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Exact dynamical polarizability for one-component classical plasmas
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We calculate the exact lowest-order collisional contribution to the polarizability of a
one-component classical plasma. Both approximate analytic and numerical solutions are
obtained over a wide range of frequencies and at long wavelengths, with a full taking into

account of previously ignored dynamical effects in the screening. We have established a re-

liable standard against which plasma approximation schemes can be compared in order to
assess their accuracy in the weak-coupling limit. We compare the exact solutions with

those calculated in our earlier velocity-average-approximation scheme updated to take ac-
count of dynamical effects in the screening.

I. INTRODUCTION

A number of years ago a considerable effort was

expended in calculating the first-order (in the plas-
ma parameter y) collisional correction ai to the

frequency- and wave-number-dependent polarizabil-
ity a(kco) =e(kco) —1 [e(kco) is the dielectric
response function]. ' This effort was motivated by
the discovery that, rather than Landau damping, it
is the higher-order collisional process which is the
dominant mechanism for plasmon decay at long
wavelengths.

Oberman, Ron, and Dawson were the first to
calculate the conductivity o = itoct/4' b—ased on a
solution of the first two equations of the
Born-Bogolubov-Green-Kirkwood- Yvon (BBGKY)
hierarchy; their result, which is restricted to high
frequencies, involves only electron-ion correlations
in the k~0 limit. It was Coste who most accu-
rately resolved the problem over the entire range of
co, k values; he formulated an exact (through order

y) expression for the electron-electron correlational
correction to the one-component plasma (OCP) po-
larizability based on a systematic perturbation ex-

pansion of the BBGKY hierarchy.
The renewed interest in Coste's work arises from

recent advances in the dynamical theory of strongly
coupled plasmas: there is now a need to assess the
accuracy of strong-coupling approximation schemes

through comparison with known exact results in the
weak-coupling limit. For example, the OCP
dynamical polarizability formulated in the
velocity-average-approximation (VAA) and then
evaluated in this limit has been compared with the
polarizability calculated from Coste's formulation.
In particular, the question as to whether the slope
of the plasmon dispersion curve increases or de-
creases with y near y=O (Refs. 9—11) emerges as
an important new aspect of the exact theory. In the
light of this, accurate small y data are needed, not
only for the imaginary part of a(kto), but for its
real part as well. The main objective of the present
paper then is to calculate exact values for the QCP
polarizability over a wide range of frequencies and
at long wavelengths. This work completely general-
izes our earlier (exact and VAA) polarizability cal-
culations where only the static effects of screening
were considered; here, we shall fully retain the
dynamical effects in the screening. The calculation
is based on the long-wavelength k/co~0 expansion.
Even though the results are formally given down to
co=O, the approximation is certainly invalid in the
domain m ~ k. This explains the apparent violation
of the

dto co Imai(to) =O
0

sum rule by the exhibited positive definite character
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of coImai(co}. As discussed elsewhere, " in this
domain the calculated Imai(co) values have to be
supplemented by a singular contribution that en-
sures the correct overall behavior.

The outline of the paper is as follows: In Sec. II,
the exact OCP polarizability is exhibited in a form
more illuminating than Coste's original expression.
We briefly review in Sec. III the procedure followed
in Ref. 8 where dynamical-screening effects are ap-
proximated by static screening to obtain analytical
solutions for the first-order polarizability correction
in both the exact and VAA cases. In Sec. IV, we
numerically evaluate the exact and VAA polariza-
bilities now, however, with all of the dynamical-
screening effects fully retained. The resulting
long-wavelength solutions, displayed over a wide

range of frequencies, are compared with the analyti-
cal static screening results of Sec. III. We shall also
see that the VAA reproduces reasonably well almost
all the qualitative features of the exact theory.

II. POLARIZASILITY FORMULATION

The Coste expression for the first-order (in y)
correction ai(kco) to the OCP random-phase ap-

proximation (RPA) polarizability ap(kco) can be de-

rived from a perturbation expansion of the first two

equations of the BBGKY hierarchy. From Eqs.
(3)—(9) of Coste's paper II, one obtains the follow-

ing convenient formulation, expanded for k~0 and
valid through O(k ):

COO

ai(kco) =y ( V„„+Vo„„),4 stat

2
Vstai (2)

Vd» ——Vd+ V, ,

Vz(co)= f dxx f de 5 (iM)ap(pp)ao(pco —p),
2

00 00f dx x f dp &—(p}lao(plu)ao( pco p)+ao( pp)ao( pco p)1—
1S~ N o 1+X

(4)

(5)

where x =p/z, Ic ' is the Debye length, coo (4n ne /m)——'~ is the plasma

ao( pp) =ap( piu)/Ep( pp) is the external RPA polarizability.
The exact expressions (2), (4), and (5) can be compared with their VAA counterparts

V„„(VAA)=—„,
Vg(VAA)= f "dxx'f" dp, S (p, )ap(pitc)ao(pco —p)=

V, (VAA}=0,

frequency and

(7)

quoted from Ref. 8 in the weak-coupling limit.
Hence, on a structural level, while both the VAA
and exact formulas for Vd» share the V~ integral
(with different coefficients), the major difference
comes from the absence of the V, integral in the
VAA formulatiion.

III. STATIC SCREENING
APPROXIMATION

Analytical, explicitly m-dependent expressions for
Vd and V, can be derived by invoking the static
screening approximation. This approximation,
which amounts to the replacement of ap(pp) and
ao(pco —p) in (4) and (5) by

ao(pp)/ep(pO) and ap(pco p)/Ep(pO) — (8)

has been successfully used by the authors for the
calculation of Vd and V, and had been previously

used by Bans in his calculation of correlational ef-

fects on QCP plasmon dispersion. It is instructive
to elaborate here on the work of Ref. 8, especially
for the purpose of gaining insight into what will be
the actual behavior of Vd .and V, when dynamical-
screening effects are properly accounted for.

Introducing (8}into (4} and (5) gives

46 x
Vd(co) = f dx z H(pco), (9)15~

V, (co)

16 o x
2 2

4 —+f dx [1—2x H(pco)],
1SK Qj 0 1++

(10)
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where the expression for

~(pco)= f dp~ (p)chp(pp)&p(pco —p)

23 K 1 N

V15m' 4 2 2 a)p

'3

r

1 ~ ~ ~~~p
4 1+ —z2p, V2 cop p V2p/Ic

in terms of the plasma dispersion function

du uZ(u)

[u + —,(co/cop) ]

16 1 co f~ du Z(u)
157r 2V 2 cop p u [u2+ —(co/co )2]

(13)1 f" d exp( —z/2)
V 2n —~ z —u io-

results when the p-integration is carried out accord-
ing to a procedure originally suggested by Coste
(see
(9) a

with
'1 N K

Q =
V2 cop p

(14)

Appendix A for details). Substituting (11) into The integrals in (12) and (13) have been further
nd (10) readily gives evaluated in Appendix B. %e obtain

I

V~(co)= I 1——2il [1 ver—h(expel )(1 erfi—))]]— rh[rhi(exp')2)Ei(ili) —1],60

V, (co)=——„[1—(exprh )(1—erfi))]+ —[Ei(y rh ) —e"Ei(i) )],V~15 q

where g =
2cop

E, (il')= f, (dh/h)e '

is the modified exponential function, and

erf h=r(2/V )irf exp( —x )dx

is the error function. The appearance of the y
dependence in the imaginary part of V, is the result
of imposing the cutoff ~/y on a logarithmically
divergent integral on physical grounds. Thus, Im V,
contains a term proportional to (cop/co)lny ', which
is dominant as y~O. This important term, which
is present for the same reason when dynamica1-

screening effects are fully accounted for (Sec. IV) is,
however, absent in the VAA.

Figures 1 and 2 show how the real and imaginary
parts of the exact and VAA Vd„„'s behave as func-
tions of co in the static screening approximation.

(i) For small values of co up to about 0.5cop, the
values of Im Vd„„(VAA) are very nearly identical to
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C

0.1-0
, g3

0.2

0.1
20

0.06

FIG. 1. Plot of the real and imaginary parts of Vd„„(exact) as functions of ~/~0 in the static screening approximation.
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FIG. 2. Plot of the real and imaginary parts of Vd~(VAA) as functions of a)/cop in the static screening approximation-

those of

Im Vo„„(exact)—0.301(cop/co)lny

Table I facilitates the comparison between the VAA
and exact values of Vdyp over the entire frequency
range. The absence of the 0.301(cop/co)lny ' term
in the imaginary part of Vd„„(VAA) and, therefore,
in the subsequent formula for the damping of the
collective modes near co=coo is the principal defect
of the VAA.

(ii) Near co=cop, however, the ReV&~„(exact) and
ReVo„„(VAA) are nearly identical. Thus, the
change in the dispersion of the plasma oscillations
due to finite y effects is virtually identical in the
VAA to what is predicted by the exact theory; both
indicate that

The negativeness of 5 has been observed as well in
recent OCP molecular-dynamics experiments'
where, however, data are still lacking below
y=4.9—far above the weak-coupling limit. On the
other hand, Baus, in a calculation based on the

memory function formalism, found that 6&0 as a
result of his approximate treatment of the BBGKY
hierarchy. The positiveness of 6 seemed to be fur-
ther corroborated through a work by Ichimaru, Tot-
suji, Tange, and Pines (ITTP)' who argued that
model-independent considerations require A&0 on
quite general grounds. %e have, nevertheless,
demonstrated elsewhere " that the proofs of ITTP
are incorrect and that there is indeed no a priori
reason to accept 6 & 0.

(iii) Going beyond the plasma frequency, it ap-
pears that

Im Vd„„(exact) 0 301—(cop./co)lny

and Im Vo„„(VAA) exhibit peaks near co =2cop as ex-
pected. Around co=4coo, the contribution from the
real parts of Vd (exact) and V, (exact) are equal and
opposite and Vd„„=0. For larger values of co, ReV,
(exact} dominates since it drops off as 1/co—slower
than the 1/co dropoff exhibited by ReVd (exact)
[and by Vo„„(VAA} as well]. Near co=10cop, the
real part of V, (exact) reaches its minimum and
then slowly approaches zero. It should be noted
that the asymptotic 1/co dependence of ReV(co)

TABLE I. Static screening approximation: Exact and VAA values of Vd~„at co=0, ~p,
2coo and co )gap.

Exact VAA

COp

2coo

0.117+i {o)p/co)0. 301 lny

0.115+i(0.064+0.301 in@ ')
0.060+i(0.087+0.1501ny '}
0 472{coo/m) +i (coo/co)(0. 778+0.301 ln2copy /cg )

0.150+i0.085(co/cop)

0.116+i 0.056
0.076+i O.068
0.900(~p/~) +i (~p/~)0. 338



1690 P. CARINI, G. KALMAN, AND K. I. GOLDEN

which results in the appearance of a 1/~ co
~

term
in the asymptotic behavior of Rea(co) violates the
expected high-frequency structure which requires
that the expansion contain even powers of co only.
This pathological feature is probably a consequence
of the inapplicability of the perturbation expansion
for co )cop/y' since it comes from the V, term, it is
absent in Vd„„(VAA).

IV. DYNAMICAL-SCREENING EFFECTS
INCLUDED

We now come to the central task of this paper:
the calculation of Vd and V, when all of the
dynamical-screening effects are taken into account.
The integrals in (4) and (5) have been evaluated nu-

merically with an accuracy better than one part in
one thousand over most of the range in co. The ac-
curacy of the numerical integration routines was

also checked by applying them to (4) and (5) in the
static screening approxiination and noting excellent
agreement between the resulting numerical solutions
and the analytical solutions of Sec. III.

Figures 3 and 4 show how Re Vd„„(exact) and

Im Vd„„(exact) 0 30—1(co.p/co)lny

behave as functions of co when dynamical-screening
effects are included. The new features are the fol-

lowing.

(i) The real part of Vz„,(exact) has a local max-
imum at co=2.325coo and a local minimum at
co=2.425cop. The imaginary function peaks very
sharply at co=2.375mo and has another very shal-
low peak around co=3coo. The sharp peaks in both
the real and imaginary parts of Vd~(exact} evident-

ly are due to the inclusion of dynamical effects in
the screening. More precisely, these structures arise
because of the convolution nature of the
e(pjM)e(pco —p, ) denominator product in Vo with
the p integration averaging the peaks of the integral.

(ii) For small values of co, the contribution from
the Vo term dominates ReVo„,(exact). It consistent-

ly exceeds the static screening values by about a fac-
tor of 2.

(iii) As co~0,

Im Vd„„(exact)—0.301(cop/co )lny

exhibits a 1/co dependence originating from the V,
term. This is not especially significant, since the
co~0 behavior of Ima&(co) is already dominated by
the similar 1/co dependence of the dominant lny
term.

The unphysical behavior of the dominant part
and of Vdz„(exact} as co—+0 can be explained in
terms of the well-known nonuniformity of the y ex-
pansion which is expected to fail both for
co (0(y)cop and co )0 (1/y)cop

Figures 5 and 6 illustrate the behavior of the real
and imaginary parts of Vo„„(VAA). Again, the real
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FIG. 3. Plot of the real part of Vd„„(exact) as a function of co/coo when dynamical effects are fully included in the
screening. Insert shows the more detailed structure around co/coo ——2.
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FIG. 6. Plot of the imaginary Part of Vdy (VAA) as a function of co/cop when dynamical effects are fully included in
the screening. Insert shows the more detailed structure around co/cop=2.

the difference in the numerical coefficients of the
Vd terms.

(v) Im Vd»(VAA)~0 as co—+0 as a consequence
of the absence of the V, term.

Table II facilitates the comparison between the
VAA and exact values of Vdy when all of the
dynamical-screening effects are retained.

The absence of the 0.301 (coo/co)lny ' term in the
imaginary part of Vd»(VAA), and therefore in the
VAA description of the damping of collective
modes near co=cop, still persists. %hen dynamical
effects are included in the screening, the change in
the dispersion of the plasma oscillations due to fin-
ite y effects is no longer identical in the VAA to
what is predicted by the exact theory. However, in-
clusion of the dynamical effects does not alter the
important fact that 6 ~0 in both theories.

Finally, we might also compare our results for
IIIl VdyII with the work of DuBois and Gilinsky.
The equivalence of their notation with ours is estab-
lished by

ImVd»(co) = . [I(co)+—„J(co)],
15m

where I(co) and J(co) are the integrals calculated by
DuBois and Gilinsky; the "dominant" term resides
in I(co). For co~0 and co~00 because of the dif-
ferent handlings of the k cutoff (DuBois and Gilin-
sky apply an fi dependent cutoff), care has to be ex-
ercised in identifying the dominant terms. At
6)=cop DUBois and Gilinsky give the calculated
values for lny '=ln10. The comparison is now ef-
fected by Table III.

TABLE II. Dynamical-screening effects fully included: Exact and VAA values of Vdy at
co =0 cop 2cop and co ))cop.

—+0

COp

2COp

0.271+i (cop/co)( —0.087+0.301 1ny ')
0.214+i(0.030+0.301 lny ')
0.148+i(0.119+0.1501ny ')

0 457(coo/co)+—i (c.oo/co)[0 78+0 301 Jn(2y. 'coo/. co)]

0.149

0.133+i 0.046

0.106+i 0.078
0.41(cop/cO) +S {cop/co)0. 338



EXACT DYNAMICAL POLARIZABILITY FOR ONE-COMPONENT. . .

TABLE III. Dynamical-screening effects fully included: Exact and DuBois-Gilinsky
values of Im Vdy at ~=0, cop, and ~ &&~p.

Exact DuBois-Gilinsky

COp

(—0.087+0.301 1ny ')
COp

0.723

[+0.780+0.301 ln(2y 'cop/cop)]

( —0.030+0.301 lny ')

0.888

[0.898+0.3011n(2y 'cop/co)]
6)p

V. CONCLUSIONS

We have evaluated an exact first-order (in y) ex-

pression for the correlational correction to the OCP
RPA polarizability. Our numerical solutions, ob-
tained over a wide range of frequencies and valid

through 0(k ) at long wavelengths, fully take into
account the previously ignored dynamical effects in
the screening. In addition to the intrinsic interest of
the results, we have established a reliable standard
against which plasma approximation schemes can
be compared in order to assess their accuracy in the
weak-coupling limit. Comparison of the exact solu-
tions with updated (to account for dynamical ef-
fects in the screening) VAA solutions reveals that,
apart from the absence of the ylny ' term in the
damping, almost all the other important correla-
tiorial and long-time effects are reasonably well

reproduced by the VAA. While the change in the
dispersion of the plasma oscillations due to finite y
effects is no longer identical in the updated VAA to
what is predicted by the similarly updated exact
theory, inclusion of the dynamical effects, neverthe-

less does not alter the important fact that

APPENDIX A: EVALUATION OF H ( pro)

Exploiting the fact that

H(pco)= —f ao'(pp)ap(pco —p) .
7T —ce JM

(Al)

Introducing the convenient dimensionless variable
w =(s'/p)(p, /cop) and noting the RPA polarizability
formula

a&(pp, ) =(~'/p') [1+wZ(w)] (A2)

in terms of the plasma dispersion function
Z(w) =Z'+iZ" [see below (11)], Eq. (Al) can be
written as

K COK COK NK

p' ' -.p ' -.p cop p

(A3)

a(pp) =a'(pp)+ia"(pp, )

=a~(pp)+2ia"(pp)

is a plus function and therefore a~(pp, ) as well as
( pco —

(M ) are minus functions of p„and that
a"(p0)=0, we have from Eq. (11) that

in both theories.
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where

(A5)

—E /2
I2(y)= —,f dw e f dt

(A7)

I
&

——f dw Z"(w) =m, (A4)

I,(y)= f dwZ"(w)Z(w+y),

I3(y)= f dw wZ"(w)Z(w +y) . (A6)

Following Coste, I2 and I3 can be evaluated
through the use of the integral representation of Z
and interchanging the order of integration



P. CARINI, G. KALMAN, AND K. I. GOLDEN

where o is a positive infinitesimal quantity. With

1 1
w = —,(z —s), t = —,(z+s),

—s2/4
I2(y)= f dze ' ~~f ds

(A8)

Similarly,

2
00 00

—E /2

I3(y) = —, dw we dt
00 t —m —y —i,o

s 2/4 —s /42

= —,f dzze '~ f ds . ——,f dze ' ——,yf dze f
(A9)

Eqs. (A4), (A8), and (A9), when substituted into (A3), give Eq. (11).
I

APPENDIX 8- p INTEGRATION
OF EQ. (12)

The p integration of Eq. (12) involves the integral

J&(a)= f du
& &

2Z(u)
p (uz+a2)2

oo

du — Z(u),
u +a

where a =co/(scop). By referring to the differen-
tial equation

—Z(u)+uZ(u)+ 1=0d
dQ

(82)

and the alternative integral representation

Z'(u)= —e " f dte' ~ (83)

that the real part of Z(u) satisfies, we transform
(81) into

1 m a du eJj(a)= — —+ dt e'
2a 2 V2 p u u +(a~/2) (84)

Baus quotes the integration formula given by
Turner

Q +2/2e
p (u2+ a2)2

J&'(a) =f du Z"(u)
p (u+a )

1/2

2

3/2

[1—e" (1—erfq)] . (85)
4g

Substitution of (85) into (84) gives the desired re-
sult for the real part of the integral

7r3/2 2
J&(a)= — + e ~ 1 —erf

is integrable in terms of the modified exponential
integral E~ (g)

" dtE)(rt)= f —e

with the result

1/2 g 2 2

3/2 a2 2 1

The imaginary part of J~ (a) Utilizing (81) and substituting (86) and (89) into
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(12) yields

Vq ——~ I 1 —2rl [1 ~mrte" (1—erfg)]]

(810)

1/2

J„( )
ir 1 ~ du

2 g2 o u

—u2/2

0 2+ 2

rl[rt2e" Ei(g )—1] .
v~ 10

(811)

Next, the p integration of (13) for V, involves the
integral

where rl=(co/2rpp)=a/W2. Equation (810) is the
result quoted in Eq. (14). Since Eq. (6) differs from
(4) in coefficient only, it follows that

Vqy„(VAA)

=—„I 1 —2q [1 Wm—ate" (1—erfrl)]]

(816)

The first integral in (816) is divergent and must

therefore be cut off at u;„=@to/(Y.2rop) (i.e.,
pm~ =«/y) on physical grounds. This is the origin

of the familiar lny term. With the cutoff im-

posed and with a little algebra, Jz (a) becomes

' 1/2
dz

e
2@2 ya /2 z

J~(a)= f0 Q g +g
(812) g 2/2 Igk—e e

a/2 X

Xe " f dte' (813)

Through the use of the alternative integral represen-

tation for Z', the real part of (812) becomes

du

v2 fp u(u +a /2)

(817)

which may then be integrated in terms of the modi-

fied exponential integral and yield~

]/2

Jz'(a) =
2Q

which may be integrated through the use of
Turner's formula. The result is (818)

~3/2
J2(c)=— 1—e' ~ 1 —erf—

(814)

Utihzing the definition of Jz(a) [Eq. (812)] and the
results (814) and (818) in the Eq. (13) expression
for V, gives

The imaginary part of Ji(&)

f e " (815)
p (u2+n2)

can be written in the form

J2'(g) =f — Z"(u)
u(u +a )
1/2

2

[1—e" (1—erfq)]
2 vm

15

—[Ei(y rI )—e" Ei(rt )],
vm 15 rj

(819)

where re=co/2cpp. Equation (819) is the result
quoted in Eq. (15).

J. Damson and C. Oberman, Phys. Fluids 5, 517 (1962);
6, 394 (1963).

H. L. Berk, Phys. Fluids 7, 257 (1964).
3D. F. DuBois, V. Gilinsky, and M. G. Kivelson, Phys.

Rev. 129, 2376 (1963);D. F. DuBois and V. Gilinsky,
ibid. 135, A1519 (1964).

4M. G. Kivelson and D. F. DuBois, Phys. Fluids 7, 1578
(1964).

C. Oberman, A. Ron, and J. Damson, Phys. Fluids 5,
1514 (1962).

J. Coste, Nucl. Fusion 5, 284 (1965); 5, 293 (1965).
7R. Guernsey, Phys. Fluids $, 322 (1962).
K. I. Golden and G. Kalman, Phys. Rev. A 19, 2112

(1979).
9M. Baus, Phys. Rev. A ~5, 790 (1977).

S. Ichimaru, H. Totsuji, T. Tange, and D. Pines, Prog.
Theor. Phys. 54, 1077 (1975).
G. Kalman and K. I. Golden, Phys. Rev. A 20, 2368
(1979).

2M. Baus and J. P. Hansen, Phys. Rep. 59, 1 (1980).


