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The velocity-autocorrelation function pD(t) for hard disks is computed for ten values of
the reduced volume, ranging from 30 to 1.4 times the close-packed volume ( Vo) for systems
of as few as 168 and as many as 5822 particles, by a Monte Carlo molecular-dynamics tech-
nique. For values of the time greater than roughly 20 mean-free times (to), the results are
compared with the predictions of a version of the mode-coupling theory for p~(t), modified
to take into account the finite size of the system. Except at the highest densities, the. data
agree with the modified theory when one uses Enskog values for the transport coefficients
in evaluating the theoretical pD(t), provided the comparison is limited to times beyond a
value s;to, with s; dependent on the density. The value of s; appears to increase from
roughly 20 at the lowest densities to 40 at a volume of 2VO. At volumes of 1.6, 1.5, and
1.4VO, the theoretical pD(t)'s are too large out to times as large as 320to, unless we use
values of the transport coefficients rather larger than the Enskog values in evaluating the
theoretical pD(t). The velocity-autocorrelation-function results for t &20to are presented as
the difference relative to the Lorentz-Boltzmann-Enskog prediction, which has the exact
slope at t =0.

I. INTRODUCTION

Alder and Wainwright' first demonstrated, by
molecular-dynamics (MD) calculations, the slow de-

cay of the velocity-autocorrelation function pD(t)
for hard spheres and disks, suggesting the long-time
decay law

pD(t) -rrD(tits)

where t is the dynamical time, to is the mean-free
time, d is the dimensionality (2 or 3), and nD is a
density-dependent coefficient. Subsequently, this
formula was established theoretically, from the ki-
netic theory by Dorfman and Cohen, and from hy-
drodynamic mode-coupling theory by Ernst, Hauge,
and van Leeuwen, ' by Kawasaki, and by
Pomeau, ' see also the review by Pomeau and Resi-
bois.

While the asymptotic result then, appears to be
firmly established, the observations by Alder and
Wainwright were, in fact, quite limited, particularly
in three dimensions for which a single observation
of pD(t) (i.e., for a single value of the density) as a
function of t indicating t decay was reported.
Moreover, the coefficient n~ observed for hard
spheres was later discovered to differ by an ap-
parently significant amount from the theoretical

value. In view of the importance of Eq. (1.1) in the
theory of transport, we felt it worthwhile to con-
firm and, if possible, extend the Alder-Wainwright
results. This project was begun some years ago and
a number of the results have been reported previ-
ously, by us " as well as by others. ' ' lt is our
purpose here to describe our calculations in detail
and to present our results for hard disks. The re-
sults for hard spheres will be presented in a subse-
quent publication.

After describing the system and giving the for-
mulas for the time-correlation functions for self-
diffusion in Sec. II, we rederive in Sec. III the
mode-coupling theory of Ernst, Hauge, and van
Leeuwen (EHvL) but for a finite periodic system in
the expectation that at least some aspects of the
dependence of the numerical results on the size of
the system will thereby be taken into account. It is
this modification of the theory with which the nu-
merical results are compared. In Sec. IV we
describe the Monte Carlo, molecular-dynamics
(MCMD) method used to generate the numerical
data and define the reduced quantities which are ac-
tually reported. In Sec. V we consider several ques-
tions regarding the numerical methods, including
(1) the method of evaluation of the velocity-
autocorrelation function (VACF), (2) the statistical
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comparison of the time-correlation function data,
either with theory or with another set of data, and
(3) the effects of trajectory precision on the results.
The VACF's for hard disks are presented graphical-
ly in Sec. VI for long times and compared with the
modified EHvL theory. Finally in Sec. VII the
short- and intermediate-time data are presented in
the form of the difference between the MCMD re-

sults and the Lorentz-Boltzmann-Enskog theory.

II. GREEN-KUBO FORMULA

U-„(r+)= —, g g u(r;t+L-„),
i =1j+i

j+i j=1
d

L-„= g vkLkek,
k=1

(2.2}

where r,j——r; —rj and the prime indicates the ab-
sence of the j =i term in the j sum.

The Green-Kubo formula for the self-diffusion
coefficient is given by

D= lim TlimD(t), (2.3a)

The system consists of N identical particles of
mass m in a d-dimensional volume V, with posi-
tions r =( r i, r2, . . . , riv) and velocities
u =(vi, v2, . . . , vs'). In order to minimize finite-
system effects, periodic boundary conditions are im-

posed, whereby the volume V is of such a shape that
translations of the volume along d linearly indepen-
dent axes fill all of the space with replications of
the N-particle system in V. For simplicity we as-
sume these translational axes coincide with the Eu-
clidean axes ei, ez, . . . , e~ (where the caret denotes
a unit vector} and denote the corresponding edge
lengths by L1,Lq, . . . , Ld, respectively, so that
L1L2 Ld ——V.

The potential energy of the system U(r+) will, in

general, have a contribution from each replication
of the N particles in volume V,

U(r")= g U-„(r ),
(2.1)

~ ~ ~

V) V2 Vg

where the v; are integers identifying a particular
periodic image and the v; sums extend from —00 to
+ Oo. For the familiar case of pairwise-additive in-

teractions u ( r ),

t
D(t)= J, dt'pD(t'),

pD(t)=(ui„(0)ui (t)),
(2.3b)

where t is the dynamical time, Tlim denotes the
thermodynamic limit, and u; is the velocity in the
center-of-mass frame of reference

u;(t) =v;(t) —P/Nm,
N

P=m g v;(t) .
(2.4)

Note, however, that P is independent of the time by
virtue of the conservation of linear momentum in
the system. The angular brackets denote an ensem-
ble average over the phase x+=(r~,u+), which is
the initial phase for the dynamical trajectory x+(t),
i.e., x+(0)=x+. The symbol P is dependent on the
statistical ensemble. For the canonical ensemble it
denotes 1/ksT, with ks the Boltzmann constant
and T the thermodynamic temperature. For the mi-
crocanonical ensemble P=dN/2E, with E the inter-
nal energy. The appearance of the velocity u; in
the center-of-mass frame of reference rather than
the v; is a matter of some importance in the numer-
ical calculations, although the distinction is of no
consequence in the thermodynamic limit. Indeed,
because of the conservation of linear momentum,
one obtains

pD(t)=co(t) (P )/N m—

cD(t) = (ui„(0)u,„(t)),
(P') =Nm'(u', „),

(2.5)

III. MODE-COUPLING THEORY
FOR FINITE N

An ever-present problem in both Monte Carlo
(MC) and molecular-dynamics calculations arises
from the small number of particles which can be
treated numerically. Since one can perform these
calculations with at most several thousand particles,
considerable care is required in extracting the

so that one can readily calculate either form of the
VACF from the other.

In order to complete our specification of the tra-
jectory x+(t), we define the r;(t) to be the position
of particle i at time t in the infinite checkerboa-rd
version of the periodic system' so that the r; (t) are
continuous and identical to the integral of the veloc-
ities v;(t). The initial positions r;(0) however, will

be assumed to lie in the v =0 cell.
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large-system limit of a calculated quantity. It ap-
pears that for time-correlation functions this prob-
lem is particularly severe, for Alder and Wain-
wright' report that for times t of the order of the
acoustic-wave traversal time I;, =L/c where L is the
shortest edge length of the system and c is the
sound speed, pD(t) is strongly affected by the finite
size of the system. If, then, one requires pn(t) for
large values of the time, say t as large as t, one
must either calculate for a large enough system so
that t, ~ t~, or have at hand some means of correct-
ing for finite-system effects. Here we apply the
Ernst, Hauge, and van I.eeuwen theory to a finite
periodic system, using the canonical ensemble, to
obtain a version of the theory for finite systems.
Several comparisons between our molecular-
dynamics results and this modification of the
theory have been reported previously. '9 An at-
tempt to modify the EHvL theory for finite systems
was also reported by Keyes and I.adanyi, but their
theory is, as we shall see, incomplete.

i=1

g~(r+)=Q(N, V, T) 'exp[ 13U(r—~)],

Q(N, V, T)= f dr+exp[ PU(—r )],
d/2

yp(u) = — exp( —mPu /2),mP 2

2'

(3.4)

to be

(5(vi —vp) W(r& —rp)) = V 'yp(up) (3.5)

whence we obtain from Eqs. (3.1) and (3.3),

eD(t) =V ' f drp f d vplpp(up)up„

X (ui„(t))„. (3.6)

(5(vi —vp) 8'(ri —rp))

= f dx p~(x )5(Vi —Vp)IV(ri —rp),
N

p (x")=g ( ")gqo(u;),

B. Transition to hydrodynamics

A. VACF as nonequilibrium average

X8'(r, —rp)) (3.1)

which is evidently true provided W(r) is normal-
ized in V and is periodic,

W(r+L-, )=8'(r) . (3.2)

Write the ensemble average in Eq. (3.1) as a non-
equilibrium ensemble average (indicated by a sub-

script n) through the definition, for an arbitrary
phase function f(x N)

(f( ").= (f(x~)5(v i vp)W(ri —rp) )—
(5( vi —vp) 8 ( 1'i —1'p) )

(3.3)

in which the dependence of the left-hand side on ro
and vo is suppressed. We compute the denominator
for the canonical ensemble

We follow EHvL in computing eD(t), Eq. (2.5),
by decomposing the canonical ensemble average
into a subensemble average characterized by a given
velocity vp of a tagged particle (particle 1) and a
given distribution IV(r& —rp) of the tagged particle
about a point ro, viz. ,

eD(t)= f drp f dvpup„(ui, (t)5(Vi vp)—

In order to bring Eq. (3.6) into a form in which
hydrodynamic concepts can be applied, we compute
the tagged-particle distribution function in the
nonequilibrium ensemble

(3.7)

where the sum over v accounts for the contribution
from each replication of the v =0 cell. For a given
initial phase x+ and a given time I;, at most a single
v would contribute to the right-hand side. Com-
puting then the average of U„over the distributionf"and comparing with Eq. (3.3), one obtains

(ui„(t))„=f dr f dv f"(r,v, t)u„. (3.8)

Equations (3.6) and (3.8) for the velocity-
autocorrelation function are exact, but require
knowledge of the tagged-particle distribution func-
tion to be useful. Following EHvL, we evaluate the
latter approximately from hydrodynamics. In par-
ticular, we use the EHvL assumption I that the
tagged-particle distribution function and the
single-particle distribution function

N

f(r, v, t)= Q Q 5(r;(t) L-„—r)5(v;(t)—v)—
v r'=1 n
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approach the local-equilibrium distributions quickly
compared with the rate of decay of the autocorrela-
tion function cD(t). By this assumption, then, we

write f"(r,v, t)-f~"(r, v, t) and
f(r, v, t)-f~(r, v, t), where the local-equilibrium
distribution functions are

fi(r, v, t) =n(r, t) m

2irks T(r, t)

' d/2

exp — [v —u(r, t)]2
2nks T(r, t)

d/2 (3.10)

fi"(r,v, t) =P(r, t)
2mk&T(r, t)

exp —— [v —u( r, t)]
2n.ksT(r, t)

in which n(r, t), P(r, t), u(r, t), and T(r, t) are the hydrodynamic fields of number density, tagged-particle
density, mass velocity, and temperature, respectively,

N

n(r, t)= g g 5(r;(t) —L, —r)
v i=1 n

(3.11a)

N

n(r, t)u(r, t)= g g 5(r;(t) —L-, —r)v;(t)
i=1 n

P( r, t )= g 5( r i(t) —L-„—r )
V n

(3.11b)

(3.11c)

with T(r, t) obtained from n(r, t) and the energy
density

N

e( r, t )= y y 5( r;(&)—L-„—r )e;(~)
v i n

e;(t) = —,mv; (t)+ —, g g u[
~
r,j(t)—L-,

~
],

v Jjr

(3.12)

through the (caloric) equation of state e(T,n). For
small departures from the overall equilibrium state
(e,n, T), we have

that discussion here. We replace f", then, by fj'
from Eq. (3.10) whence Eq. (3.8) becomes, after per-
forming the velocity integration,

(v&„(t)}„=J dr P(r, t)u„(r, t) (3.14)

which leads through Eq. (3.6) to the expression of
the velocity-autocorrelation function as a product of
two hydrodynamic fields.

We introduce now the second EHvL assumption:
The long-wavelength components of n(r, t), u(r, t),
and T(r, t) are governed by the equations of hydro-
dynamics, and P(r, t) is similarly governed by
Fick s law of self-diffusion. The reader is again re-
ferred to EHvL for a discussion of this assumption.
The equations of hydrodynamics are written

—n(r, t)= nV u(—r, t),
c2 - ac2—u(r, t) = — V n(r, t) VT(r, —t )

Bt
'

yn
'

y

5T(r, t) = 5e(r, t)
BT
Be

+ 5n(r, t)+aT
Bn

L

5T(r, t) =T(r, t) T, —

5e(r, t) =e(r, t) e, —

5n(r, t) =n(r, t) n. —

(3.13)

It should be observed that the hydrodynamic fields
are periodic in r, so that the local-equilibrium dis-
tribution functions are also periodic.

The significance of assumption I is discussed
thoroughly by EHvL who regard it as the funda-
mental step in the theory. We do not recapitulate

+vV u(r, t)

+(Di v)V V u(r, —t), (3.15)

Bnu= —n
aT

p

T(r, t) = ——V.u(r, t)+yDrViT(r, t),a

y

where p is the pressure and

(3.16)y=CP /Cl},

2 —& ~P
a

I

with cz and c„ the heat capacities per particle at
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v=qlnm,

DT="/n, c'

DI =(/nm+2(d —1)v/d,

(3.17)

in terms of the coef6cients of shear viscosity g,
bulk viscosity g, and thermal conductivity
These equations are supplemented by Pick's law,

constant pressure and volume, respectively, and
with s the entropy per particle. Finally v is the
kinematic viscosity, DT the thermal diffusivity, and

DI the longitudinal diffusivity, given by

5n ~(t)

q-„(t)= u-„(t)

5T~(t)

a =(2m/L)k,
(3.21)

and where the coefficient matrix M k is given in the
Appendix.

The solution of Eqs. (3.20) is, of course, standard
(see e.g., EHvL) so that we omit most details. It is,
however, a matter of some importance that we treat
the k =0 case separately. Using the fact that
MD=0 (see the Appendix), Eq. (3.20}yields

P(r t}—=DV P(r, t),

where D is the self-diffusion constant.

(3.18)
qo(t)=qo(0),

Po(t) =Po(0),
(3.22)

C. Solution of hydrodynamic equations

Because the deviations from a uniform equilibri-
um state are assumed to be small, we linearize Eq.
(3.15) in 5n, u, and 5T. In addition, we define the
Fourier series

which is nothing more than the conservation laws.
For nonvanishing k, we let

u-(t) =[up(t).k]k,k (3.23)
u-„(t)=u-(t)+ u-„.(t) .

k

One finds,

h(r, t) = V 'gh g(t)exp(2nik r/L),

hp(t)= I drh(r, t)exp( 2nik r—/L),
(3.19)

—u'-(t) = —vK u g(t),
dt

—q-(t)=vQ- qp(t),k

(3.24a)

(3.24b)

for an arbitrary function h(r, t), where to simplify
notation we have now taken the volume to be a d-
dimensional cube ' of edge L. Then Eqs. (3.15) and
(3.18) become

qp(t)=

5n~(t)
u~~ (t)

5T-„(t)—q-(t) =M-.q-(t)k —k k

—Pg(t) =—a DP" (t),cf

dt

where

(3.20a)

(3.20b)

with the matrix Qz also given in the Appendix.
Assuming the initial data qp(0) are known, we

write the solution for the system of three equations
in terms of the fundamental solution matrix Qz(t),

qp(t) =Qp(t) Q" (0) 'q-(0)

Qp(t) =[w+exp( ~co+t},w exp( —a~ t), WHexp—( ~~Ht)], —
(3.25)

where the w and cu are the eigenvectors and eigen-
values of Q g,

Qg'w= —cow

and where subscripts H, +, and —label the hydro-
dynamic modes, viz. , the heat mode and the two
sound modes

The long-time behavior of the solutions Eq. (3.25)
are dominated by the long-wavelength components.
%'e simplify therefore by expanding the eigenvalues
and eigenvectors in powers of sc,

a =e"'+ac)"'+ ~ ~ ~

w=w' '+~w'"+ .
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and obtain to leading order in z:

5n -„(t)=nc '[A -+„exp( —lcco+t)

+A kexp( Icco—t)]

+A k exp( aco—Ht),H

u „(t)=A -„exp( Icco—+t) A—
k exp( Icco —t),II +

5T k ( t) =T'-„(t)+T-„(t), (3.26)

T'-„(t)=[(y—1)/ac]

X [A + exp( lcco—+t )

+A k exp( lcco t)],—

T-„(t)= —(1/an)A k exp( IccoHt—),
where

A =„=(c/2yn )[5n k (0)+na5T z (0)]

+ ,
'

u L~(0)-,

A -„=[(y—1)/y]5n -„(0)—(an/y)5Tg(0) .

The leading terms in the eigenvalues are

co+ =+ic+vt;/2+

COH =KDT+ ' (3.27)

where I,=Di+(y —1)DT is the acoustic attenua-
tion coefficient.

The solution is completed by integrating the un-

coupled Eqs. (3.20b) and (3.24a), yielding

P z (t) =P z (0)exp( aDt ), —

u &(t)=u &(0)exp( lc vt) . —
(3.28)

Equations (3.22), (3.26), and (3.28) complete the hy-
drodynamic solution for the d+2 hydrodynamic
fields in terms of the initial values for the latter.

D. Initial hydrodynamic fields

The determination of the initial data nz(0),
up(0), T k (0), and P z (0} is not a simple matter.
%hile it may be true, as asserted by assumptions I
and II, that n k (t), for example, evolves according

to the hydrodynamic equations after a few mean-
free times, the exact n z {t) and its hydrodynamic

value are expected to disagree when followed back-
ward to t =0. Only the k=0 components of the
exact n(r, t), u(r, t}, e(r, t), and P(r, t) and the hy-
drodynamic fields agree for all times, by virtue of

Gz(r —r ') =gz(r —r ') —1, (3.29)

5n k (0)= W „(1+nG&k )exp( —is rp),

where g~(r) is the pair-correlation function. We
observe that in the k~O limit, G~-„~ —1/n so
that 5n p =0, which differs from the grand-

canonical-ensemble result of EHvL. As we shall see
below, this difference does not affect pD(t).

In similar fashion, for the velocity field we obtain
from Eqs. (3.3), (3.5), and (3.11b)

n(r, O)u(r, O) =vpW(r —rp),

u k(0) = vp( W& /n)exp( i lc rp)—, .
(3.30)

where second-order terms in the fluctuations have
been ignored. For the internal energy we obtain
from Eqs. (3.3), (3.5), and (3.12)

5e ( r, 0)= (mu p /2 d /2P) W(—r rp)—
d~r W(rr ~ )G(g)(- ~ r -r)

V

GN'(r) =g~'(r) —ne,
(3.31)

('r'(r —r ')= g ()(r; —F) g ()(r) —r')e)),
i=1 j=1

5e ~ (0)= W~ (mup/2 —d/2P+n 'G~-'„)

Xexp( i a rp) . —"
In the canonical ensemble G~k vanishes as k~0,
whence

the conservation of mass, momentum, energy, and
number of tagged particles.

For the EHvL theory, only the long-wavelength
specification was needed, because the theory was
only concerned with the asymptotic time depen-
dence. Here we are somewhat more ambitious, hop-
ing to find the correlation functions at times which
are long only in this sense that the hydrodynamic
regime has been established. This involves, as we
shall see, wavelengths which are not infinite, but
which are of the order of the cell edge L. The only
available approximations for n k (0), u-„(0), Tk (0),
and P

&
(0) are the nonequilibrium ensemble values.

We shall use these, then, and understand that the
theory should hold, provided the system length I. is
not too small.

We compute first the number density. From Eqs.
(3.3), (3.5), and (3.1 la) we obtain

5n(r, O) = W(r —rp)

+n I dr 'W(r ' —rp)GN(r —r '),
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5e 0 (0)= —,mu o —d /2P
1

which again contrasts with the EHvL result for the
grand canonical ensemble.

Because we require the initial temperature field in

Eq. (3.26) rather than e( r, O), we use Eq. (3.13) with

BT 1

Be „nc„
BT y —1 p+e
Bn, na

to obtain, using Eq. (3.31),

E. Velocity-autocorrelation function

We compute the velocity-autocorrelation function
from Eqs. (3.6) and (3.14), writing P(r, t) and
u(r, t} as Fourier sums of the form of Eq. (3.19)
and with u k(t) given as the sum of u L~ and u k as
in Eq. (3.23), for 4+0. For k =0, because u o (t) is,
from Eqs. (3.21) and (3.22), independent of the time,
we can simply define a convenient similar separa-
tion of uo(t) to be

u 0 (t) = u o (0)—u ~o(0),

u ~ (t)=[uo(0) ei]ei,0

5T q (0)= (mu0/2 d/2P+—n 'Gz
& )

nc~

whence Eqs. (3.26) and (3.28) apply for all k. We
may then write

(1+nGN-„} Wk
n cy

cD(t) =cia(t)+cD(t),II

cD ——(dV) ' f dro f dvypo(uo)V

(3.34)

Xexp( i s ro)—. . (3.32)

Finally for the tagged-particle density we have
from Eqs. (3.3), (3.5), and (3.11c),

X gP p(t)uik(t) vo,
k

P(r, O) = W(r —ro),

P k (0)= W
& exp( is ro—) .

(3.33)

for l =j. or
~

~. We substitute P i, (t) from Eq. (3.28)

and u k(t) from Eqs. (3.26) and (3.28) into the
second equation of (3.34) to obtain

cn(t) =[(d —1)/dn Pm V] g W-„W -„exp[ a(D +v)—t].,

ci, (t) =(1/dn Pm V) g W-„W -„cos(cxt ) exp[ ir (D + I', /2—)t] .
(3.35)

The so-called shear-mode term cD is essentially the
one discussed by Keyes and Ladanyi and in the
thermodynamic limit it is dominant at long times,
leading to the long-time tail equation (1.1}. The
acoustic-mode term cD will be shown to have con-
siderable importance for the finite systems of par-
ticular interest here. It is of interest to observe that
in the long-time limit the k =0 terms dominate Eq.
(3.35), whence cn(t)~1/NPm, and from Eq. (2.5),
pD(t) ~0.

The initial distribution W(r ) of the tagged parti-
cle is seen to enter into our final result in an impor-
tant way, even though in the derivation its proper-
ties do not enter. It would have seemed natural at
the outset to use a 5-function initial distribution for
the position as well as the velocity of the tagged
particle. Nonetheless, to study the effect of this dis-
tribution, we assume W(r) to have the form of a

W(r)=[(2m. )'~ p, ] exp( —r /2p, ),
Wk ——exp(s p /2),

(3.36)

where p is a parameter measuring the width of the
distribution. From Eq. (3.35) then, we see that the
effect of the width of W(r ) is to redefine the origin
of the time for ci„but is more complicated for ct, .

F. Limiting form of VACF for large systems

It is of particular interest to study the approach
of the result, Eq. (3.35), to the infinite-system limit.

Gaussian of sufficiently narrow width that we can
ignore the finite size of the volume V in computing
its normalization and its Fourier components. We
take
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A form of these functions which is particularly use-

ful in this regard can be obtained by using the d-
dimensional Poisson-sum formula

L g h (k/L)

=g J drh(r)exp( 2m—ir 1L) (3.37)
7

(t) yD(t)[1 —2pD(t)]

X exp[ —PD(t)] (for d =3)

hcn~'(t)= , ya—(t)g' e,+(t)+e, (t)

+ — [ei+(t)—ei (t)]
lL,

yD(t)= I4mdn Pm[@ +(D+I, /2)t] ~
I

(3.40)

for an arbitrary function h (k/L), in which the r
integration extends over infinite d-dimensional
space. We note at the outset that the 1 =0 term on
the right yields for cD(t) the thermodynamic
ca (t). Indeed, one obtains from Eqs. (3.35), (3.36),
and (3.37),

cD(t) =cD„(t)+hcD(t),

cD„=[(d —1)/dnPm]

)& I4m. [tt, +(D+ v)t]J

b,cia
——cD (t)

(3.38)

)& g'exp
I2L 2

4[It, +(D+v)t]

where the prime on the 1 sum indicates the absence
of the 1 =0 term. The corrections to the infinite-

system limit cD (t) are seen, then, to decay ex-

ponentially with the square of the length of the sys-
tem. Moreover, we note that cD„(t) reduces to Eq.
(1.1) for a 5 function for 8'( r ), i.e., for p =0.

For the acoustic-mode component, one similarly
obtains

cD(t) =c/„(t)+&cf)(t),
cDII (1/dn Pm )

X I4n [p +(D+I, /2)t]]

x iFi[d/2, —,,pD(t)],
2t2

D(t)== 4[„i+(D+r,/2)t]
'

(3.39)

in which the leading ( 1 =0) term has been evaluat-

ed in terms of the confluent hypergeometric func-
tion ~F&. For the three-dimensional case, one can
write this result in terms of elementary functions by
evaluating the r integral in Eq. (3.37) for arbitrary
1 to obtain

+ (IL+ct)2
8I = exp

4[IJ,'+(D +v)t]

which can be shown to agree with Eq. (3.39) for
cD~„(t). This result will be used in a subsequent pa-
per on hard-sphere results. Again we note the ex-
ponential decay with L of the finite-system correc-
tion terms.

For the two-dimensional case, we have been un-

able to completely evaluate the same r integral in
Eq. (3.37) and have not obtained a convenient ex-
pression for bcn(t). [This does not prevent one,
of course, from using Eq. (3.35) for evaluating cD~~(t)

numerically. ]
In the numerical evaluation of the theoretical

cD(t), we use the sums Eqs. (3.35) for values of the
time sufficiently large that these converge rapidly.
For d =3 we use Eq. (3.40) for smaller values of the
time. For d =2 we continue to use Eq. (3.35) even
for rather small values of the time, or if conver-
gence is impractically slow, we use cd�„(t)from Eq.
(3.39), using the infinite series to evaluate the
latter.

The question of what values for the transport
coefficients should be used in the theoretical formu-
las was discussed by EHvL, both for d =3 for
which the transport coefficients exist, and for d =2
for which the macroscopic transport coefficients are
infinite. We" have also discussed this question
with regard to the time-correlation functions for
shear viscosity for hard spheres. In two dimensions
we will normally use the Enskog values, although it
might be more consistent to use the MD values de-
fined as the integral of the appropriate time-
correlation function for the finite system, or even
values defined as the integral out to the current
value of the time [see, for example, Eq. (2.3b) for
D(t)].

G. VACF in microcanonical ensemble

While the VACF has been calculated in this sec-
tion for the canonical ensemble, our numerical re-
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suits are microcanonical ensemble estimates. The
differences between the two ensembles is, of course,
expected to be of order 1/N

To relate the two, we consider the ensemble aver-
age for an arbitrary phase function in the micro-
canonical ensemble

(f(x ))Nyg=ZNyE f dr f du'A(r )5(E —mv l2)f(x ) (3.41)

where A (r ) is the overlap function [viz. , A (r } vanishes if any r J is less than o and is unity elsewhere], v is
the magnitude of v, and where ZNvE is the partition function

ZNVF f d——rN f duNA (rN}5(E m—u l2) . (3.42)

The velocity integral in Eq. (3.42) can be evaluated in terms of the I function, whence

N(E/2 —1

Z = H dN 2E
I (1+Nd/2)m m

NV ~ ~NV P 7 (3.43)

In similar fashion, the NVT-ensemble average is

(f(x ))Nyl ZNy'z ——f dr f dv A(r )exp( 13mu l2—)f(x ),
where the canonical-ensemble partition function is

' Nd/2

(3.44)

ZNvT ——f dr Nfdv NA (r N)exp( —Pmv /2) = QNV . (3.45)

By introducing a factor 5(E —m V /2) together with an additional energy integration on the right of Eq.
(3.44), and using Eqs. (3.43) and (3.45), one obtains

(f(x"))NV7. —— f d(PE)exp( PE)(PE)" ' '—(f(x ))NyE .
2I 1+Nd/2 0. (3.46)

To apply this to the velocity-autocorrelation function, we require the energy dependence of the latter. For
this purpose, we use the scaling of the time dependence of the trajectory with the magnitude of the velocity.
If we let r N(t;r N, vN) and uN(t;r N, uN) denote the trajectory through the initial point r N, u N, then for any factor
u

rN(t rN avN) . rN(at. rN vN) vN(t rN avN) . auNr(at. rN vlv)

Thus

(vl„(0)ul„(t))Nvz —— (ul„(0)ul„[t(E/Eo)' ])Ny~X X 0
(3.47)

(3.48)

in which g=pEO Nd/2, a=(pE/——g)'~, and It(a)= —a +21na. One can evaluate Jr(g) for large g as a
series of inverse powers by expanding the integrand about a =1. One obtains

1/2

2g'
1+ + t + t +O(g ) ( lx(0v) lx(tv) )NvE

1 1 3 d 12d —3/2
2g' 6 4 dt 4

(3.49)

Combining Eq. (3.49) and the expansion of the I function with Eq. (3.48), we obtain

Now for large N, it is anticipated that the principal contribution to the integral Eq. (3.46) will arise for
E=Nd/2P for which the factor (Pm) ~ exp( PE) has its ma—ximum. Therefore we substitute Eq. (3.47)
with Eo Nd/2P into ——Eq. (3.46) to obtain

2'+ l(.,„(0).,„(t)). =
+

W(g)= f daaexp[gh(a)](ul„(0)ul„(at))Nvz
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r

(ui (0)ui (t))~yz = 1~ 3t +t1 d pd
dt

+O(1/N ) (vi„(0)ui„(t))~vE (3.50)

or solving for the microcanonical ensemble average,
r

(ui„(0)vi„(t) )Nis —— 1 — 3t—+t1 d 2d +O(1/N ) ~vix(0)uix(t))NYT ~ (3.51)

Used with Eq. (3.35), one obtains the EHvL result for the NVE ensemble to order 1/N .

IV. MONTE CARLO MOLECULAR-DYNAMICS
METHOD too =(N)

' 1/2
V rnP

(N —1)(20 )
(4.2)

Our numerical estimates of the velocity-
autocorrelation function are based on a combined
Monte Carlo and molecular-dynamics method
which has been described in some detail elsewhere. '

Briefly, we estimate the pD(t) as averages over P
dynamical trajectories tx~ (t);p =1,2, . . . , P),

pn(t)=P ' g pu (t), (4.1)
p=1

where pD (t) is the estimate for the VACF for tra-

jectory p. For each trajectory, the particle positions
r z (0) at the initial time t =0 are sampled by ordi-
nary Metropolis MC techniques from a statistical
mechanical ensemble. Typically a move attempt is
made for each particle sequentially, with several
tens of attempts to move each particle being made
in proceeding from the initial configuration r~(0)
to initial configuration r~+ i(0) for the next trajec-
tory. Thus, successive points r z (0) and r z+ i(0) are
not strongly correlated. The initial velocities v z (0)
are selected by independent trials by a method
dependent on the ensemble. For the canonical en-
semble, for example, the velocities are sampled
from the Maxwell-Boltzmann distribution by the
Box-Muller method. For the microcanonical en-
semble (which should be distinguished from the
"molecular-dynamics" ensemble for which P=O),
we simply scale the canonical-ensemble velocities to
yield the fixed energy E.

The current version of the program computes
the velocity-autocorrelation function at observa-
tion times which are of variable spacing, viz. , at
times t =kih, 2kih, . . . , nikih, (n&k&+kz)h,
(nik]+2k2)h, . . . , (n$ki+n2kg)h, . . . , Mh, where
the n; and k; are integers, with M= gn; k;, and

where h is a time step, specified in units of the
mean-free time given by the low-density, finite-
system expression

pD (t)= 1

(I+1)Nd
J N

X g g u; (jtoh). u; (t +jcoh),
j=Oi =1

Oh —t
coh

(4.3)

in which I(x) is the integer part of x. In practice,
the spacing of time origins is a matter of consider-
able importance in determining the statistical uncer-
tainty of the VACF. We have typically used values
of ~ such that tiine origins are from 1 to 10 mean-
free times apart; more closely spaced values yield
contributions to the j sum in Eq. (4.3) which are ex-
cessively correlated. The more widely spaced values

appear to be inefficient use of computer time.
It is of interest to observe that the calculation of

the VACF, Eq. (4.3), was performed physically at
the same time the trajectory was generated on the
computer. As a result, in many instances choices of
time-step and time-origin sparing were less than op-
timal but could not be modified without rerunning
a very long (in computer time) calculation. This sit-
uation contrasts to the typical practice for MD cal-
culations for soft potentials in which the trajectory
is recorded (e.g., on magnetic tape), with the calcu-

For the most part, however, the data were obtained
from an earlier version of the program for which
the spacing of observation times is uniform, viz. ,
I n; I = I M I and I k; I =

I I ). Each trajectory is gen-
erated to a fixed number 8 of time steps with 8)M.
On each trajectory the pn(t) are time averaged by
defining the phases x (t) at times t =0, noh,

2coh, . . . , Qh (to and 0 integers) as "time origins. "
Then the time average on trajectory p is given by
the average over time origins
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D (t)= (u i„(0)M i (t)), (4.4)

where hr;(t) denotes the displacement in the
center-of-mass frame of reference

lation of phase functions then performed later, us-

ing the recorded trajectory. For hard spheres and
disks, a detailed record of the trajectory (e.g., con-
sisting of the phases of the colliding pair of parti-
cles after each collision) would be too voluminous
for currently available secondary storage devices.
However, after virtually all the current results were
obtained, we devised a means of compactly record-
ing a trajectory by simply saving the identity of the
pair of particles involved in each collision, in addi-
tion to the initial phase of the system. From this
information one can regenerate the trajectory exact-

ly, without the need to perform the time-consuming
step of determining the next collision.

%Phile nearly all the calculations reported here
generate averages as described above, we have found
empirically that the sampling of initial velocities for
the particles is not generally adequate when the usu-

al pseudorandom-number generators are used in
the Box-Muller method. This is reflected, for ex-

ample, in the initial behavior of the VACF, for real-
izations (not reported here} in which no time
averaging is used, i.e., J=0 in Eq. (4.3}. The results
reported here do not reflect the problem because of
the use of extensive time averaging and because of
the fact that the undesirable correlations present in
the initial velocities decay rapidly with time.
Therefore, a better procedure for the sampling of
initial phases is realized when one adds a "thermali-
zation" step in which the initial phase is taken to be
the actual phase generated after some fixed time on
the current trajectory. Such a thermalization pro-
cess is, of course, normally used in molecular-
dynamics calculations which involve a single long
trajectory.

In addition to the observation of pD(t) directly
from Eqs. (4.1) and (4.3), it is of interest to compute
the time-dependent self-diffusion constant D (t), Eq.
(2.3b), which can be written, in view of Eq. (2.3c),
as

S(t)= (M i(t) ) /2t .

Evidently,

(4.7)

(4.8)

The four quantities pD(t), D (t), D' '(t), and S(t) are
then all simply related. Numerical estimates for
any one of them can be used to estimate the others
through numerical differentiation or integration.
One question we shall address is the relative merits
of these various procedures for obtaining pD(t).

We report here time-correlation functions for
hard-core systems scaled with respect to the Enskog
self-diffusion constant

Dz bD 'Dpp/X—— (4.9)

where Dm is the Boltzmann self-diffusion constant
in the so-called first Enskog approximation

df00
Boo= 7

2Pm
1/2

V mP
N(2cr)"

(4.10)

X is the pair-correlation function at contact, tpp is
the Boltzmann mean-free time, and

bD
' ——1.02709,

bD
' ——1.01896,

(4.11)

are the higher Sonine polynomial corrections in the
Boltzmann theory, the hard-sphere value being that
of Pekeris and the hard-disk value being obtained

by the method given by Chapman and Cowllng28 to
the "ninth approximation. " In particular, we define
the reduced time-correlation functions

(4.6)

While Eq. (4.6) holds for the ensemble averages in-
volved, it does not hold generally for the MCMD
estimates of these quantities. Finally, we compute
the mean-square displacement (Mi(t)) and the
Einstein function

hr;(t) = r;(t) —r;(0)—Pt /(Nm)

and dec; (t) denotes the x component of hr;(t). Also
of interest is the related quantity

(4.5)

Pn(s) =tppn(stp)/Dg,
S

D(s) = ds'pD(s') =D(stp)/DE,
0

D' '(s)=D'f'(st )/D

S(s)=s ' I ds'D'f'(s')=S(stp}/DE,

(4.12)

for which it can be shown, using Liouville's
theorem and the dynamic reversibility of the trajec-
tory, that

where s is the time in units of the mean-free time.
In order to reduce our data as in Eq. (4.12), we

require X, which we compute from the Fade (3X3)
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approximant to the virial equation of state of lee
and Hoover,

y=pVo/Nks T=(1+bnX)/r,

7=& ( I /r)/& ( I /r),
V= V/Vp,

(4.13)

I'(x} is the gamma function, and

A(x)=1+a', 'x+a' 'x

8(x)=1+b' 'x+b2 'x
(4.14)

with the a ' and b ' given in Ref. 25. For the
mean-free time which also appears in Eq. (4.12), we
use the observed value for the particular MCMD
realization under study.

In order to evaluate the theoretical VACF given

by Eqs. (3.35)—(3.40) for comparison with the
MCMD results, we require the transport coeffi-
cients D, g, g, and A, . For the most part we use the
Enskog-theory values

2

'QE = — —
C~ 1+ b/lg

900 (qr) 2

d+2

2 (bnX)
16d

(d+2) m

rico ——(d +2)nmDOO/2d,

c„"'=1.022,

c„"'=1.O16,

(E (——bnX)
16 '900

+ 1T X

AE = cg 1+ bnX
00 (gf) 3

x d+2

(4.15)

16(d —1)
b

(d +2)'~

Zoo
——(d +2) nksDOO/2

c,"'=1.029,

c,"'=1.O2513,

with Dz and Doo given in Eqs. (4.9) and (4.10). As
we previously indicated, the time unit for our re-
sults is chosen to be the mean-free time tp, for

where t/'0 is the closed-packed volume
(3/2d)' Na", with b the second virial coefficient

(2/3d)' m

I (d/2)v.

which we use the values observed in our MD calcu-
lations.

V. NUMERICAL ANALYSIS

In this section we report data for PD(s) and com-

pare them with the predictions of the mode-

coupling theory at long times. Here we consider
several preliminary questions concerning the
method of evaluation of pD(s) and the statistical
analysis of the data.

A. Method of evaluation of VACF

In order to decide the relative merits of comput-
ing the VACF directly via Eq. (4.3), or from one of
the related functions introduced in Sec. IV, we con-
sider the specific case of a system of 5822 hard
disks at a volume of 2VO (where Vo is the close-
packed volume), for which 50 trajectories, each
consisting of 120 time steps of length
A =1.St00 4.01tp were generated with initial
phase sampled from the microcanonical ensemble.
The time-correlation functions PD(s), D(s), D' '(s),
and S(s) were computed at each time step out to
s =80h, with time origins defined at every second
time step (i.e., co =2).

To estimate PD(s) from D(s), D' '(s), and S(s),
we approximate the appropriate derivative with
respect to the time by central differences. This, of
course, introduces a systematic error associated
with the higher differences which are ignored. The
magnitude of this error can be estimated for long
times by computing the first neglected term from
the mode-coupling theory. For the results presented
here, we conclude that the systematic error is small
compared to the statistical uncertainty at least for
t & 20tp.

An additional factor which needs to be recog-
nized in using numerical differences is that the
smoothness of D(s), D'f'(s), and S(s) with time is
affected by the spacing cob of time origins. For the
5822-particle system under consideration, D'f'(s)
and S(s) are found to have a slightly jumpy
behavior at values of s & 20, with the values at time
origins being relatively larger than those between
time origins. ' If one ignores values between time
origins (or considers values located similarly with
respect to time origins, e.g., one time step after each
time origin), the jumpiness is largely removed.
Therefore the three estimates D(s)', D'f'(s)', and
[sS(s}]" (the prime denoting a derivative with
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respect to s) will depend on the differencing interval
4t =kh used to estimate the derivatives. We denote
these estimates through a leading subscript k, e.g.,
kD(s)'. In Fig. 1 then we plot seven estimates of
the velocity-autocorrelation function, using values
of both 1 and 2 for k, at selected values of the time.
Evidently, the k =1 estimates from D' '(s) and
$(s), involving differencing between a time origin
and an adjacent point which is not a time origin,
have large statistical uncertainties. The remaining
estimates all have smaller statistical uncertainties
than have the directly computed pD(s), with
2[sS(s)]" having a standard deviation which is
roughly half that of pD(s).

For this particular system, therefore, „[sS(s)]"
provides the best estimate for pD(s) at long times.
It turns out, in fact, that the same conclusion holds
for essentially all system parameters used in these
calculations. At smaller values of s, however, the
systematic errors tend to be larger and we have nor-
mally used the directly computed PD(s) for s & 20.

B. Statistical comparisons

A second question concerns the statistical testing
of various hypotheses concerning the agreement or

z;=(z;i,z;2, . . . , zk) (5.1)

represent the observed velocity-autocorr elation
function on trajectory i at times t&, tz, . . . , tk As-.
suming the independence of the n vectors, we can
test the hypothesis that the n observed z; vectors,
with mean and variance

S= g (z; —y) (z; —y)Pl—

(5.2)

(where the dagger denotes the transpose) have been
drawn from a normal population having mean g
and unknown variance X. For example, g might

disagreement of our numerical estimates for pD(s),
for example, with either another set of such data or
with a theoretical result. The difficulty with mak-
ing such comparisons arises because of the serial
correlation inherent in the MD method for comput-
ing time-correlation functions.

To make such a comparison in the presence of
serial correlation, we compute the Hotelling T
statistic of multivariate statistical analysis. Let
the n by k matrix Z, consisting of the n row vectors

p (s)

,D(s)'

D()( )

,[sS(s)]"—
sD(s)'

D()( ).

gsS(s)]"

50 100 150 200

FIG. 1. Reduced VACF for a system of 5822 hard disks at a volume of 2VO as a function of time s, in units of the
mean-free time, computed: {1)directly (0); (2) from the time-dependent self-diffusion coefficients {o,h, &&,Q), or (3)
from the Einstein function (+,4). VACF's of types (2) and (3) are evaluated using central differences to approximate
the derivatives, the leading subscript specifying the number of time-steps in the differencing interval.
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consist of pD(t) at the k values of the time as given

by the mode-coupling theory for finite N T. hen T
is given by

T2(n —l, k)=n(y —g) S '(y —g)t .

If the hypothesis is true, then

(5.3)

k n —1
(5.&)

has the so-called F distribution with k and n —k de-

grees of freedom and we can evaluate the probabili-

ty P(T ) that T is no larger than the observed
value. Values of P(T ) close to zero, say less than
O.OS, indicate a better-than-expected agreement be-
tween y and (. Values close to 1, say, less than 0.95,
indicate a worse-than-expected agreement.

While P(T ) permits one to assess the probable
validity of the theoretical g, it does not bear on the
ability of the test to reject the "null" hypothesis (g)
when the true mean is g. The latter depends on the
power function

Pp 1 —P——
in which

(5.5)

P=P~(F', k, n —k,y),
F'=F(1 a, k, n —k—),
y'=[nl(k+1)](g' —g) & '(g' —g)

(5.6)

where e is the level at which we agree to reject the
null hypothesis that g is the true mean [i.e., we re-

ject the hypothesis if P(T )&1—a], F(x,f&,fz) is
the x fractile of the central F distribution for f~

and

f2 degrees of freedom, and Pj (F',f&,f2,p) is the
cumulative distribution function for the noncentral
F distribution with variate F', f&, and f2 degrees of
freedom, and with noncentrality parameter y. We
note that the latter depends on the theoretical vari-
ance matrix X. The quantity P~, then, is the proba-
bility, given that ( is the true mean, that in testing
the null hypothesis, we will in fact find T such
that P(T ) & 1 —a. Since we do not generally know
the variance matrix X, we cannot evaluate Pp exact-
ly. For a given g' we can, however, obtain an ap-
proximate value by using the observed variance ma-
trix S rather than X. The power function depends,
in addition, on the difference g—g', as well as the
level a, and the degrees of freedom k and n —k.

In applying the T test and the power function, it
is instructive to introduce an unknown "linear"
parameter g, writing the theoretical mean

(5.7)

where, for the present comparison with the EHvL
theory, q is the row vector formed by the k values
of the theoretical pD(t) at times t~, t2, . . . , tk. In
the case that one is comparing data with the limit-
ing result, Eq. (1.1), the parameter g is a scale factor
multiplying o.a, perhaps expected to arise from un-
certainties with regard to which values to use for
the transport coefficients. Under the null hy-
pothesis, the parameter has a value go ——1 for which
we find

T'=n(y goo—) 5 '(y goq—)'. (5.8)

If we accept the g =go hypothesis as true at the n
level, then the power function against the alterna-
tive hypothesis g=g& is given by Eqs. (5.5) and
(5.6), with noncentrality parameter

V
=

I go gi I

—[nV.X 'e'~«+I)]'" (5.9)

Again y (and hence Ptt) cannot be evaluated ex-
actly, but if we replace X by S in Eq. (5.9), the re-
sulting approximate values y and P~ are. expected
to be useful. In particular, we can compute Pp for
a series of values of bg =

l go —g~ l
and denote that

value of b,g for which Pt3 is 1 —P as kg~ p. In our
applications of the test below, we report values of
Ago 9$ based on the rejection level a =0.05 ~ (The
values of a and p, of course, need not have been
chosen equal. ) Thus if one rejects the EHvL theory
as false when P(T ) &0.95, and if the true mean
value is go+4gp 95 then the probability of rejecting
the theory is, very roughly, 0.95. We quote values
of Ago 95 as a rough measure of the sensitivity of
the "experimental" data to the variation of g.

Another statistical comparison which is frequent-
ly of value in treating MD data for time-correlation
functions occurs when one has two distinct calcula-
tions having certain common parameters. An ex-
ample might be the question of whether two realiza-
tions for the same density and system size using dis-

'
tinct calculational parameters (e.g., time-origin
spacing) are in agreement. Thus, one might ques-
tion whether two matrices of observations, say, the
n] by k matrix Z'" and the nz by k matrix Z' ',
consisting of n ~ row vectors z ';" and n2 row vectors
z '; ', respectively, representing the velocity-
autocorrelation function at k values of the time
with mean and variance y'1' and 5'~' (j =1,2), have
been drawn from normal populations having the
same means g and unknown variances X'J'. For the
case X'"=X'2' one computes
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T (n)+nz —2,k)

(y(1) y(2)).8—(,(y(1) y(2))t
n)+n2

(n (
—1)S"'+ (n 2 —1)S'2'

S=
nl+n2 2

while for the case X( "QX' ', taking n ( (n 2,

(5.10)

T2(n k) n (y(1) y(2)).S—(.(y()) y(2))t

(5.11)

where

(1)
~l8. =Z

g

' 1/2
n&

(
(2) (2)) (2)zi 3l

n2

y g u). y(l) y(2)
n~,.

C. Trajectory precision

Using Eq. (5.10) or (5.11) then, one can evaluate T2

and compute P(T ) as above for the comparison
with theory.

In particular, one might well expect the trajectory
calculation to require greater accuracy in order to
estimate the VACF at long times than, say, to esti-
mate the equation of state.

For hard-sphere and hard-disk systems, strong
empirical evidence exists that the time average over
a computer-generated trajectory approaches the true
time average, inasmuch as there is agreement' be-
tween the numerical MD (Ref. 37) and MC (Ref.
38) equation-of-state results for hard spheres. 9 To
study the question for the velocity-autocorrelation
function empirically, we compare two calculations
of the VACF, the first using double-precision arith-
metic in the generation of the trajectory and the
second using single-precision on the CDC-7600
computer which carries a 48-bit (about 14 digits)
number in single precision. Both calculations are
for a system of 5822 hard disks at a volume of
10VO. At this density, it is known' from a com-
parison of positions and velocities for such trajec-
tories that the single-precision trajectory appears to
have lost its accuracy completely after about ten
mean-free times, i.e., the root-mean-square differ-
ences between the single-precision particle positions
and velocities and the exact values appear to have
reached their long-time limits. Nonetheless, the
velocity-autocorrelation functions (computed from
„[sS(s)]"),Fig. 2, remain in statistical agreement

up to the 30tp of the comparison. Using the T test
[Eq. (5.11)] to compare the two sets of data beyond

A third question of interest concerns the accura-
cy with which the trajectory is computed. It is well
known' that a computer-generated trajectory will

normally diverge from the true trajectory with in-
creasing time. While it is possible to control the er-
ror by using multiple-precision arithmetic, it is
common practice in MD to generate a very few
(typically one) long trajectories, so that the comput-
ed trajectory bears little resemblance to the true tra-
jectory except for a small portion near the initial
time, the extent of which is determined by the cal-
culational precision. It has been shown, however,
for so-called "Anosov" systems that there exists a
true trajectory which in fact approximates the nu-
merical trajectory, and that the numerical time
average of a function of the phase approaches the
time average on the neighboring trajectory, provid-
ed the trajectory is generated with sufficient accura-
cy. Subject to the validity of the quasiergodic hy-
pothesis, the numerical time average approaches the
ensemble average. While hard disks and spheres ap-
pear to belong to the Anosov class, the question
remains as to what constitutes sufficient accuracy.

single precision
double precision

C)
cu-

X

(0

20 25 30

FIG. 2. Comparison of the reduced velocity-
autocorrelation function for a system of 5822 hard disks
at a volume of 10VO, computed both in double- (Cl) and
single-precision (o ) arithmetic, for values of the re-
duced time s greater than 10.
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10.Sto yields P(T )=0.55. Thus, insofar as we can
tell empirically, the loss of trajectory accuracy is
not reflected in a loss of accuracy in the velocity-
autocorrelation function.

VI. HARD DISKS: LONG-TIME BEHAVIOR

Table I lists the major parameters for the calcula-
tions of the velocity-autocorrelation function for

TABLE I. Parameters and mean-free time results
velocity-autocorrelation function of hard disks. '

for the Monte Carlo, molecular-dynamics calculations of the

V/Vo P Nc to/too

30

20

1512
1512

1512
1512

150
50

150
100

0.5
0.09S3

0.5
0.093

4
20

4
20

100
40

240
3200

240
3200

14
12

15
24

0.953 12+0.000 25
0.9S402+0.000 22"

0.93023+0.000 29
0.930 15+0.000 17

10 S04
1512
5822
5822

150
150
118
119

0.5
0.5
0.5
0.5

100
100
102
51

1000
240
240
300

22
16
48
60

0.862 33+0.000 20
0.861 23+0.000 21
0.860 91+0.000 12
0.860 91+0.000 11'

168
504

1512
5822

150
150
150
50

0.5
0.5
0.2
0.2

4
4
5

10

80
80

150
150

1440
1440
600
600

12
37
19
24

0.727 18+0.000 24
0.728 61+0.00013
0.728 29+0.00015
0.727 93+0.000 13

168
168
504

1512
5822
5822

400
384
190
160
50
50

0.2
0.2
0.2
0.2
1.5
0.2

10
10
10
5
1

10

150
150
150

. 150
40

150

1000
1000
600
600
100
600

12
12
10
26
39
31

0.563 61+0.000 15
0.563 52+0.00020
0.561 94+0.000 15
0.561 57+0.000 11
0.561 45+0.000 09
0.561 45+0.00009"

168
504

1672
4736
5822

101
49
54
50
50

0.1

1.0
0.2
1.5
1.5

10
5

10
2
2

200
20

130
40
40

1000
100
600
120
120

2
3

14
57
70

0.373 77+0.00021
0.374 33+0.000 19
0.37402+0.000 08
0.37416+0.00005
0.37415+0.00004

1.8

1.6

5822

5822

66

50

1.5

1.5

40

40

120

120

109

104

0.31777+0.00003

0.252 20+0.000 03

1.5 5822
5822

50
50

1.5
0.1

40
80

120
400

122
27

0.215 66+0.000 02
0.215 76+0.000 04b

1.4 5822
5822
5822

50
50
12

1.5
0.1

0.005

2
4

20

40
80
60

120
400

8000

148
33

8

0.177 36+0.000 02
0.177 35+0.00005
c,d,b

P is the number of trajectories, h is the time step, m is the number of time steps per time origin, M is the number of
time steps for the last value of VACF calculated, 8 is the number of time steps per trajectory, N, is the total number of
collisions in millions, to is the observed mean-free time, and too' and too are the low-density values for a finite system
and an infinite system, respectively.
Results for short times discussed in Sec. VII.

'Single-precision arithmetic for trajectory.
Chermalization of 100 time steps used in initial phase generation.
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hard disks, with reduced volumes ranging from
1.4Vp to 30Vp. The observed mean-free time, with
its associated standard deviation, is also given in the
table. Except where indicated otherwise, all calcu-
lations are for the microcanonical ensemble, use
double-precision (96 bits) arithmetic for the genera-
tion of the trajectory, and do not use initial ther-
malization. The VACF's obtained from these calcu-
lations are reported in Figs. 3—9. In each figure,
we plot the observed reduced velocity-autocor-
relation function of the specified density for each
system size X and at values of the time which are
selected to permit much of the data to appear
without overcrowding. The curves labeled EHvL
are for the finite-X theory of Sec. III, using Enskog
values for the transport coefficients and with the in-

itial distribution-width parameter p =0. Also
shown in many of these figures is the infinite sys-
tem limit, labeled DC (for Dorfman and Cohen),
Eq. (1.1), also based on the Enskog shear viscosity
and self-diffusion coefficients. The arrows in the
figures indicate the values of the acoustic-wave
traversal time t, =L/c with the sound speed com-
puted from the Pade (3 X 3) approximant, Eq. (4.13).
For figures showing data for more than one system
size, the smaller values of t, refer to the smaller sys-
tems, although some values lie outside the displayed

range of the time; such cases are discussed in the
text. The dramatic effect of the finite-N theory in
bringing the theory into approximate agreement
with the data is evident. We note that for the most
part the Alder-Wainwright' data were restricted to
times smaller than those discussed here.

Table II shows the results of the T comparison
between the data and the modified EHvL theory.
In making these comparisons, however, one expects
the time interval (t;,tf ) for which the comparison is
made to be important. In particular, values of t;
which are too small would be expected to include in
the interval times for which the mode-coupling
theory is not valid. Indeed, one deficiency of the
theory is the lack of an estimate of the time t; at
which it becomes valid. We are, therefore, in the
position of having to estimate t; from the results of
our comparison. Thus, in Table II, these results are
typically given for several different intervals (s;,sf )

of the time (where s =tlto), with sf the longest
time for which data were calculated for the VACF.
The smaller value (or values) of s; usually is associ-
ated with a value of P(T ) near unity, indicating a
probable disagreement between the theory and the
data. That disagreement would, of course, be ex-
pected to worsen for even smaller values of s;. The
larger value of s; typically has a value of P(T ) not

lQO—

X

n O LJ

O—
I

15

V=20Vo

V=30Vp

EHvL —20
DC-20

EHvL —30
I

20 30
1

35
I

40

o o

50 55

FIG. 3. Reduced velocity-autocorrelation function for 1512 hard disks at volumes of 20VO (Cl) and 30VO ( o), as a
function of the reduced time s. Curves show the theoretical results, with the asymptotic large-system result given by
the dotted curve and the various dashed curves showing the finite-system mode-coupling theory. Arrows mark the
values of the acoustic-wave traversal time.
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FIG. 4. Reduced velocity-autocorrelation function at
a volume of 10VO, as a function of the reduced time s
for systems of (0) 504, (o ) 1512, and (Q) 5822 hard
disks. Curves are as in Fig. 3.

particularly near unity indicating probable agree-
ment within the statistical uncertainty. These
larger values of s; in the table, then, are very crude
estimates of the earliest times of agreement of our
data with the theory. If our modification of the

EHvL theory captures most of the finite-system ef-
fects at long times, then it would be expected that
these values would be approximately independent of
the system size and vary smoothly with the density.
Finally the values of hg095 in the table indicate the
sensitivity of the tests to the multiplicative factor g
as discussed in Sec. V. We discuss each density
separately, beginning with the lowest density.

The lowest-density results are shown in Fig. 3,
for volumes of 30VQ and 20VQ, both for 1512-
particle systems; for each volume the data are those
for the first realization listed in Table I. The value
of r, /to (indicated by the arrows) for the 30VO is
smaller than for the higher-density system. Al-
though a number of points lie more than a standard
deviation from the EHvL curve, the T test shows
the difference to be unexceptional, as seen in Table
II. Rather, the power of either set of data to distin-
guish among various theoretical curves is seen to be
not very great, as evidenced by the very large values
of kgQ 95 in the table. The best that can be said in
either case is that the data are consistent with the
theory within, roughly, a multiplicative factor of
1+2.6 for 30VQ and 1+1.7 for 20VQ.

For a volume of 10VO, the data are available for
systems of 504, 1512, and 5822 particles. The data
for all three systems are shown in Fig. 4. The
acoustic-wave-traversal-time arrow for the 5822-
particle system is well beyond the range of s in the
figure. The 1512-particle data have large error bars
and would not be expected to be as valuable in test-

+ ~''
~ .N

~ .'.

lk + -&.g""" . ..gO

0
0 Q

N=168

0 N =504

N =1512

N =5822

EHvL —168

EHvL —504

EHv L—1512

EHvL —5822

DC

Lj LJ

I

20 30
I

35
I

40

t

45 50

FIG. 5. Reduced velocity-autocorrelation function at a volume of 5V0, as a function of the reduced time s for sys-
tems of (0) 168, (0 ) 504, (4) 1512, and (+ ) 5822 hard disks. Curves are as in Fig. 3.
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FIG. 6. Reduced velocity-autocorrelation function at a volume of 3Vo, as a function of the reduced time s for sys-
tems of (0) 168, {0) 504, (6) 1512, and (+ ) 5822 hard disks. Curves are as in Fig. 3.

ing the theory as the other two systems. Nonethe-
less, the power of the T test shown in Table II is
not particularly different for that system. In any
case, the differences between theory and the data
are not significant provided we exclude the leftmost
one or two of the plotted points from each compar-
ison.

The VACF for four different sized systems are
shown for a volume of 5Vo in Fig. 5. The values of
t, /to for the 168- and 5822-particle systems are
outside the range of s plotted. The T comparisons
in Table II show reasonable agreement for X=168
and 5822 for t &22to. However, the more precise
N =504 results appear to lie significantly above the
theory unless t) 27.5tp. The 1512-particle results
are not as precise so that even though the data ap-
pear to have a deeper minimum near 30tp than
given by the theory, P(T ) is not especially large
even for s; as small as 19.2.

For the volume of 3Vp, Fig. 6 shows results for
the same four system sizes. In this case, however,
for the 5822-particle system, the data extend to
about 107tp in the time, so that the time dependence
of the theory is presumably better tested in this
comparison. For 168 particles, the two realizations
(see Table I) are combined in comparing with
theory. It is seen from Table II that one must elim-
inate the first two plotted points from the T com-
parison to obtain a reasonable value of P(T~). For

t; )28.5tp the agreement is adequate. For X =504
the first four points lie more than a standard devia-
tion above the theory. Not surprisingly, then, only
for t;=35.6tp do we observe reasonable values for
P(T ). For the largest two systems, agreement is
adequate for t; =24tp.

Consider next the volume 2Vp for which data for
five system sizes are shown in Fig. 7. In Fig. 7(a)
which gives results for the three smaller systems ex-

tending only to relatively short times, we note rath-
er large discrepancies between the theory and the
data. The 168- and 504-particle data consist of only
a few points each because of the wide spacing of
time origins in these calculations (see Table I). For
the 168-particle system, only the point near 42tp lies
within one standard deviation of the theory, while
neither of the two points for E=504 lie that close
to the theoretical curve. For the 1672-particle sys-
tem, the agreement with the theory seems somewhat
questionable for the largest three values of the time.
For this realization the T test yields P(T~)=0.91
for t; =37.4tp and the value would not improve by
restricting the comparison to even larger values of
the time. %e note that the 986-particle results of
Alder and Wainwright' at times between 20tp and
30tp at this density appear to lie close to our 1672-
particle results.

In Fig. 7(b), the results for the two largest sys-
tems, X =4736 and 5822, are displayed. %e note
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FIG. 8. Reduced velocity-autocorrelation function at
a volume of 1.8Vp, as a function of the reduced time s
for a system of 5822 hard disks. Curves are as in Fig.
3.
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EHvL-4736

EHvL-5822

DC

65.1), I'(T ) is 0.91, a value which is certainly not
extraordinarily close to unity. Perhaps E-dependent
terms not included in the theory become more im-
portant at this higher density, but the paucity of
long-time data for the smaller systems [Fig. 7(a)]
would make such a conclusion highly speculative.

For V=1.8VD, the data in Fig. 8, which have
rather small statistical uncertainties by virtue of the
large number of collisions in the calculation, agree
well with the theory for t;=37.8to. From the T

FIG. 7. Reduced velocity-autocorrelation function at
a volume of 2Vp as a function of the reduced time s for
systems of (a) (CI) 168, (0 ) 504, (Q) 1672, and (b) (Cl)
4736, (0 ) 5822 hard disks. Curves are as in Fig. 3.

that finite-system effects are small for these sys-

tems, as evidenced by the small difference between
the DC curves and the finite-N curves. The results

appear to agree well with either theory, except at
the earliest times. Both sets of data yield reasonable
values for T for t; =40to, although the 5822 results
also agree at t, =32t, .

At the volume V=2VO, then, except for the
1672-particle results, a consistent picture would re-
sult if we suppose that effects not of a hydrodynam-
ic nature remain important up to about 40to.
Beyond that time, the mode-coupling theory and
the data agree quite well. Moreover, the disagree-
ment posed by the 1672-particle system is by no
means serious in that for the time-interval (37.4,

C)

X
gati

M-cl

-~-~ c~o&
iC3 P~ ~~6"~-c~ o

1.6Vp

1.5Vp

1.4Vp

EHvL-1.6
EHvL-1.5
EHvL-1.4

fit-1.4

50 100 150 200 250 300 350

FIG. 9. Reduced velocity-autocorrelation function for
systems of 5822 hard disks as a function of the reduced
time s at volumes of (Cl) 1.6Vp, (0) 1.5Vp, and (Q)
1.4Vp. Curves are as in Fig. 3, except that the transport
coefficients in the theoretical curve marked "fit" have
been selected as in Eq. (6.1) in order to fit the 1.4Vp
data.
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TABLE II. Hotelling T test results for hard disks, for comparison of MCMD results
with the EHvL theory for finite N.

V/Vp sc

30 1512 18.9 50.4 0.71 2.6

20 1512 16
15

19.4
23.7

51.6
51.6

0.72
0.68

1.0
1.7

10 17
16

18.6
20.9

55.8
55.8

1.00
0.54

0.4
0.6

10 1512 17
16

18.6
20.9

55.8
55.8

0.77
0.69

0,4
0.5

10 5822 11
10

20.9
24.4

55.8
55.8

0.93
0.26

0.3
0.3

168 13
12

19.2
22.0

52.2
52.2

0.99
0.29

0.6
0.8

11
10

24.7
27.5

52.2
52.2

0.95
0.85

0.1

0.2

1512 16
14
12

19.2
22.0
24.7

39.8
39.8
39.8

0.86
0.89
0.91

0.2
0.2
0.2

5822 19.2
22.0

38.5
38.5

0.94
0.46

0.2
0.2

168 24.9
28.5

49.9
49.9

0.98
0.71

0.2
0.2

504 32.1

35.6
51.7
51.7

0.98
0.64

0.2
0.3

1512 18
16

21.4
24.9

51.7
51.7

0.92
0.57

0.1

0.1

32
31

24.0
26.7

106.9
106.9

0.90
0.87

168 21.4
32.1

42.8
42.8

0.99
0.99

0.3
0.7

504 31.5 0.81 0.2

32.1

37.4
64.1

64.1

0.96
0.91

0.1

0.1

4736 16
15

32.1

40. 1

152.4
152.4

0.97
0.82

0.1

0.1

5822 17
16
12

28.3
32.1

75.5

152.4
152.4
152.4

1.00
0.50
0.58

0.1

0.1

0.1
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TABLE II. (Contintted. )

V/Vp St.

1.8 5822 17
16
12

28.3
37.8
75.5

179.4
179.4
179.4

1.00
0.41
0.58

0.05
0.08
0.1

1.6 5822 17
14

35.7
71.3

225.8
225.8

1.00
0.96

0.08
0.1

1.5 5822 83.3 263.9 0.1

1.4 5822 14
17

101.6
50.8

321.7
321.7

1.00
0.81

0.1

0.1'

'EHvL based on transport coefficients D =I 6Dz, .r=tl. 5g@, A, =1.2k@, and (=1.2(@.

comparisons in Table II, we see that the fact that
each data point lies below the theoretical curve for
t ~ 75to is not significant in light of the serial corre-
lation in the data, even when the comparison is lim-
ited to that interval.

For the three highest densities studied, viz. ,
V=1.6, 1.5, and 1.4VO, the VACF for 5822 parti-
cles are shown in Fig. 9. We see that the data lie
below the finite-N mode-coupling result and that
the difference increases with increasing density. In
each case, the difference is statistically significant
and extends to such long times that it would not ap-
pear to arise from a slowly decaying transient. One
can attempt to bring the mode-coupling theory into
agreement by using values of the transport coeffi-
cients other than the Enskog values. Indeed, there
is no fundamental reason to use the Enskog values
and an approach in which values given by the time
integral of the appropriate time-correlation function
[for example, the t +ao of Eq. (2.3b), p—rovided the
limit exists, as suggested by both the MD results
and the theory of Sec. III] for the finite system
might seem appropriate. However, for these high
densities, the time-dependent transport coefficients
have not reached a limiting value even at 250to for
V=1.4Vo. One can, however, empirically find
values which bring the theory into agreement with
the data, as shown by the curve labeled "fit" in Fig.
9, for which we used

VII. HARD DISKS: SHORT
AND INTERMEDIATE TIMES

At values of the time earlier than those discussed
in Sec. VI, we present our results relative to the
Lorentz-Boltzmann-Enskog theory which is to first
order in the Sonine polynomial expansion '

[pD(t)], =(Pm)-'exp( —2s td)

and which is to fifth order given by

[pD(t)]&=(Pttt) '

4

X +Bt)t.t exp( —Ats) .
1=0

(7.1)

(7.2)

The Bl and Xl are given in Table III for hard
spheres and disks. Because the relations

(6.1). The fit is not sensitive to the value of D at
this density. In any case, the use of transport coef-
ficients larger than the Enskog values does seem to
move the mode-coupling results in the right direc-
tion. If finite-system values were known for these
coefficients over the entire fluid range, it would be
of interest to repeat the present comparison using
these values.

D =1.6DE g=1.5gE,

A, =1.2A,~, /=1.2' .
(6.1)

4

gA) t'=2',
l=o

(7.3)

These values are similar to our unpublished
molecular-dynamics values for this same system,
except that rl is about 10%%uo lower than given in Eq.

hold, ~ it follows that Eqs. (7.1) and (7.2) are equal
and have equal first derivatives at I; =0. The
second derivative of Eq. (7.2) yields values in agree-
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TABLE III. Coefficients for the Lorentz-Boltzmann-Enskog theory for the velocity-

autocorrelation function of hard spheres and disks, in the fifth Enskog approximation.

4.401418682 X 10-'
5.413 144648 X 10
4.440 122 403 X 10
1.181 558 688 X 10-'
4.669 244 312X 10

1.076 378 065
0.846 022 9532
1.483 431 123
2.029 232 317
2.713 877 712

2.299 809059X10-'
5.754 347 358 X 10
1.274 318433
2.353 397056X 10-'
1.907 528 804 X 10-'

0.809 617 833
1.499 170956
0.617 599 688
1.101796 540
2.014824 180

ment with the exact Enskog values of de Schepper,
Ernst, and Cohen' to seven significant figures.

In presenting data in the early-to-intermediate
time regime, we take advantage of the empirical ob-
servation that the ca(t) correlation function is large-

ly independent of system size at early times. This
can be seen in Fig. 10 which shows the functions

AD ($ ) =pD ($ ) —[pDE ($ )]s,
~cD($)=cD($) [paz($)—]s

I pDz($)]s=(&o/DE)[pDE($ro)]s

(7.4)

for a volume of 10Vo for systems of 504, 1512, and
5822 particles. The second function appears to be
much less dependent on N for small values of $. [A
similar O(1/N) "correction" was applied by Alder
and %'ainwright. '] The same appears true at
V=SVp, 3Vp and 2VO. Therefore, we present re-
sults for b,cD($) only for the largest systems for
which we have made calculations, in the belief that
for these times these represent results near the
infinite-system limit. [The calculation of he&($)
for these and subsequent results is based on Eq.
(2.5), using the observed estimates for (P ) rather
than the exact value. This procedure appears to
minimize the fluctuations in this quantity. ]

The short-time behavior of the VACF has been
considered theoretically by de Schepper and
Cohen and de Schepper, Ernst, and Cohen' who
have computed the leading (linear) term in the time
and obtained the quadratic term in terms of the

equilibrium three-particle correlation function at
contact. The I; term then has been evaluated exact-
ly in the low-density limit and approximately at all
densities for hard spheres by de Schepper, Ernst,
and Cohen. ' The linear term involves the dynam-
ics of a single collision and can be evaluated exactly
for the NVE ensemble (for a finite periodic system),
yielding

cD(0)'=— 2 Nd

dPmro Nd+1

where to is the NVE-ensemble collision rate

G(Nd/2, —,)(Pm)'
to=

iio' cogg~y(o')

cod =2ir /Pd/2),
6 (M, m) =I (M +m)/M I (M),

(7.5)

(7 6)

+I'~$ +O($ ) (7.7)

with E~ given by de Schepper and Cohen in the
thermodynamic limit as an integral involving the
triplet correlation function at contact, given ex-

plicitly in the low-density limit, ' viz. ,

where tv i.(r) is the angle-averaged pair-correlation
function. For early times, then, we find

2to

dpmDE Nd+1

E2 ——[ro/(pmDE)][0. 003 517—0.005 858( Vo/V)+. . . ],
Es ——[to/(PmDE)][0. 108928—0.01060( Vo/V)+ . . ] .

(7.8)
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FIG. 11. Plot of the difference between the reduced
velocity-autocorrelation function and the Lorentz-
Boltzmann-Enskog theory, divided by the reduced time s
for hard disks at volumes of (0) 30, (0) 20, {6)10,
(+ ) 5, (X) 3, (0) 2, (6) 1.5, and (lgl), (+) 1.4 times
the close-packed volume Vo.
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FIG. 10. Difference between the reduced velocity-
autocorrelation function and the Lorentz-Boltzmann-
Enskog theory as a function of the reduced time s at a
volume of 10VO for systems of (0) 504, {o ) 1512, and
(4) 5822 hard disks. (a) Shows the VACF in the
center-of-mass frame of reference while (b) shows the
VACF in the laboratory frame of reference. Solid curve
in the latter is the theoretical early time behavior, Eq.
(7.7), for N =5822.

This theoretical curve (using E =5822) is shown in
Fig. 10(b) for V = 10Vo, but the curve is very steep
at the early times at which there is at least qualita-
tive agreement.

In Fig. 11 we plot bc(s)/s as a function of s for
eight different densities up to a time s=5. For
volumes of 30, 20, 3, 1.5, and 1.4VO, the data are
from the second (or second and third for 1 4) reali-

zation given in Table I for that volume and for the
largest value of N Also sh. own is the theoretical
zero-density line, Eqs. (7.7) and (7.8), using
%=1512 to evaluate the s=0 intercept, corre-
sponding to the system size for the lowest two den-
sities in the figure. Evidently the data are con-
sistent with the exact [except for O(1/N) correc-
tions] low-density slope, but the large error bars for
small s do not warrant a quantitative comparison.
A more extensive low-density calculation taking
data at smaller increments in s would appear to be
needed in order to verify agreement with the
de Schepper-Cohen result.

A calculation in which results were obtained at
small values of the time has been made at the
highest density, viz. , V=1.4VO, with only every
fourth point shown in Fig. 11, but with every point
shown in Fig. 12 up to s= —,. The calculational
parameters for this system are given in Table I, but
variable spacing of observation times was employed,
viz. , InI=t20, 4,2I and IkI =II,5, 10). While or-
dinary least squares is not appropriate for the deter-
mination of the initial slope, correlated least squares
can be applied, provided the covariance matrix for
the observations is known. Although the latter is
not known, a rough estimate for it can be obtained
from the observed covariance matrix for the 12 tra-
jectories generated for this realization. Using the
latter and fitting the ten data points
s =0.0563, 0.1126, . . . , 0.5634 (alternate points in
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FIG. 12. Plot of the difference between the reduced
velocity-autocorrelation function and the Lorentz-
Boltzmann-Enskog theory, divided by the reduced time s
for 5822 hard disks at a volume of 1.4Vo at small

values of the reduced time s. Solid curve is a
correlated-least-squares quadratic fit, given by Eqs. (7.9)
and (7.10). (+) marks the exact theoretical intercept,
given in Eq. (7.7).

the figure) to a quadratic in s,

hc(s) js =a+bs+cs
one obtains

a =—0.000 81+0.000 85,

b =—0.01400+0.002 06,

c =0.007 03+0.001 40,

(7.9)

(7.10)

where the uncertainties are one standard deviation.
We note, however, because these standard devia-
tions have only two degrees of freedom they have
little precision. This curve is also plotted in Fig. 12.
A calculation using neighboring values of the time,
viz. , s =0.0282, 0.0845, . . . , 0.5352, yields values
for the coefficients consistent with these. We note
that the value of the intercept a is marginally con-
sistent with the exact value of 0.00008 given by Eq.
(7.7), which is also plotted in the figure. Unfor-
tunately no value for the de Schepper-Cohen coeffi-
cient is available at this density with which to com-
pare the value of b.

In the intermediate time regime, say from 5 to 20
mean-free times, we present results for b,cD(s) only
for the largest systems available. In Fig. 13(a) we
plot the results for the five lowest densities from
V=30VO to V=3 Vo, showing the increasingly

large deviations from the Enskog theory, indepen-
dent of the divergence arising from the long-time
tail. In Fig. 13(b) the five highest densities
(V=2VO to V=1.4Vo) show the reverse trend,
with negative deviations near five mean-free times.

VIII. DISCUSSION

The calculation of the velocity-autocorrelation
function for hard spheres and disks serves in many
ways as a prototype for calculations of other time-
correlation functions and for more complicated in-

teraction potentials. One expects to be able to ob-
tain greater precision for hard-core systems and be
able, therefore, to obtain more definitive results
both with respect to questions of methodology as
well as questions of physics.

We have, therefore, addressed two types of ques-
tions in this paper. First, we have considered a
number of methodological questions, which would

appear to have general applicability in the calcula-
tion of time-correlation functions. While the dis-
cussion and results in Sec. V are not necessarily de-

finitive, they should prove valuable in the context of
most such calculations.

Second, we have presented VACF results for
many densities and system sizes, particularly with a
view toward testing the validity of the mode-
coupling theory, although results are presented at
short times as well. The current test of the mode-

coupling theory is extensive, particularly in that we
are able to extend the comparison to times beyond
the acoustic-wave traversal time, which signals the
beginning of strong system-size effects. While the
support for the theory is not very strong in the
low-density regime, the comparisons reported in
Table II and in Figs. 4—8 provide strong support
for the validity of the mode-coupling theory. The
high-density comparison (Fig. 9) signals an impor-
tant weakness of the theory by not providing an
unequivocal prescription for the "bare" transport
coefficients. This, together with the lack of some
estimate of what values of the time the theory
should become valid, seem to be problems which
should be addressed by the theory.

The short-time results seem particularly interest-
ing in the form of the correction to the Lorentz-
Boltzmann-Enskog theory. The lack of results at
very short time and low densities has prevented us
from making contact with the exact theoretical re-
sults of de Schepper and Cohen. The structure,
particularly the maximum, seen in Fig. 11 would
appear to be especially interesting theoretically.
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APPENDIX

For the sake of completeness, we list here the coefficient matrix Mk which appears in the linearized hy-

drodynamic equations in k space.
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