
PHYSICAL REVIE% A VOLUME 26, NUMBER 3 SEPTEMBER 1982

Derivation of the static correlation function of the classical electron plasma
by Mori's scaling method
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By the application of Mori s scaling method to the Bogoliubov-Born-Green-Kirkwood-
Yvon hierarchy equation of the classical electron plasma in thermal equilibrium, the static
correlation functions are derived. These correlation functions are used to calculate the
internal energy, which is found to be different from that of R. Abe [Prog. Theor. Phys. 22,
213 (1958)]. This difference comes from the short-range correlation function and its impli-
cations are discussed.

I. INTRODUCTION

Mayer's cluster-expansion method' has been very
powerful in calculating thermodynamical properties
of classical electron plasma and the internal energy
up to the other e was calculated ' by numerous in-

vestigators, where

e=[4trpo(e Ik&T) ]t~z

is the plasma parameter. po is the mean electron
density, T the equilibrium temperature, e the elec-
tronic charge, and k~ the Boltzmann constant. The
higher-order contribution of the internal energy
up to the order e was calculated by extending the
Mayer cluster expansion combined with Meeron
resummation technique.

Another approach to calculate thermodynamic
properties of the classical electron plasma is
through the correlation function. The correlation
function at the order e was calculated by Debye and
Huckel. The correlation functions of the higher
order in e were calculated either by the Mayer clus-
ter expansion method or the plasma parameter ex-
pansion of the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy. In the latter method,
O' Neil and Rostoker' introduced the cut in the
length and defined the two different correlation
functions, i.e., the short- and long-range correlation
functions. These two correlation functions are
matched approximately at the cut. One of the in-
teresting features of this work is that the effect as-
sociated with the three-particle correlation function
on the (two-particle) correlation function is taken
into account. This feature is also considered in the
recent work by Shima et aI,." They reproduce the
O' Neil-Rostoker structure to order e and further
extended the analysis to obtain the e contribution

of three- and four-particle correlation function to
the (two-particle) correlation function. Further-
more, they proposed a new method of calculating
the correlation function in which the generalized
nonlinear fluctuation-dissipation theorems are used.

Recently, Mori has formulated the systematic
method of the coarse graining in space and time
with the aid of the projection-operator method'
and the asymptotic evaluation for large systems. ' '
This asymptotic evaluation for large systems, which
we call Mori's scaling method, is a generalization of
the well-known asymptotic evaluation of the ther-
modynamic functions and their fluctuations of
equilibrium systems, inspired by the hydrodynamic
similarity laws. ' Mori's scaling method can also be
regarded as the generalized small parameter expan-
sions' which systematically combine the expan-
sions in the spatial gradient 8/Br and the slowness
parameter 8/Bt with the conventional small param-
eter expansion such as the density expansion. Mak-
ing use of this method, the divergence-free kinetic
equation is derived from the BBGKY hierarchy
equation of the classical electron plasma and the
properties of fluctuations in p space are clarified. '

Furthermore, the kinetic equation of the dilute
nonuniform electron plasma' is also derived which
cannot be obtained from the conventional density
expansion since the correction term associated with
the nonuniformity is found to be proportional to
po . Thus, the usefulness of the Mori's scaling
method on the theory of plasma physics has been
demonstrated.

We consider a classical electron plasma in ther-
mal equilibrium with a small mean particle density

po in a neutralizing smeared-out background of pos-
itive charge with density poe. In this plasma the
coherent region is defined by the space cutoff b
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which satisfies

A,D~6 A,D, p'o~l"o, po~E po .—1 2 (2)

In thermal equilibrium the correlation function
G(1,2) can be written as

G(1,2) =G(r»), (3)

where rz] ——
~

rz —r]
~

is the distance between the
electrons one and two. In the coherent region, the
correlation function G(rz] ) consists of two different
correlation functions and is distinguished by the
characteristic length A,D and ro, i.e.,

G(rz] ) =Gf(rz] )+Go(rz] )

The correlation function Gf(r» ) is called the long-
range correlation function, and Go(rz]), the short-

range correlation function. They have different
scaling properties. Applying Mori's scaling method
to the equilibrium BBGKY hierarchy equation,
these correlation functions are expanded as follows:

A,D &)b &~rp,

where A,D and ro are Debye and Landau lengths,
respectively, which are defined as

A,I] (kI]——T/4mPoe )', ro eA,D
——.

Mori's scaling method leads to the following scal-

ing of the characteristic quantities for the coherent
region'6'7:

Gf(rz, ) =eGf"(rz] )+e Gf '(rz] )+
Go(rz])=Go (rz])+e Go ("z])+

where Gf", Gf ', Go ', and Go ' are scale invariant
under the coherent scaling shown in Eq. (2).

Gf (rz] ) is the well-known Debye-Hiickel correla-
tion function and Gf '(rz]) is found to be identical
to that derived by O' Neil and Rostoker. ' These
authors calculated the internal energy from the
correlation functions and found it to be identical to
that given by Abe. We have also calculated the
internal energy from the correlation functions and
obtained a different result from that of Abe. This
difference comes from the short-range correlation
function Go '(rz] ). O' Neil and Rostoker have
shown through the plausible argument that the
short-range correlation function $11(rz]) (in their
notation) is of the following nonlinear Debye-
Huckel form:

~0
NII( r2 1 ) 1 +exp

Making use of Mori's scaling method, the corre-
sponding short-range correlation function Go '(rz])
to Eq. (7) is found as

Go (rz])= —1+e(0) —r0/r21

The details of the above results and their implica-
tions are discussed in the subsequent sections.

II. DERIVATION OF THE CORRELATION FUNCTIONS

BBGKY hierarchy equation' for classical electron plasma can be written as

n

V]p'"'(r], rz, , r„)=—g [V]u(r]f)]p'"' Jdr„+]p'"+—"(r], . . . , r„+])V]u(r] „+]),
J=2

(9)

p (r])=po

p"'(r], rz) =po[1+G(&2])],
p"'(r], rz, r3) =po[1+(1+P]2+P]3)G(r32)+K(rz], r3])],
p' '(r], rz, r3, r4)=po 1 (1 P P P P P P )G(r )

(10a)

(10b)

(10c)

[ + + 13 + 14 + 23 + 24 + 13 24 43

+(1+P]3+Pz3)G(rz] )G(r43)+(1+P]z+P]3+P,4)K(r32, r42)+I(rz], r3], r4])],

(10d)

where u(r;~)=rolrj is the Coulomb potential (normalized by temperature) between the electron i and j.
p'"'(r], , r„) is the n-particle distribution function. Ursell-Mayer expansion of the n-particle distribution
function with Eq. (9) yields

where P,j is the exchange operator between i and j. Substituting Eqs. (10) into Eq. (9), we find the following
equations:
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V]6(rq] )+[1+6(r2] )]V]u(r2] )= p—ofd r 3[6(r32 )+H( r2], r3])]V]u (&3]), (11)

V]H(12] r3])+ (r2] ]3])V][u( 2] )+u( 3] )]

[—G(r3] )+6(r32)]V]u(r2] }—[G(r2] )+6(r32)]V]u(r3] ) p—ofd r4

X [6(r2] )G(r43)+6(r3] )6(re)+H(r3z, r42)+I(r2], r3], r4])]V]u(r4] ) . (12)

A. Short-range correlation function

We define rq] ——r, r3] ——R, ]u =(r2] r3]/r2]r» ), and normalize lengths by the Landau length ro. After some

algebra, Eq. (11}can be written as

——[I+6(r)]=—f dR f dIJp[G[(R +r 2Rrp—)'~ ]+H(r,R,p))],
dT p'2 0 —1

(13)

where we 1ntroduced the cutoff length a satlsfy1ng ro &a «AD. The scaling properties of cutoff length a 1s

a ~a (Ref. 17) and ]2 jro~ 1 in the scaling limit.
It is clear from Eq. (13) that the short-range correlation function 60(r) can be expanded as

60(r)=GO '(r)+e Go '(r)+ (14)

——[1+60 '(r)]=0.
p

2

It is easy to show the solution of Eq. (15}with the boundary condition 60 '(r) —+0 as r~~.
6(0](y) 1+e 1lr

Since the normalized lengths r and R scale as r~r and R~R, the lowest-order terms in the expansion e of
Eq. (13) are

dGo '(r)
(15)

dp

B. Long-range correlation function

By normalizing all the lengths by the Debye length A,D, it becomes clear that the long-range correlation
function can be expanded as

G&(r) =eG&"(r)+e GI '(r)+

In the lowest order of the expansion for Eq. (11),we find

(1) 1 1 (1) 1
V]GJ ( 2] )+V] ———— d r36y (r32}V]

r21 ~31

(17)

In the next order of the expansion, we clearly see the difference between Mori's scaling method and the con-
ventional small parameter expansion as follows:

dG' 'r
zG~"(r)= ——, f dR f dpp[GI '[(R +r 2Rrp)' ]+H—I '(r, R,p)]

+ —,f dR] f dp p [GI"[(R]'+r 2R]rp)'~ ]+H—o"(r,R],p)],

where H~
' and H0" are two different three-particle correlation functions. This difference comes from the

scaling properties of R and R &, i.e.,

R ~R, R1~eR1 . (20)

In other words, unnormalizing the lengths R and R ~, these lengths take the values of the following order of
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magnitude: R -A,D and R] -ro T. he quantities dR and dR] in the right-hand side (rhs) of Eq. (19)
0

come from the scaling properties of cutoff length a, i.e., a —+a, while Az~e A]] so that ]2 j'Az~e in the scal-

ing limit.
Three-particle correlation functions Hf ' and Ho" are derived in Appendices A and 8, respectively. The

second term in the rhs of Eq. (19) is, however, found to vanish as shown in Appendix B. Therefore, Eq. (19),
which determines Gf ', can be rewritten in the following form:

V ]Gf (Pp] )+Gf (r2] ) V ]
(2)

rz&
fdr3[Gf (P3$)+Hf' '(rz], r3])]V]

4m' r
(21)

We now define the Fourier transform of the correlation functions as follows:

G(q)= fdr»e "G(r»),
~ + + ~ + +—s ~ r r

Hf (q2 q3)= fdr2]e ' " dr3]e Hf (r2] 13])

The inversion formulas of the correlation functions are

(22)

(23)

(2m )
~ ~ ~ + +

H(2)( ) i d
' ']2' "2] d

' q 3'~3]H(2)(
)f ""= '. J" q"' ' q"' '

f q'q(2~)' "
It is easy to solve Eq. (18) and we find

(24)

(25)

G(1)( )
+1

(1) l —rGf'"(r) =——e
T

where the wave number q is normalized by A,D.
Taking the Fourier transform of Eq. (21), we find

(26)

(27)

(4n)f d.q' q q' 1 1 f dq' q.q'H(2)(
q

q +1 (2n. ) q' (q —q') +1 q +1 (2') q'

Making use of the expressions Hf (qq, q3) derived in Appendix A and simplifying it, we obtain the following:

(4m) dq ' q.q' q 1
Gf q= (q'+1)' (2n. )' q'+ 1 I +q'+q' 2q. q

' q'—

2q

(q +1)
q' 1+q +q' q' —q+i

] +q' 2qq' q'+q+i

3

(29)
(q2+1)2 2i+q

This expression of Gf '(q} is identical to that derived by O' Neil and Rostoker. ' The inverse Fourier
transform of Gf '(q) can be similarly obtained and we find

G(2)( )
2T

1—+—e
T 3

3 r
1 3

1 „(3—r)—e " "e 'd (3+r)e" ~ e
dt

4 3 4 t 4 3

III. DISCUSSION

In Sec. II, we derived the short-range correlation
function Go(r} to the order e while the long-range

t

correlation function Gf(r) was derived up to the or-
der e . In order to extend it to the higher order in e,
the following expansions of the correlation func-
tions are required:
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Go(r) =e'G'Q" (r)+e'Go" (r)+. . .
,

Gf(r)=eGf' (r)+e Gf (r)+E Gf '(r)+

Hf(12] 13])—E Kf (r2] ~3])

+Is Hf (12] I 3])+

U 3 e e ' e
dt —1 ——e

NkgT 2 4 & t 2

——
( —, +ln3e+y), (33)

where the last terms in the rhs of the three above
equations are not obtained in this work. Besides the
above quantities, we have the contribution of the
three-particle correlation function Ho(r2], r») to
the order e, where the scaling properties of two
lengths r2~ and r» are r2~ ~e 'r2~, r» ~r»,
respectively. To this order e, the four-particle
correlation function If(r2], r», r4]) also has to be
calculated, where r2&~e r2~, r»~e r», and

—I —1

r&j ~e 'r4&. The structure of the BBGKY hierar-
chy equation of Hf(r2] rs]) and If(rz], rz], r&]) in
our method is similar to that of the recent work by
Shima, Yatom, Golden, and Kalman" who also
reproduced O' Neil-Rostoker structure to the order

However, they do not have the corresponding
two- and three-particle correlation function to
Go '(r) and Ho" (rz], r»), although we did not cal-
culate these quantities explicitly since we limited
ourselves to the order e in calculating the internal
energy.

The internal energy U of the classical electron
plasma can be easily calculated by the following
formula which is derived by taking account of the
contribution from the background ions:

U 3 Po ro——=—f dr2] G(1,2),
NkgT 2 2

where —, in the left-hand side (lhs) of Eq. (31)
represents the kinetic energy of electrons, and N is
the number of electrons. Since the correlation func-
tion G(1,2) consist of the short- and long-range
correlation functions, Eq. (31) can be rewritten in
the following form:

U 3 e
NkgT 2 2

rGO (r)dr

+ —, f r[eGf' '(r)+e Gf '(r)]dr,

where y is Euler's constant, and the first term in the
rhs of Eq. (33) comes from the short-range correla-
tion function. Contribution from Gf'"(r) is propor-
tional to e ' and, if we expand this term in e, we
will have the contribution to the order e . This is
not allowed in Mori's scaling method since this
method enables us to derive the quantities of our in-
terest at each level of the expansion of e and the
contribution from Gf'"(r) is limited to the order of
e. The contribution from Gf'"(r) to the order e is
already taken into account as clearly shown in Eq.
(19).

We now compare Eq. (33) with that of Abe in the
following:

U 3 e e 2 ln3e
NkgT 2 2 2 3 2

+ —y—

5 1
dt+y8 4

—0.4258m
U 3

8 Abe

In the small plasma parameter limit, Abe's expres-
sion of the internal energy has been regarded as
correct. In regard to this belief, the author would
like to point out that Abe did not insist on it, as is
clear from his remark on the diagrams not taken
into account: "it is quite probable that their contri-
bution are of higher order. . . ." ' The author does
not insist that Eq. (34) is valid at the limit of small
values of e. He has simply shown that if one ap-
plies Mori's scaling method to the classical electron
plasma in thermal equilibrium, the internal energy
is expressed by Eq. (34).

(32)

where all lengths are normalized by ro and A,D in
the first and second term of the rhs of Eq. (32),
respectively. The quantities f dr come from the
scaling properties of the cutoff length a, i.e.,
a/ro~1 in the scaling limit.

Substituting Eqs. (16), (27), and (30) into Eq. (32),
we obtain
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Normalizing all lengths which appear in Eq. (12) by A,D and taking account the contribution from the
short-range effect similar to the second term of Eq. (19), we find Hf(r21, r31) can be expanded as follows:

Hf(r2„r»)=e Hf( (r2] r3))++ Hf + (A 1)

where the normalized lengths r21 and r31 scale as r21~r21 and r31~r31, respectively. Substituting this equa-
tion into the normalized form of Eq. (12), we find the following equation for Hf '.

—[ f '( 21)+Gf"( 32)]V)

f dr4[Gf (r21}Gf (r43)+Gf (r31}Gf (r42}+Hf (r32 r42}]V14~ ~41

Taking the Fourier transform of Eq. (A2) and making use of Eq. (26), we obtain the following equation:

Hf '(q2, q3}+q3Hf '(q), q2)=A(q), q2),

, 1+q)+qZ+q(. q2

(q2+1)(q)+1)

(A2)

(A3)

(A4}

where q) ———q2 —q3. Changing the variables q), q2, and q3 of Eq. (A3) in the cyclic order, we have two dif-
ferent equations. Making use of Eq. (A3) and these two equations, we can obtain an expression for
Hf '(q), q2} as follows:

(2) q(q2A(q), q2)+A(q3, q)) —q2A(q2, q3)
Hf (q(, q2)= 2 2 21+

1+$1+$2+q1 q2=32
(1+q))(1+q2)(1+q)+q2+2q) q2)

APPENDIX 8

Three-particle correlation function with r21 r )(D——and-r31 ——R —rp is expressed as Hp(r, R,I4), where )(4 is
defined as (r21 r3(/r2) r3) ). By rewriting Eq. (12) in a different form, we have the following equation which
determines Hp(r, R,p, ):

I G()(R)+Gf [(R +r —2Rrp) ]+H() IBr I'2

Gp(R)
dx dp p Gf x +1' —2x&p

D
—1 P'21

[Gf(r)+Gf [(R +r 2Rrp)'~ ]+H()—IM g2

Gf (r) f dx f dp'p'G[(R +x 2Rxl4')'i ]-
2XD —1 ~31

~o r41
=pp f dr4 2 [Hf(r32, r42}+I(r2), r3(, r41)], (Bl)

~41 I41

where lengths which appear in Eq. (Bl) are not normalized. The scaling properties of r and R are r~e r
and R ~R, respectively. The limit of the integral f dx is different depending on the scaling properties of x,
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i.e., when x—+x, this quantity takes the form dx; while x —+e x, this quantity should be understood as~

~

~

0
dx. Therefore, two different terms are expressed in the terms associated with dx. Similar care has to

be taken for the rhs of Eq. (Bl). From the scaling properties of Eq. (81), we find the three-particle correlation
function H p can be expanded as follows:

Hp(r, R,p)=eHp '(r, R,p)+e Hp '+

2 Hp =
&

[Gf' (r)+Gf '[(R +r 2Rrp—) ] I

The lowest-order term of Eq. (81) gives the following txluation for H p
':

ea0'"

BR

(82)

(83)

This equation can be easily solved as follows:

X

rp/R — r&/R —~ 0/ exp[ (x +—r 2xrp—, )' /An]
=Gf"(r)(e ' —1) Anrpe —' dx e '

x'(x'+ r' —2xrp)'/'

where the boundary condition

lim Hp" (r,R,p, )=0
R —+A,D

in the scaling limit is used. Making use of Eq. (84) we calculate the second term of rhs of Eq. (19) as follows:

—, f dR& f dppIGf'[(R&+r 2R&rp)'/ —]+Hp"(r, R,p)I

exp[ —(R f+r 2R ~rp)' ]-
dR1 dPP

2e (R f+r 2R ~rp)'/2—

P ' x —' (x +r 2xrIJ,)'—
1 r+1, ~ e +e e —e

Rl —R) R) —R1

6 2r2 0 R1 R21

r +1 —e/R R e' " e"+e e"—e+ .
2

e dR1e dx
2r x x x2

(85)

It is easy to show that the first term in the rhs of Eq. (85) is e[(r+ I )/6r ]e '
by expanding exponential term

of the integrand. This term does not contribute to Gf '(r) of Eq. (19), since this is of the higher order. Simi-
larly, we expand the e'/" term in the rhs of Eq. (85) in the power series and change variables e/R, = t and we
can show by the straightforward but tedious algebra that the second term in the rhs of Eq. (19) is also of the
higher order.
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