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We consider a dynamical model containing a short-time scale r, and a long-time scale r~

and exhibiting a continuous instability depending on a control parameter. We study how

the threshold is shifted if the control parameter is noisy with a correlation time r, «rI
with the use of both qualitative and systematic methods of adiabatic elimination. We find

a noise-induced increase of the threshold of instability depending on the ratio A, =r, /r, . If
the fluctuations of the control parameter are Gaussian, and if r, /rI~O, r, /r~~O, on the
scale r~, the fluctuations act as a Stratonovich noise source for r, ~&r, and as an Ito noise

source for r, «r, . The intermediate regime r, =k,r, with arbitrary A, is analyzed and

found to be observable by the noise-induced shift of the threshold associated with it.

I. INTRODUCTION

Dynamical systems exhibiting a continuous insta-
bility as a function of a certain control or bifurca-
tion parameter have found widespread interest, both
theoretically and experimentally, in the current ef-
fort to understand the behavior of systems in non-
equilibrium steady states. Examples are the careful
studies of the photon statistics of lasers near thresh-
old or the investigations of hydrodynamic instabili-
ties near onset, like the Benard instability or the
Taylor instability.

It is well known that close to the threshold of in-
stability such systems are extremely sensitive to
even small perturbations. One source of perturba-
tions is frequently of particular importance, since it
is associated with the mechanism of instability
itself—the perturbations of the control parameter.
In many cases, one has only an indirect handle on
this parameter, and it is then subject to inevitable
random fluctuations, with experimental control
only over its mean value and its variance. The
question arises how such random fiuctuations of the
control parameter infiuence the behavior of the sys-
tem near instability.

Experimentally, this question has been studied in
various systems' by applying artificial and exper-
imentally controlled broad-banded noise to the con-
trol parameter. Even though very different systems
were investigated in this way, the results obtained
established the following experimental facts.

(i) The transition, or instability, remained sharp
after noise was superimposed on the control param-
eter, the new bifurcation parameter now being the
average of the fluctuating control parameter.

(ii) The threshold of instability was shifted to

larger values of the bifurcation parameter by the ap-
plication of noise, with a rough proportionality be-

tween shift of threshold and noise. In other words,
the noise acted to stabilize the system for a certain
regime of the bifurcation parameter. Keeping the
bifurcation parameter fixed in this regime, a lower-

ing of the noise intensity therefore drives the system
through the threshold of instability.

(iii) The transition point is also distinguished as
the point where relaxation and fluctuations of a
macroscopic variable exhibit slowing down, i.e., the
associated rates vanish at this point.

The theoretical work on this problem can be di-
vided in two classes. The first class consists of
numerous papers ' in which the sharp transition
in the presence of noise is interpreted as the bifurca-
tion of a "most probable value" of a macroscopic
variable described by the maximum of an otherwise
broad distribution. It remained unexplained, how-

ever, why only the maximum of the distribution
should be observed in experiments. Disregarding
this serious difficutly, an explanation of the shift of
the threshold has been attempted on this basis. In
the same line of reasoning, one was then forced to
attribute the observed slowing-down effects to the
dynamics of the maxima of probability densities.

In the second class of papers" ' the transition
point was defined as the bifurcation point of the
mean value of a macroscopic variable. In these pa-
pers simple models with noisy control parameter
were studied. These models can be derived from
realistic equations by the methods of bifurcation
theory, and they are known to describe systems near
instabilities, like lasers, Benard convection, and
Couette flow, in a satisfactory way. The noise was

simply superimposed on the control parameter and,
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in view of its broad-banded nature, it was described

by a Stratonovich-Gaussian white-noise source. ' It
has been established for these models that the tran-
sition remained sharp, and was associated with
slowing down under the usual assumption of statist-
ical mechanics that observed values of macroscopic
variables correspond to ensemble averages, in agree-
ment with the first and third experimental facts
mentioned above. However, it was not yet possible
to explain in this way the shift of the threshold. In
the models considered, the threshold remained
unaffected by noise.

The present paper now offers an explanation of
the mechanism by which the threshold is shifted,
but remains sharp. It should not be difficult to test
this explanation experimentally. The explanation
proposed here turns out to be intimately related to
the general question of how a physically given
broad-banded multiplicative noise source in a sys-
tem with widely separated times scales should be
represented in stochastic calculus. Close to the
threshold, only the long-time scales associated with
the instability are of interest. It may then be safely
assumed that a broad-banded noise source acts like
white noise on these long-time scales. Usually, the
actual finite band width of the noise source is then
invoked in order to justify its a priori interpretation
as a Stratonovich source. ' In the present paper we
show that this procedure is not always correct. We
find that the correct a priori interpretation of a
physical broad-band noise source on the long-tine
scales also depends on the comparison of its band
width with the short-time scales of the system, even
if one is only interested in a reduced description on
long-time scales.

In order to obtain these results, we study a simple
model with a long-time scale ~~, associated with a
continuous instability, and a short-time scale
~, &&~I. The correlation time ~, of the fluctuations
of the control parameter is given by its inverse
bandwidth (bco) ' and satisfies r, «rI. For our
model we establish that the Gaussian broad-banded
noise of the control parameter acts like a Stratono-
vich noise source on the time scale r~, if v;. /r, ~0
for fixed spectral noise intensity Q. In this case no
shift of the threhold of instability due to the noise is
obtained, in agreement with the earlier theoretical
work mentioned above. In the opposite case
r, «r„ for fixed spectral noise intensity Q, the
fluctuations of the control parameter act like an Ito
noise source on the time scale &I, and the threshold
of instability is shifted to larger values. All inter-
mediate cases are also found to occur if ~, and ~,
are of comparable size. The experimental investiga-

tion of these different cases seems therefore feasible
and very interesting.

In the remainder of this paper, we proceed as fol-
lows. In Sec. II we motivate and introduce our
model and its stochastic equations of motion. In
Sec. III we present a simple qualitative argument
which explains, for this model, why the superposi-
tion of noise leads to an increase of the threshold of
instability proportional to the noise intensity, and
why the shift of the threshold depends on the prod-
uct of the noise bandwidth and the short time v; of
the sytem. In Sec. IV we present a systematic
analysis of the model in the lowest order of an ex-
pansion in v;/~I with ~, /~, fixed and arbitrary.
Two methods of adiabatic expansions are used,
which agree with each other but differ in complexi-
ty and the scope of their results. The results of the
second method are presented in the Appendix. Sec-
tion V contains our conclusions.

II. THE MODEL

We are interested in systems undergoing a con-
tinuous instability as a control parameter dp is in-
creased. The simplest dynamical model of such a
situation is described by an equation of the form

X =dpX —bX (2.1)

where x is a macroscopic variable, dp )0 is the con-
trol parameter, and b is a positive constant provid-
ing nonlinear stabilization. The threshold of insta-
bility of the state x =0 is at dp ——0. The instability
is associated with symmetry breaking, since the
states x=+(do/b)'r for do&0 are not invariant
under the x~—x symmetry of (2.1).

Equation (2.1) may be derived for many systems
from more basic equations of motion by methods of
bifurcation theory (more specifically by the method
of adiabatic approximation) which make use of the
fact that the time scale r~= I/do close to instability
is much larger than all other time scales in the
sytern. In the following, it will be necessary to con-
sider explicitly also the effects of the fast relaxation
mechanisms on the behavior of the system close to
threshold. We therefore extend (2.1) by allowing
for inertia of the macroscopic variable and consider
the dynamical model

—x+x =dx —bx (2.2)

The parameter d will itself become a dynamical
quantity below. For the time being we replace it by
the constant bifurcation parameter dp. Equation
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(2.2) then contains the two scales r, =l/y and

~
1/dp

~

. If dp is sufficiently close to its
threshold value do ——0, the relation ~I gg~, is satis-
fied. Equation (2.1) clearly is an approximation to
Eq. (2.2) and is obtained from Eq. (2.2) by adiabatic
approximation, if only the dynamics on the long-
time scale ~I are considered.

We are now interested in the case where the
parameter d in Eq. (2.2) is subject to fluctuations.
We assume that these fluctuations are Gaussian and
have a bandwidth hco around zero frequency. The
bandwidth Aco is assumed to be large compared to
&I

' ——do, i.e., 4co~&dp. A convenient model for
these fluctuations is a stationary Ornstein-
Uhlenbeck process. Thus we have, in addition to
Eq. (2.2), the stochastic equations

d(t) =d, +y(t),

y(t) = —buoy+ V2hpiq g(t),

b(x')+—1 d lnx

y dt
=do . (3.1)

Equation (3.1) clearly has no solution for dp &0,
hence x(t)+0 is contradictory in this case, and it
follows that (x ) =0 and

x(t) =0 for dp &0 (3.2)

is the only solution in the steady state. The same
conclusion still holds in the range

T

The main goal is to show that the threshold of in-
stability remains sharp, but is shifted in the pres-
ence of noise. We start by making the hypothesis
x(t)@0, divide Eq. (2.2) by x(t) and take the aver-
age in the time independent ensemble of the statisti-
cal steady state. Using the fact that
((d /dt )lnx) =0, ((d/dt)lnx) =0, in the steady
state, we obtain for arbitrary y (t) with (y(t) ) =0

'2

with the new bifurcation parameter dp ——(d(t) ), the
Gaussian white-noise source g(t), satisfying

(2.4) For

0(do 1
— '-y (3.3)

(g(t)g(0)) =&(t),

and the correlation function

(y(t)y(0) ) =qe —"" (2.5)

We remark that the Gaussian process y(t) with
bandwidth b,co becomes itself a Gaussian white-

noise process at hco~ oo with q/A~ fixed and has
the properties

with

(y(t) ) =0,
(y(t)y(0) ) =gled(t)

(2.6)

(2.7)

III. QUALITATIVE ANALYSIS
OF THE MODEL

We note that in experiments q and hen are the in-

dependently controlled - parameters. Equations
(2.2) —(2.5) completely specify our model. In this
paper we are interested only in the long-time
behavior of the model on time scales of the order of

~
dp

~

. In Sec. III we first give a simple qualita-
tive discussion, which contains the essential physics.
In Sec. IV a systematic forrnal analysis is presented.

dog
1

y

d lax
dt

(3.4)

x =dpx bx +xy(t)+—03 AN

y
(3.5)

where terms of order b,co/y are neglected. Equation
(3.5) can now be used to evaluate the right-hand
side of (3.4). We obtain

2

=—([dp bx +y(t)] ) . (3—.6)
1 d lnx 1 2

y dt y

Neglecting terms of order dp/y on the right-hand
side we obtain

Eq. (3.1) is solvable with (x ) &0. Thus, the
threshold remains sharp, but is shifted to values

dp & 0 in the presence of noise. We now give an es-

timate of this shift in two limiting cases.
Case (i): y»b. co. In this case the short-time

scale r, =y ' of the dynamics governed by (2.2) is
much shorter than the correlation time (hco) ' of
the noise. Therefore, even if the fluctuations of
x(t) induced by its coupling to y(t) are allowed for,
there exists a long-time regime with t &&~, where
x (t) is independent of transient effects and

~
(1/y)x

~
&&

~

x
~

. In this regime, Eq. (2.2) may
therefore be replaced by

We now give a simple qualitative discussion of
the long-time behavior of the model (2.2)—(2.4).

1

(
dlox =—(y(t) ) =q/y,

y
(3.7)
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where use has been made of Eq. (2.5). Thus, the
threshold condition (3.4) now reads

d & —(y(t) ) =q/y= —,Q
y

(3 8)

In the limit do/bco~O, y(t) in (3.5) becomes the
white-noise process (2.6) and (2.7), which must be
interpreted in the sense of Stratonovich, because of
its finite bandwidth. For this case, the model (3.5}
has been solved exactly in earlier work. " ' In the
limit 1/y~O for fixed hem the shift of the threshold
(3.8) vanishes, in agreement with these earlier re-
sults. The opposite limit b,co~op for fixed y,Q is
not yet contained in this analysis and requires
separate discussion.

Case (ii): hco»y. Our goal is again to reduce
the second-order Eq. (2.2} to a first-order equation
of the type (3.5} by making use of y»dp. Howev-

er, there is an obstacle for this procedure: The noise

y(t) contains fluctuations of all frequencies up to
hto. In the second-order Eq. (2.2) the fluctuations
of x(t} with frequencies larger than y are damped
out on scales y

' « t «do ', i.e., only fluctuations

y (t) on time scales longer than I/y are then effec-
tive. This important effect would be lost complete-
ly if the second-order term in (2.2) is simply
dropped. However, we may take this effect into ac-
count by cutting off the frequency spectrum of y (t)
at y. That is, we make the replacement

where yz(t) on the scale dp may again be approxi-
mated by white noise in the sense of Stratonovich,
with

(y,(t)) =0,
(y (t)y (0))=Q 5(t) . (3.14)

Actually Qr =Q. In order to see this we denote

where yz(t) is cut off at frequency y. We then have
in analogy to (2.7)

2qy 2 y (3.15)

In other words, Q is the noise intensity per frequen-
cy interval, which is not affected by the cutoff at y.

We note, finally, that the long-time behavior in
cases (i) and (ii) may be represented by the same for-
mal equation,

x =dox bx +xy—(t), (3.16)

if Eq. (3.16) is interpreted as a stochastic differen-
tial equation in the sense of Stratonovich in case (i),
and in the sense of Ito in case (ii). A systematic
derivation of this result and the intermediate cases
is given in Sec. IV and the Appendix.

y(t)~yr(t)

with

(3.9) IV. SYSTEMATIC
ADIABATIC EXPANSION

(3.10)

If a first-order equation of the type (3.5) is now an-

ticipated to hold on the basis of d0 &gy, we obtain
the estimate

'2
1 d lnx 1 2 I=—(yz(t))= (y (t)) .

AN

1 /2
b

X

and the new parameters

1/2
1

y, t =Qt (4.1)
rQ

We now proceed to a systematic analysis of the
long-time behavior of the model (2.2) —(2.4). It is
useful to introduce the scaled variables

Thus, the threshold condition now reads

(3.1 1) do i btp Qa= E'e v

Q

1/2

(4.2)

The model is then given by the scaled equations
dp& (y (t)) = = —,Q .

EN EN
(3.12)

x= dp —+ x bx3+xyr(t), —
2

(3.13)

We note the different dependence on the bandwidth
compared with (3.8), which should be easy to detect
experimentally. The first-order equation incor-
porating the shift (3.12) and the noise yz(t) reads

with

dx 1

dt
p ~

dp 1 1=—k(x )——[p —g(x )y ],
dt

dy 1 1=——Ay+ )4(t), —
dt e

(4.3)
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k(x)=ax —x, g(x)=x,

(g(t})=0, (g(t}g(0))=5(t) .

(4 4) distribution P(x, t) defined as

P(x, t)= f f W(x,y,p, t)dpdy . (4.8)

a =O(1), A, =O(1), @&&1 . (4.5)

Henceforth, the scaled equations will be used, but
all bars are omitted from the notation for simplici-
ty. We are interested in the behavior of the system
for large y and arbitrary A, , dp, l.e., we consider

Integrating over the Fokker-Planck equation [Eqs.
(4.6) and (4.7)] for the joint probability density W,
one immediately obtains the following equation of
iilotloil fol' P(x, t):

IW= L(e)—W,
p2

(4.6)

The Fokker-Planck equation corresponding to Eqs.
(4.3) and (4.4) may be written in the form

P(x,—t)= —— jl 0(x,t),B = 1 B

B~
' e Bx I 0

where the moments j„m (x,t} are defined as

j„(x,t}=fp "y W(x,y p, t)dp dy .

(4.9)

(4.10)

Lo —— [p —g(x}y]+A, y+ —,)1,
8 B 1 2 B

Bp By By

BL 1
———p —k(x)

Bx Bp

(4.7}

In the following we will primarily be interested in
the properties of the stochastic process x(t) alone,
which can be described by the reduced probability

where W= W(x,y,p, t) is the probability density of
the process at time t, and (1/e )L (e) is the Fokker-
Planck operator, given by

L (e )=La+ eL, ,

Starting from Eq. (4.9) one can derive a closed
equation for P(x, t) in the form of a perturbation ex-
pansion in the parameter e. This can be achieved,
e.g., by generalizing the method developed by
Wilemski' for a systematic derivation of the Smo-
luchowsky equation from the Fokker-Planck equa-
tion of Brownian motion. An alternative method is
given in the Appendix. It leads to the same con-
clusions, but also allows for the perturbative con-
struction of the joint probability distribution.

Using Eq. (4.6) and (4.7) we can write down equa-
tions of motion for the moments j;~ which assume
the following form:

B . 1 . 1 . B
(X,t) = 2(n+Am—j)„+—nk(X)j„, m

1 . A,+—ng(x)j„, +1+ m(m —1)j„m (4.11)

Using the notation of Eq. (4.10) we identify

j00(x, t) =P(x, t) (4.12)

and Eq. (4.9) is contained in Eq. (4.11).
In the limit e—+0 Eq. (4.11) describes a rapidly damped time evolution of the moments j„ for n, m+0 on

a time scale e as indicated by the diagonal term in Eq. (4.11). This observation allows us to integrate Eq.
(4.11) in the asymptotic time regime, where the arbitrary initial conditions j„m(t =0) have already disap-
peared. This can be done conveniently by Laplace transformation or repeated partial integration and one finds

a
n+J„m Bt n+Am

B A,
2

E &k(x}Jn —l, m ~ Jn+l, m + &g(x)Jn —l, m+1+ 2
m(m 1}Jn,m —2

(4.13)

This equation allows us to evaluate the desired moment j I 0 up to a given order in e by expressing it in terms
of J'0 p and its derivatives. The time derivatives which appear in Eq. (4.13) in approximation higher than first
order can formally be eliminated by the use of Eq. (4.9). This approach finally produces a series for the mo-
ment jl p of the following formal structure:
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ji p(x, t)= g e'W'" x, P(x, t) . (4.14)

The calculation of the operators W'"(x,Box) is straightforward, but can become very tedious for higher or-
ders in e. When we restrict ourselves, however, to the first order in e the calculation becomes extremely sim-
ple.

In this order Eq. (4.13) simplifies to

8
ji p(x, t)=g(xj)p i(x, t)+e k(x)jp p(x, t) — j2 p(x t) (4.15)

In order to evaluate the right-hand side of (4.15), one needs to evaluate jz p in zeroth order of e and jp i in first
order of E again using Eq. (4.13). The evaluation of jp i in first order then requires the evaluation of ji i and

jp 2 in zeroth order. We find

j, p(x, t)=ok(x)P(x, t) —— g(x) + g(x) g(x)P(x, t)+O(e ) .1 6 8
2 1+A, Bx Bx

(4.16)

Inserting Eq. (4.16) into Eq. (4.9}generates the desired equation of motion for the reduced probability density
P(x, t}:

P(x, t) =—— k(x)+ — g(x) P(x, t)+ —
2 g (x)P(x, t) .8 i} 1 1 Bg(x) 1 B2

Bt
'

Bx 2 1+A, Bx
'

2 &~2
(4.17)

k(x)=x(a —x ) and g(x)=x

the Fokker-Planck equation assumes the form

(4.18)

Eq. (4.17} has the structure of a Fokker-Planck
equation with a somewhat unusual spurious drift.
As is clear from the derivation, Eq. (4.17) holds for
general g (x) and k (x). It is the basic observation of
this paper that the form of the Fokker-Planck equa-
tion (4.16), describing the statistical properties of
the process x(t) in lowest order in e, is not con-
sistent with either the Ito or the Stratonovich inter-

pretation of the process of Eqs. (2.2) and (2.3) for
y= 00, g(x) =x, k(x) =ax —x . These two stand-

ard interpretations, however, are contained in Eq.
(4.17) as special cases and correspond to the limits
A, —+ 00 and A,~O, respectively.

For the special choice (4.4)

8 8
P(x, t) = ——

Bt Bx
31 1

Q+ X —X

x P(x, t) . (4.19)
1 8

We note that after returning to unscaled variables
via Eq. (4.1), Eq. (4.19) in the limits A, ~O,A, ~00 is
stochastically equivalent to Eq. (3.16), interpreted in
the sense of Stratonovich and Ito, respectively. A
Fokker-Planck equation of the form of Eq. (4.19)
has already been solved exactly by analytic
methods. ""

We summarize the basic results.
(i) The stationary moments after returning to the

"old" unbarred variables (cf Eq. 4.1) are given by

' n/2

lim (x"(t)) =
b

do 1 A,r
Q 2 1+A,

do 1 A, nr
Q 2 1+A, 2 1 gQ

2 1+1,p&

(4.20)

O,
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and especially

(4.21)

When d0 is lowered from large positive values all
moments decrease and finally vanish at the transi-
tion point characterized by

more specifically, the Ito interpretation of (5.1) is
obtained for k~ oo, the Stratonovich interpretation
of (5.1) is obtained for A, ~O. For finite A, , an inter-
mediate interpretation must be given to Eq. (5.1),
which was systematically derived in Sec. IV and the
Appendix, by deriving the stochastically equivalent
Fokker-Planck equation. Another convenient way
to express the stochastic interpretation of Eq. (5.1)
is to write down the equaivalent stochastic differen-
tial equation in the sense of Stratonovich for fixed A,

dp =dp = 1 )L,Q
2 1+A

(4.22) X= dp— 1 A, Q
2 1+A,

x bx —+xy(t) . (5.2)

which depends linearly on the intensity of the noise.
(ii) From the dynamical properties of this model

we want to mention here only that the eigenvalue
spectrum of the process (4.18) consists of a discrete
as well as a continuous branch with slowing down
at the bifurcation point

In a sense the smooth change of the stochastic in-

terpretation which must be given to Eq. (5.1) with
increasing A, may be regarded as the origin of the
shift of the threshold dp, which is observable. In
terms of the measurable quantities y, A~, and

1 )(Q
do dp

2 1+A,
(4.23)

(y(r)') =q
the threshold condition (4.23) reads

(5.3)

For details of the dynamical behavior we refer
to 11,12

dp dp
g . g

p+ Eco
(5.4)

V. CONCLUSIONS

x =dax bx 3+xy(t)— (5 1)

with y (r) given by the white noise (2.6). However,
it turned out in Sec. IV that Eq. (5.1) interpreted ei-
ther in the sense of Ito or in the sense of Stratono-
vich is not obtained in the limit y—+ (x}, if he@/@=k
is kept fixed. Rather, these two interpretations of
Eq. (5.1) are only obtained in two limiting cases,

We have presented here a qualitative and a sys-
tematic adiabatic analysis of a dynamical model
with two widely separated internal time scales,
which is subject to multiplicative Gaussian noise.
The model exhibits a sharp symmetry breaking
transition, accompained by critical slowing down at
da=d0, Eq. (4.23), even in the presence of noise.
The threshold is shifted proportional to the noise
intensity in the direction corresponding to a stabili-
zation of the symmetrical state x =0. The shift of
the threshold also depends in an interesting way on
the ratio A, =hco/y of the noise bandwidth and the
fast relaxation rate y of the model. If the band-
width of the noise is large compared to the slow re-

laxation rate of the system the noise is white on the
long-time scale.

One might have thought that Eqs. (2.2} and (2.3)
for y—+ 00 then reduce to the stochastic differential
equation

For 5~ &~y and fixed q, the transition point be-
comes insensitive to Am.

Various experiments have been performed on sys-
tems with continuous instabilities, in which an in-
crease of the threshold proportional to the applied
noise intensity of the control parameter was report-
ed. These experiments were performed for fixed
bandwidth he@ »10 and varying values of q. How-
ever, a comparison of the chosen 4co with the fast
time scale of the system was not made in the experi-
mental work we know of. In as much as the shift
of threshold was found to be insensitive to hco, our
result (5.4) suggests that hco«y was satisfied in
these experiments. Obviously, experiments of the
kind reported in Refs. 1 —4, but performed with
widely different values of h~, could check relation
(5.4) and the mechanism for the stabilization by
multiplicative noise proposed in this paper.
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APPENMX

In this appendix we present an alternative adia-
batic analysis of Eqs. (4.6) and (4.7) which is alge-
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braically more involved than the method presented
in Sec. IV, but leads to additional results. In partic-
ular, we obtain approximate expressions for the
probability density W(x,p,y, t) of the three-
dimensional process x(t), p(t), y(t). The perturba-
tive method used here closely follows Papan-
icolaou. ' Recent use of this method has also been
made in Ref. 19.

Inserting the expansion

lated to Wo(x,p,y, t) by

P(x, t) =Idp dy Wo(x,p,y, t) (A7)

Lo+8'p+ =0 .

With natural boundary conditions we find

(AS)

and is assumed to be normalized to 1. In addition
to (A2) we also need the solution of the adjoint
equation

8'—8 P+e8'I+a 8'2+

in Eqs. (4.6) and (4.7) we obtain the system

Lotto=0
in order e

o~i= —LI Wo

in orders ', and

(Al)

(A2)

(A3)

Wo (x,p,y, t) =F(x,t), (A9)

where F(x, t) is an arbitrary function of its argu-
ments.

We now turn to the solution of Eq. (A3). Its
multiplication with 8'o+ ——I' and integration over
x,p,y yields the solvability condition

fdy dp I.1 Wo ——0 . (A10)

aw,
LpS"2 ———LI 8'I+

at
(A4)

in order e. Higher orders in e will not be con-
sidered here.

Equation (A2) is easily solved for natural boun-

dary conditions at infinity. %e obtain

Wo(x,p,y, t) =P(x, t)G(x,p,y),
where we introduced the Gaussian

G(x,p,y)

1+~
~)1,3"

~x
~

1+1, 2 2pu 1+A,
)(exp + pi2 X

(A5)

(A6)

and where P(x, t) is an arbitrary function of x, t, re-

I

Integration over x has disappeared from (A10) be-
cause of the arbitrariness of F(x,t) in (A9). Insert-
ing the explicit form of L1 in (A10), the solvability
condition is seen to be satisfied for arbitrary P(x, t).
The solution of (A3) is then well defined and may
be written in the form

W1 (x,p,y, t) =P(x, t)[a+P'"(x,p,y, t)] G(x,p,y) .
(Al 1)

The constant a in the square brackets on the right-
hand side of (All) is arbitrary and represents the
homogeneous solution of (A3). It is fixed by nor-
malization. The remaining term in (Al 1) represents
a particular integral of (A3) and must be calculated.
In view of the form of the right-hand side of (A3)
the particular integral is a polynomial of third order
in p/x and y, multiplied by the Gaussian G. More-
over, the polynomial must be odd under

p,y ~—p, —y. Therefore

3 2 2
P (xpy, t)=A1,o +A30 +Ao, ly+A0, 3y +A1, 2 +A2, 1 yZ P 3 Py P

X x

It is straightforward, but requires some labor, to determine the coefficients. We only list the results

A 1o
———2(1+A,)A01+4 — k(x) —1+x lnP(x, t),1+A, 2(1+A ) 8

1+2A, &2x Bx

A 311
————,(1+A) (14+ 13k, +2A2) [A2(1+2)j.)(2+A )]

4(1+A, ) 1 2(1+A, ) k(x) 1 8
1

A(1+2K)(2+A) A, g3 x 7 Bx

4(1+A.)
A

4(1+A, )
A

2(1+A, )
1

S(1+A,)
3)12(1+2)j,)(2+A, ) A, (1+2K,) A(2+A, ) A(1+2k, )

Finally, we proceed to Eq. (A4). The solvability condition is obtained as before and reads

(A12)

(A13)
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'P'"" = Jdpdy L, W, .
Bt

(A14)

The right-hand side of (A14) may be simplified by inserting (Al 1) and observing that under p,y —+ —p, —y the
operator L ~ and P"' are odd and the Gaussian 6 is even. In addition, the 8/Bp term in L ~ may be eliminated

by partial integration. We obtain, therefore,

fdpdy L, W, =-— fdp dy pP'"(x,p,y, t)G(x,p,y, ) P(x, t)
Bx

(A15)

Using Eqs. (A12) and (A13) the large parentheses in
(A15) may be evaluated. The integrals over p,y in-
volved are given by the moments up to fourth order
of the normalized Gaussian (A6). After algebraic
rearrangements of the terms and combining (A14)
and (A15) we obtain

dP(x, t) 8 k(x)+ P(x, t)
x

Bt Bx 2 1+A,

I

For A~ m,

Wo(x,p,y, t)

=P(x t) 2 &
exp

(m Ax )'~

p
2

&(exp
x

(A18)

1 8+— x P(x, t) .
Bx

(A16)

=P(x, t) 3»2 exp
( Ax )'~

Equation (A16) coincides with Eq. (4.18) obtained

by a more straightforward and economical pro-
cedure in Sec. IV. However, the present calculation
has, in addition, yielded an approximation for the
joint probability density Wo(x,p,y, t), given by Eq.
(A5). Corrections to this expression have also been
obtained in Eqs. (A 1 1)—(A13).

We close this appendix by displaying the two
asymptotic forms of the probability density (A5) in
the limits 4co ~&y, A,~0 and Leo&~y, A, ~00 ~ For
A.—+0,

W, (x,p,y, t)

Thus, for small A, , p/x is distributed very tightly
around y, and y is distributed somewhat less tightly
around 0. For large A,, the distribution of y around
0 becomes very broad, and p/x is distributed
around 0 with width 1/v 2.

These conclusions are independent of the form of
P(x, t), and are not affected by the bifurcation. In
particular, it is interesting to remark that according
to (A5) and (A6)

x x2 2 1+k (A19)

is different from zero to lowest order in e, even in
the steady state with

1 A,'
2 1+A '

( ——y)'
xg exp

A,
2

(A17)

where P(x, t) =5(x). As is shown by Eq. (3.7), the
nonzero value of ((x/x) ) provides for additional
stabilization of the state x =0 and is responsible for
the increase of the threshold of instability.
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