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It is shown that the concept of fractal dimensionality, recently proposed by Mandelbrot,
provides a useful characterization of the configurational properties of a single polymer.
From numerical studies of self-avoiding walks, computer generated by Monte Carlo
methods, we find that a single-chain configuration possesses a statistical self-similarity
property and therefore has a well-defined fractal dimensionality. The fluctuations in frac-
tal dimensionality measured on a single-chain configuration vanish as the number of steps
increases. It is shown that renormalization-group theory provides a theoretical basis for
the concept of fractal dimensionality in polymers, as well as for its relation to the end-to-

end exponent v.

I. INTRODUCTION

Polymers represented by self-avoiding walks
(SAW’s) have been the focus of extensive theoretical
and numerical investigations.! ™ The usual quanti-
ties that are studied are the mean-square end-to-end
distance and the mean radius of gyration.*~1°
These quantities are very useful in characterizing a
statistical ensemble of polymer chains. However,
they exhibit large fluctuations when measured on
different configurations.!""!?> For instance, one can
think of a regular polymer chain for which bending
about the middle does not change its general shape
(i.e., it remains a regular polymer), but such bending
leads to a considerable change in the mean-square
end-to-end distance or in the mean radius of gyra-
tion. On the other hand, we argue that, in spite of
the large fluctuations in these quantities, there must
be a parameter related to the degree of winding of
the chain which is nearly the same for the majority
of the different configurations. In this work, we
find that the concept of fractal dimensionality (FD),
recently introduced by Mandelbrot,'® is useful in
characterizing a single polymer chain. Indeed, the
FD represents the degree of winding of the chain,
and for each configuration it is shown to be nearly
equal to the average value of the entire ensemble of
polymers, The concept of FD has already proved
fruitful for analyzing different physical prob-
lems.!*—1°

We show that renormalization-group theory pro-
vides a theoretical basis for the existence of FD in
polymer chains as well as a relationship between the
FD and the end-to-end exponent v.

The outline of the paper is as follows. In Sec. II
we present the concept of FD as defined for poly-
mer chains. In Sec. III we present the theoretical
basis for FD in SAW’s. Numerical results for
SAW’s traced out on two- and three-dimensional
lattices are discussed in Sec. IV.

II. FRACTAL DIMENSIONALITY OF POLYMER
CHAINS

Consider a polymer traced out by a long self-
avoiding walk. The polymer can be viewed on dif-
ferent scales of length (Fig. 1). Choose a section of
length ay and count the number by of details ap-
parent in that section. Suppose that upon inspect-
ing a longer section of length a; one can see b, de-
tails. Let us define D by the relationship

(by/by)=(a,/ay)” . (1

If D is independent of the magnification factor
ay/ay for some range of scales, i.e., range of a, the
quantity D is called the fractal dimensionality of
the polymer in this range. This definition is in ac-
cordance with the ideas developed by Mandelbrot.!?
The assumption that D is independent of a
expresses a self-similarity property of the polymer
for different scales. The quantity D represents the
extent to which the polymer is winding. If the po-
lymer is a straight line, then clearly D =1, whereas
for ideal random chains, D can be easily shown
equal to 2.

In the following we present a definition for a
practical concept, the local fractal dimensionality
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FIG. 1. Different scales of length of polymers. (a)
End-to-end scale of length. (b) Upon magnification, exhi-
biting internal statistical self-similarity (main range) of
the chain. (c) Geometrical scale.

(LFD) of polymer chains. The mean-square separa-
tion of the end points of a segment containing N
links in a polymer consisting of N links is defined
by
No—N+1

> (R,~?,~+N)N0 , (2)

i=1

1
Ri)y =——
RV )%= N, ZN 11
where (R% . x) N, is the mean-square separation be-
tween the ith and the (i +N)th elements of the
chain. The quantity ((R7 )N0/<R§, Yn,)'”? plays
the role of a;/aq in (1). Further, we expect that b
should be proportional to N and that b, should be
proportional to N +1. Thus, we define and mea-
sure the value of the LFD by
(R2..) 172
N+1/N

N +1 / In | —F1 "N

DNO(N)—_—IH <R1% )N
0

~ oV 3)
N>>1 aln(<R§z)N0)1/2
The subscript Ny emphasizes the fact that we are
considering finite polymers. Dy (N ) is the LFD of
a length scale corresponding to N.?° It should be
noted that if DNO(N )=D is independent of N, then

(3) is equivalent to
[((R}In,)/*1P=4'N , )

where A’ is a constant of proportionality. If such is
the case, then (4) may be used as the definition of D.

FD is indeed a measure of the degree of winding
of the chain. Define 6;,, as the mean angle be-

tween two neighboring segments l_iN,ﬁ ~» each con-
taining N steps (Fig. 2). Then

(Roy))=((Ry+Ry)?)
=(R})+(R¥)—2(RyRYy)
=2(R%)—2(R%)cosh,, . (5)

Using Eq. (4)
cosfy ,=1-2¥P-1, (6)

When D increases, 0/, decreases, implying that the
chain is more winding.

It is reasonable to expect that if the polymer is
very long, it has the same degree of winding in most
length scales in which it is observed. Thus, we ex-
pect it to have a fractal dimensionality independent
of scale. However, when we inspect the polymer in
the smallest scales, N ~1 (the geometrical scale), we
see that the polymer is forced to bend according to
the lattice geometrical constraints [Fig. 1(c)]. This
might spoil the self-similarity, thus changing the
LFD in this range. Finally, in the largest scales,
N ~N, (the end-to-end range), the polymer is more
free to bend than in smaller scales. This follows be-
cause in smaller scales, the exclusion of volume
arising from different parts of the polymer has to
be considered, while in the end-to-end range of
scales, there is no such constraint. Thus, in view of
(6), we expect LFD to increase in the end-to-end
range.

IIL.THEORY

We now present the theoretical background for
the FD, as well as a relation between the value of D
defined in this work and the known end-to-end
exponent. We base our treatment on renor-
malization-group ideas developed for polymers by

de Gennes.!
It is well known that for an ideal random-walk

chain,

(R 10N,/ (R, =(N+1)/N=gy . (1)

s

FIG. 2. Definition of the angle 6, ,.
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However, in self-avoiding chains, the excluded
volume interaction swells the polymer. We describe
this swelling by a factor (14 4), where 4 depends' in
general on gy and on a dimensionless coupling con-
stant uy. That is,

(RY 4108, = R Ingn[1+h(gy,un)] . ()

The main idea of renormalization-group theory is to
repeat this transformation many times, starting
with N~1, until N>>1. It is assumed that for
large enough N, the coupling constant uy reaches a
finite limit u*, which is called the “fixed point.”
Using the semigroup property of the transforma-
tion, Eq. (10) yields

(RY 408,/ RWIN,=[(N+1)/N*, )
that is,
(Ri)y,=AN?, (10)

from which (4) follows if v=1/D. Thus, we see
that renormalization-group ideas lead to the con-
cept of FD. It should be noted that (9) holds only
for N >>1 (i.e.,, not in the geometrical range), a re-
sult which is consistent with our numerical data.
Moreover, when N is of the order of N,, another
edge effect appears, that is, the effective coupling
constant uy tends to change again because of the
decrease in the excluded volume interaction. Equa-
tion (9) is thus correct only in the main range, be-
cause only then uy~u*. In spite of this, a similar
approach can be applied for the mean-square end-
to-end distance (R ,%,0 ), showing that

(Ry,)=BNY, (11)

that is, the same exponential law results for (R 1%,0)
and for (R}) n,- The only difference might be in

the constants of proportionality 4 and B. The fact
that the exponents are equal in (10) and (11) is by no
means obvious. Moreover, the usual end-to-end ex-
ponent does not represent an internal self-similarity
of the polymer and therefore it does not have the
meaning of fractal dimensionality.

A general function which predicts internal self-
similarity and the same exponential law for both
internal and the end-to-end distances is

(REYVP=N"p(x), x= N (12)
. (4

Ny
This relation is typical of scaling relations. Indeed,
if

A 1/2’ x < <1

plx)= B2, x=1 (13)

we regain (10) and (11). Using the definition (3) of
LFD and (12) leads to

V+xd11_13(x)

DNO(N)Z dx

(14)

This expression predicts that Dy (N)=1/v=D for

finite segments of N steps in an infinite chain, that
is, an internal self-similarity. Moreover, if for quite
a wide range of x p(x) is nearly constant, then
Dy (N) is nearly constant in this range. We show

in Sec. IV that such a range exists, and we call it the
“main range.” On the other hand, p(x) should de-
crease when x approaches unity. This is due to the
fact mentioned above that for the entire chain, the
excluded volume effect is weaker than for internal
segments (this implies 4 > B). Thus, it follows
from (14) that Dy (N) increases when x — 1.

An interesting result is the universality property
of D. Adopting (12) yields that the LFD is a func-
tion of x and not of N, (it also depends, of course,
on the lattice dimensionality d). The above predic-
tions are confirmed by the numerical results that
will be presented in Sec. IV.

The exponential behavior of (R3 ) n, may also be

obtained by a different approach by making a sim-
ple assumption about the correlation function. The
mean-square average (R,-?H N n, over all possible
configurations of N, steps can be written® in terms
of the correlation function as

) N i+N—-m
(RiiynIv,=N+23 3 (U4, N, -

m=1 j=1

(15)

If the polymer is long enough and m is finite, a
reasonable assumption is that (U;-U;,,,) N, Will
not depend on j and will be of the form®

C

m—2—27 . (16)

<ﬁj'ﬁj+m >N0~
Similar assumptions are commonly used in other in-
teracting systems, e.g., spin systems.?!
Using (2), (15), and (16) and assuming that N >> 1
and 2v> 1 yields

(R )y, ~AN? . a1mn

This is exactly the same as (4) if we identify v with
1/D. This result shows that the assumption made
regarding the correlation function leads to the ex-
istence of the FD concept in polymers.
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IV. NUMERICAL RESULTS

We have carried out numerical studies of self-
avoiding walks performed on two- and three-
dimensional lattices. The walks were computer gen-
erated by the enrichment technique.”?? In the en-
richment mehtod, two parameters p and s are intro-
duced which satisfy the condition pe ~*=1, where
A is the attrition constant and p is the number of
trials used to generate s subsequent steps without in-
tersections. We used p=11, s =20 for the square
lattice; p =35, s =20 for the triangular lattice; and
p =11, s =40 for the cubic lattice. We note that us-
ing slightly different values of p and s hardly affects
the results. In most cases, we use ensembles con-
sisting of about 10* polymers.

We present our results for the LFD Dy (N) mea-

sured according to (3), beginning from the case of
d =2 (other dimensions are discussed later). In
Figs. 3 and 4, we present a plot of Dy (N) as a

function of N for square and triangular lattices,
respectively. For both cases, the same picture re-
sults, a fact that stresses the universality property of
LFD. The three ranges discussed at the end of Sec.
II are seen in the figures. As N, increases, there is
a wider region in which Dy (N) is nearly constant

(the main range). The constant value of LFD in the
main range is defined as the FD of the chain.
When N~N, (the end-to-end range), there is an
abrupt increase in LFD, as proposed earlier. Final-
ly, the geometrical range, N ~ 1, is displayed in Fig.
5 on an enlarged scale for SAW’s on triangular and
square planar lattices. For N <10, the LFD is dif-
ferent, as expected, but as N increases, the LFD
coincides for both types of lattices.

In Fig. 6, it is shown how Dy (N) scales as a

3

0
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N

FIG. 3. Plot of the LFD DNO(N) as a function of N

for SAW’s traced on a square two-dimensional lattice, for
N,=40,80,160,320.

0 80 160 240 320
N

FIG. 4. Plot of the LFD DNO(N) as a function of N

for SAW’s traced on a triangular two-dimensional lattice
for Ny =40,80,160,320.

function of x=N/N,. The fact that for different
Ny the results fall on nearly the same curve con-
firms (12) and (14).

The FD is measured according to (4) by plotting
InN as a function of In({R}) n,)'/% The slope at

each point on the resulting curve is the LFD and
the part corresponding to the main range is a
straight line. We calculated a best fit for this part
and obtained D =1.36+0.04.

The difference between FD and the usual end-to-
end exponent v can be clearly understood from Fig.
7. In this figure, we plot InN as a function of
In({R3 )y )"/ for different values of Ny. FD is ob-

tained from internal distances as described above,
whereas the end-to-end exponent v is obtained from
the slope of the line connecting the end points of
the curves (the broken line). Thus v, in contrast to

10 20 30

FIG. 5. Geometrical range for SAWs traced on two-
dimensional square and triangular lattices.
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FIG. 6. Plot of DNO(N) as a function of x=N /N, for

10000 SAW’s on a two-dimensional square lattice for
Ny=80, 160, and 320.

the FD, does not represent an internal self-
similarity. However, the numerical value obtained
for 1/D equals, to within numerical uncertainty,
that of the usually measured end-to-end exponent v,
in agreement with our theoretical prediction.

The case of d =3 is not much different from that
of d =2. In Fig. 8, we present plots of the LFD for
SAW'’s in a cubic lattice as a function of N for dif-
ferent values of Ny. The picture is similar to Fig. 3.
As N, increases, there is a wider region for which
Dy (N) is nearly constant.

In Fig. 9, we plot Dy (N) as a function of N/N,

for different values of Ny. It seems that LFD does
not scale for small values of x as well as it does in
the two-dimensional case. However, the deviations
from scaling are small and therefore may be

neglected in ‘the present discussion.”> The same
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FIG. 7. Plot of InN as a function of ln((R;%,)No)l/2

averaged on sets of polymers for several values of N|.
The dashed line represents the end-to-end exponent.

o]
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N

FIG. 8. Plot of the LFD DNO(N) as a function of

N for SAW’s traced on a cubic lattice for
N,=40,80,160,320.

analysis for obtaining the FD as described for the
two-dimensional case yields for d =3 the value
D =1.68+0.04. This result is in agreement with
the value D =1.67, which is obtained when apply-
ing our method to the results given by Alexan-
drowicz.?* The deviations from scaling are found®’
to be even larger in the case of d =4.

Fractal dimensionality of a single configuration.
One of the main results of this work is the success
in defining and measuring a quantity which is near-
ly the same for almost each of the configurations of
a single chain. In Fig. 10, we present a typical sin-
gle configuration (chosen at random) of a SAW
(N¢=400) traced on a square lattice, as obtained by
computer simulation. The LFD of this chain is
measured according to (3) and is shown in Fig. 11.
It resembles the general picture given in Fig. 3. The
fractal dimensionality of a single configuration is

0 02 04 06 o8 10
N/N,
FIG. 9. Plot of DNO(N) as a function of x =N /N, for

10000 SAW’s on a three-dimensional cubic (d =3) lattice
for Ny =80, 160, and 320.
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FIG. 10. Example of a single configuration of a poly-
mer (No=400) as simulated by the computer.

obtained from a plot of InN as a function of
In((R§)y,)'”* as described above. Using this

method, we have measured the FD of single config-
urations of chains for different values of N,. For
each value of N,, we calculated the average FD
(overall configurations with the same N,) and the
fluctuations from this average. These fluctuations
vanish as Ny increases, as shown in Fig. 12. Thus,
we can obtain the FD characteristic of an ensemble
from a single configuration of a chain, provided
that it is long enough.

0 100 200 300 400

FIG. 11. The LFD of the configuration shown in Fig.
10.

V. SUMMARY AND CONCLUSIONS

Polymer chains exhibit an internal statistical
self-similarity, a fact that enables us to use the FD
as a parameter characterizing a single configura-
tion. The FD behaves like a macroscopic quantity
in the sense that its uncertainty vanishes as N, in-
creases. By contrast, the end-to-end distance
behaves like a microscopic quantity, since its rela-
tive fluctuations remain finite even in the thermo-
dynamic limit Ny— o. The reason for the special
behavior of FD is that FD is a measure of the de-
gree of winding of the chain for most lengths of
scale.

We have shown that there is a direct relation be-
tween FD and the end-to-end exponent v. It is well
known from the analogy of SAW’s to the n =0 vec-
tor model"?*?” of a ferromagnet that there exist
corrections to scaling?® related to the exponent v.
Indeed, a more detailed analysis of SAW’s using the
concept of LFD would permit one to treat these
corrections.?
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semble of polymers as a function of 1/v'N,. Extrapola-
tion suggests that the fluctuations vanish as Ny— 0.
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