
shall discuss only the dilute case.

In order to see where the corrections become im-
portant, we must determine for what value of x
they are of the same magnitude as the linear terin.
Suppose npd =0 1, which .is fairly dilute, then
a =1. The question then is, when are x and ln(1+x)
comparable? This, of course, occurs for x &~1, i.e.,
for cr &&vL, k . Using Eq. (18b) for vI, we find this
requires

ck2

2~mdn p

or

10 np
3X 10-'»

k
(28)

to realize which k would have to be large corn-
pared with np, taking us out of the hydrodynamic
regime. In short, if the effect is to be noticeable, it
would require a system where the diffusion coeffi-
cient can be varied between say 0.2 and 3 cm /s (in
order to make a comparison).

We turn next to the transverse damping as a
function of k . Defining dimensionless variables
QT =I Tl—cr, x —=vrk /o, and using kinetic theory
values for the parameters, we obtain for small rr,
discarding the o ln(cr+vrk ) term in Eq. (24c),

1
QT -1+x+@in

1+x
3

&= 4nod

(29a)

(29b)

If E is 0.1, then, using values of d, o, and v for
the W-W system, we find that the corrections be-
come comparable to the linear term only for
k /no —10, which is far from hydrodynamic.
Even if e were as large as 0.5, we would need
k /np-10. Moreover, as e increases, finite density
effect become important, decreasing the corrections
significantly. In other words, the transverse damp-
ing as a function of k, in the hydrodynamic regime
changes very little when nonlinear effects are taken
into account. One would have to decrease o. by at
least a couple of orders of magnitude before the
nonlinear effects could be seen.

The sound attenuation at first appears more
promising since it contains an unregulated loga-
rithm for a+0. This quantity, however, cannot be
considered an infrared divergence since for any
nonzero o., the sound-mode regime terminates be-
fore zero wave number. The smaller o is, the closer
one can get to k =0 and still stay in the sound re-
gime. But the correction is itself proportional to o,

cdn p
Dp ))2V ir

k

Let us apply this to the particular case of tungsten
adsorbed on tungsten discussed in Sec. III. Usia
kinetic theory values for c and assuming d=4 A
we find that the condition on Dp implies
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so that going to very small o. is not advantageous ei-
ther. The behavior of the sound damping, both as a
function of k for fixed a and as a function of o for
fixed k, is therefore essentially the same as that of
the damping of the transverse mode.

V. CONCLUSION

We have developed a model that interpolates be-
tween the diffusive behavior of adsorbed systems
and the full hydrodynamics of a compressible fluid,
as the friction parameter of the substrate is de-
creased. The model predicts distinct departures
from a simple lattice-gas picture, at both the linear
and the nonlinear levels, provided the friction
parameter of the substrate is small enough. The
linearized theory predicts the occurrence of sound
modes in the dynamic structure factor, for a certain
wave-number range. The nonlinear effects give rise

to logarithmic corrections to the transport coeffi-
cients, altering their small-wave-number behavior.
The corrections are of course the shadow of the
breakdown of conventional hydrodynamics for
d &2.

In particular, if systems could be found with dif-
fusion coefficients as large as 0.3 to 3 cm /s, i.e.,
with exceedingly low friction coefficients, the loga-
rithinic dependence of the transport coefficients on
the friction parameter could be verified.
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