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With increasing nuclear charge Z (and finite nuclear size), the lowest bound-state solu-

tion of the Dirac equation changes into a resonance located in the positron continuum (su-

percritical atom). We develop a formalism which enables us to treat this resonance explicit-

ly in the manner of a quasibound state. The processes of electron and positron production
in heavy-ion collisions of total charge Z&+Z, & 170 can, then be formulated analytically in

such a way that all the rapid energy dependence due to this resonance is made explicit. The
definition of the resonance wave function involves some ambiguity. As a consequence, the
decomposition of the transition amplitude for positron production into a "spontaneous"
and an "induced" part cannot be given unambiguously. The coupled time-dependent equa-

tions for the occupation amplitudes of the adiabatic single-particle states contain matrix
elements which are smooth functions of the energy, and which can be calculated easily.
The application of this formalism to positron production in supercritical atoms is presented

in the following article by one of us (T.T.).

I. INTRODUCTION

Much experimental' and theoretical work has re-
cently been devoted to atomic electron- and
positron-production processes in heavy-ion col-
lisions. Particular attention has been paid to reac-
tions in which the total nuclear charge Zi+Z2 of
the two ions is so large ( & 170) that, with decreasing
internuclear distance, the energy of the lowest
bound state of the Dirac equation of the combined
system passes the value —1 (in natural atomic
units) ("critical" atom), so that this state "dives"
into the positron continuum and manifests itself
there mathematically as a resonance ("supercritical"
atom).

The theoretical description of this process has
for some time used an expansion in terms of solu-
tions of the Dirac equation for the critical atom.
Unless the resonance energy is very close to —1,
this expansion has turned out to be not very satis-

factory. To achieve a more satisfactory descrip-
tion, Reinhardt et al. have therefore recently adopt-
ed a formalism developed originally in the context
of nuclear physics. Their scheme is essentially nu-

merical in character, and has been used in numeri-
cal calculations of electron and positron production
cross sections.

It is our aim in the present paper to carry this

development one step further, and to present a
treatment of the resonance which is fully analytical.
In this way we hope not only to expedite the numer-
ical calculations, but, more importantly, to gain fur-
ther physical insight into the detailed mechanism of
positron production in heavy-ion collisions. We
achieve this aim (the analytical treatment of the res-
onance phenomenon) by a modification of the
Wang-Shakin formalism which is different from
the one used by Reinhardt et al. We succeed in

making all the strong energy dependence associated
with the resonance explicit, in setting up coupled
equations for the occupation amplitudes of the adia-
batic wave functions which are nearly identical in
form to the undercritical case, and in giving analyti-
cal formulas for the coupling matrix elements in
these equations. Moreover, the coupling matrix ele-

ments are smooth functions of energy and internu-
clear distance aside from a principal value singulari-

ty, which does not contribute to the observable
quantities.

The present paper contains the formalism. Ap-
plications are deferred to the following paper by one
of the authors (T.T.). In Sec. II we define the for-
malism; in Sec. III we recall the procedure of Wang
and Shakin; in Sec. IV we present our definition of
the resonance wave function q, (a square-integrable
function); in Sec. V we construct the modified con-
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tinuum wave functions (which are orthogonal to
y, ); in Sec. VI we derive the coupled differential
equations for the occupation amplitudes in the su-
percritical case, and we establish the connection
with observable quantities; in Sec. VII we present
analytical formulas for the couphng matrix ele-
ments. Section VIII contains a brief summary.

V(r, R)= —J dr')
ap/(r )

—R] )

and where we put A'=c =m, =1.
The potential is given by

(2.3)

II. FORMALISM

We assume that the nuclear orbital motion is

classical so that the relative coordinate of two col-
liding nuclei is a function of time which we write as
R(t). We also assume that the electron-electron in-
teraction can be neglected. Then the whole infor-
mation on electrons and positrons can be de-
duced ' from an initial condition on the many-
electron system and the solutions of the single-
electron Dirac equation

(2.1}

where p; is the charge density and R; the position
of nucleus i (i = 1,2):

Ap
R) —— R,

A )+Ay

Ai
Rp ——— R.

A)+Ay

(2.4)

We assume for p; a uniformly charged sphere of a
radius R„;=rQ with ro 1.2 fm——. When R is
less than several hundred fm, this potential can be
well approximated by its monopole part

where H(R(t) ) is a Dirac Hamiltonian

H(R(t)) = i a —+P+ V(r, R(t)),
Br

(2.2) with

V(r, R) = V&(r,R&)+ Vz(r, R~), (2.Sa)

V (r,R;)= —
3 [r 4R;t' +6R; R—;+r 4R;+(R; 2R„;—)r+—R; (R;+3R„;)] (R; &r &R;+),

16R„;R;r

Z;Q
(R;+ &r),

(2.5b)

where R;+ ——R;+R„;.
We use the monopole approximation throughout.

It is necessary if one wishes to obtain a simple
analytical representation for the resonance wave
function. The neglect of higher multipoles is, how-

ever, not essential for the success of our formal
scheme. Such multipoles can be included explicitly
in the coupled equations (2.10}.

In order to solve the Dirac equation, Eq. (2.1), we
expand the wave function P( r, t) in terms of a set of
basis states. Since we are considering the cases in
which ~R

~

&O. lc and the potential is so strong
that the binding energy of the lowest bound state is

[H (R) E]pE( r, R)=0 . — (2.6)

When it is necessary, we also use notations E„
(n =0, 1,2, . . .), E+, and E in order to distinguish
bound states, positive, and negative energy continu-
um states:

E & —1&Eo &Ei « 1&E+ .

The bound state energies E„depend on R.
We normalize the wave functions as

about 2, it is appropriate to use adiabatic basis
states which are defined as the eigenfunctions of
H(R(t)):
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((pz l yz ) =5(E E—' ) for continuum states,

((p„ l (p ) =5„ for bound states,

(2.7)

where y„means yE .
For the undercritical case, we expand the wave

function P( r, t) in Eq. (2.1) in terms of the adiabatic
basis as

P(r, t)= f dE+cs {t)exp[ i—8E (t) jets (r,R(t))+ gc„(t)exp[ i8„—(t)]y„{r,R {t))
n&o

—1

+f dE c@ (t)exp[ i8E—(t)]yz (r,R(t))

+ oo

cs(t)exp[ i8E{t—)]tpF(r, R (t)),
E=—ao

where the phase functions HE( t) are defined as

HE, (t)=E,t,
8„(t)= f,dt'E„(R(t')) .

(2.8)

(2.9)

The symbol W denotes summation over bound states and integration over continuum states. Putting the ex-

pression for (((r,t), Eq. (2.8), into the Dirac equation (2.1), we obtain a set of coupled differential equations

for the expansion coefficients cE(t):

cE,~ (O's I
+E'&exp[t(8E 8E']cE' (QE l

j'o&exp[i{8E—8o)lco
E'& Ei

—1—f dE' (grE
l y, )exp[i(8z 8, )]—c, (E)E~),

—1

co= —,~ &Volga' &exp[i(8o 8E)lcs—f dE—
'

&gaol

j's &e-xp[i{8o 8s, )]c—z,
E'& E oo

1

cE =—,& &q'E I jE &exp[i(8E 8E)]cE &q—'E
I
jo&e—xp[i{8E —8o)]co

E'&E

dE' (qrE lq&s, )exp[i(8s —8, )]c,

{2.10)

III. THE SUPERCRITICAL CASE:
APPEARANCE OF A RESONANCE

Inasmuch as the energy of the lowest bound state
E0(R) does not reach the threshold of the negative

energy continuum —1 the Dirac equation (2.1) can
always be reduced to the coupled equations (2.10).
For very heavy projectile-target combinations, how-

ever, there exists a critical internuclear distance R„
at which E0 becomes —1. In the case of a U+ U
collision, for example, R„ is about 30 fm for a 1scr

state. If we decrease R further, the lowest bound
state disappears and instead there appears a reso-
nance in the negative energy continuum. Under
such circumstances a one-to-one correspondence be-
tween the eigenfunctions of H(R) for R &R„and
those for R &R„cannot be established in an obvi-

ous fashion, so that the framework of Sec. II cannot
be applied as it stands.

The most natural way to overcome this difficulty
is to introduce a norm alizable resonance state
g„(r,R) which tends to the lowest bound state as R
tends to R„:

lim q, (r,R)= lim A&0(r, R) .
R R —0 R R +0

(3.1)

We defer the explicit construction of y, to the next
section and assume that tp„has already been deter-

mined. Since for R g R„ the set of states

{y@ (E & —1)j is already complete for the nega-

tive energy continuum space, a new set of states

{y„,q&E (E & —1)] would become overcomplete.

Therefore, we modify3' the negative energy states

tpE by removing from them the resonance wave
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function. In other words, we construct new contin-
uum wave functions XE which are orthogonal to

q, . We then diagonalize the Hamiltonian in a space
orthogonal to tp„, i.e.,

of this problem yields explicitly the resonance
behavior.

and

QXE ——0, (3.2)
IV. CONSTRUCTION OF THE RESONANCE

WAVE FUNCTION q„

A possible candidate for the resonance wave

function y„ is a continuum wave function tpE, at

the resonance energy Ep with its tail part cut off at
some point in the barrier region. It we cut off the
radial wave function sharply, however, the difficul-

ty arises that the energy expectation value of q, be-

comes infinite, and that surface terms must be in-

cluded in the formalism. Reinhardt et al. avoided
these problems by adding an exponential tail to the
cut-off wave function. In this scheme, various ma-

trix elements which involve q„or gE can be calcu-
lated only numerically, however. We construct y,
in a different way, aiming at a full analytical treat-
ment of the resonance. To this end we first note
that the continuum wave function qE behaves in-

side the barrier and near the resonance energy as

[E PH(—R )P] Xs ——0, (3.3)

where

Q = Im. &&m. I

P=l —Q .

Equation (3.3) can be rewritten as

[E H(R)]—XF. = QH(R—)Xe

(3.4)

(3.5)

we obtain an integral equation for IE

XF. =m'F. GF. QH (—R)XE (3.7)

where XE+' and tpE+' satisfy an outgoing boundary

condition.
Equation (3.7) can be solved as

XF. =(l imr I Ge
I mr& GF. Q)mE

(3.8)
with the normalization

(Xs+ IX +'&=ME E'—
and the diagonal property

(Xg+'IH(R) IX'+'=E 5(E E' ) .

(3.9)

(3.10)

We shall also request a continuity property of XE

similar in character to Eq. (3.1), namely

lim XE (r,R)= lim yE (r,R) . (3.11)
R~R, —0 R-+R +0

The formal constructions in this section cast the
problem into the form where a quasibound state p„
is coupled to the modified positron continuum XE,
with coupling matrix element

VE ——(,m„ I
H(R)

I
XE (3.12)

and diagonal element

E„=im„
I
H(R)

I m, & . (3.13)

The solution of the stationary equations of motion

Using the Green's function for H (R):

Ge~+'=[E —H(R) —ie] ' (e~0+), (3.6)

f'E =~E gr s (4.1)

where

r(E,E0)
'"

[(E —Eo)'

+ l (E E )]2) —I/2

(4.2)

and where I (E,Ep) is the width to be discussed
below. We accordingly define the resonance waue

function m, by
—1

m, =f dE AE mF (4.3)
C

The cutoff energy E, in the integral of Eq. (4.3)
must be introduced because of the slow falloff of
the weight function AE with E —Ep. Without

cutoff, the integral (4.3) would sample contributions
from positron wave functions penetrating the bar-
rier which have nothing to do with the resonance.
We keep E, fixed and choose it smaller than the
minimum value of Ep attained during the collision.
Our formalism is obviously restricted to reactions
for which E, can be chosen such that the penetra-
bility P' '(E, ) defined below is small enough com-
pared with 1 and that the difference Ep

—E,
remains considerably larger than I (E„Ep). These
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are fortunately the only ones of any practical in-

terest.
The width I (E,Ep) is obviously well defined at

and near the resonance energy Ep. For energies

l
E E&&

—
l
))1(E,E&&), on the other hand, the

choice of I (E,Ep) is somewhat arbitrary. We uti-
lize this fact to impose the condition

dr(E, E, )

dE
(4.4)

With the help of this inequality, we can approxi-
mate I (E,EO) under the integral (4.3) by

r(E,,E,),

(m, l{p.)=i (4.5)

Similarly, the expectation value of the Hamiltonian
is equal to Ep,

E„=&V. I
a(R)

I yr &=ED ~ (4.6)

The error in Eqs. (4.5) and (4.6) can be estimated
for the choices of I (E,Ep) introduced below; it
does not exceed 1% for any one of them.

We now turn to a practical choice of the depen-
dence of I (E,Ep) on E, writing I as the prod-
uct of a reduced width y(Ep) and of a penetration

factor P(E ),

I (E Ep) =P(E )p(Ep) . (4.7)

The decomposition (4.7) must be chosen in such a
way that it meets the following conditions:

(i) At E =Ep, the width I (E,Ep) must equal
the actual width of the resonance (twice the ima-
ginary part of the pole of the Green's function).

(ii) Condition (4.4) must be fulfilled in order to
facilitate the evaluation of various matrix elements;
see also Secs. V and VII.

(iii) The reduced width y(Ep) must obey

lim y(Ep) =0 .
Eo—+ —1 —p

(4.8)

This ensures the continuity of the basis wave func-
tions Xz and yz at R =R„,Eq. (3.11), as shown

in Sec. V. Moreover, the condition,

lim
l

[y(Ep)]'~'
l +oo

Eo —
& —p BEp

(4.9)

must be met, as otherwise the matrix element

(XE
l p, ) diverges as R ~R„—0.

Popov et al. ' have introduced the WKB penetra-

bility P' '(E ):

P'0'(E )=exp 2J —dr[l+ir r (E ~g„—r ') )'
min

=exp[2ng„[E (E —l) ' +(l —& g„) ]I . (4.10)

Here a=+(j+ —, ), g„=(Zi+Z2)a, and r;„, r,„
are the zeros of the integrand. This suggests writ-

ing

r(E Ep ) =P (E )P (Ep ) (4.11)

The definition (4.11) is not satsifactory, however,
since y' '(Eo) has a finite nonzero limit as

Ep~ —1 —0 in violation of condition (4.8) ~

This defect can be remedied by writing the fac-
tors on the right-hand side of Eq. (4.7) in the form

I

following paper that the ambiguity inherent in the
choice of y„while of course not affecting the actu-
al calculated positron production cross section, af-
fects the decomposition of this cross section into
contributions labeled "spontaneous" and "induced"
positron production.

V. THE MODIFIED CONTINUUM
WAVE FUNCTION gE

P(E )=P' (E )( —E —1)

p(Ep ) =p (Ep )( —Ep —1 )

(4.12a)

(4.12b)

It is convenient for the following discussion to
define a wave function PE which includes the

resonant phase 5E

where n )2. This choice is consistent with the con-
ditions (i) —(iii) given above if 2 (n (4.

We are thus led to the conclusion that the con-
struction of y, is possible in more than one way (we
note that the construction carried through in Ref. 3
offers yet another possibility). It is shown in the

——exp(i5E )qE

where

5~ ——arg Ep+ —I (E,Ep) —E
2

(5.2)
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The resonance wave function q, can be written in
terms of PE as

Putting

XE =f dE' b (5.5)

where

a~ ——exp( —i5F }A@

r(E,Ep)
'"

2m'
E,——'r(E, Ep}—E

2

(5.3)
we obtain the coefficient bz z, from Eq. (3.7):

QE

(5.6)

(5.4) where

Vs ——(q), i
H(R)

i Xs ) (5.7a)

fEc E —E' —i@

0 (E (E,).

' 1/2
I (E,Ep)

(E, &E & —1), {5.7b)

(5.7c)

In calculating the coefficient b z, [Eq. {5.6)], we replaced tp~+' in Eq. {3.7) by P@ . However, since the re-

lation between X~+' and y~+' is linear, P~ determined by Eqs. (5.5) and (5.6) differs from Xz+' only by a

phasefactor. Theradial wavefunction ofX~ is {approximately) real as canbeseen from Eq. (5.7b).

In obtaining Eq. (5.7b), we used approximations under the integral such as

f(I'(E',E ))(E E' is) ' =—f—(I'(E,E ))(E E' it)——
(5.8)

f(I'(E', Ep)) Ep ——I'(E',Ep) E'—f(I'(Ep, Ep)) Ep — I'(E',Ep) E'—
2

where f(I') is a function of I', and we extended the

range of the integral to infinity. The first approxi-
mation preserves the threshold behavior of VE,
i.e., VE ~0 for E —+ —1 —0. The error associat-
ed with the increase of the integration range is less
than 1% if the energy E remains in the interval

E, +0.01 &E ~ —1.01, i.e., E is not very close
to the boundaries of the integral. We also neglected

I (E,Ep) —I (Ep,Ep)

Ep ——I {E,Ep) —E

compared with 1. A11 these approximations are jus-
tified if condition (4.4) is met.

It should be noted that while the "spontaneous
coupling" matrix element Eq. (5.7) has the definite
value —[I' '(Ep, Ep)/2m]'~ at the resonance ener-

gy, the off-resonance value is to some extent arbi-

trary, depending on the choice made for P(E ) in

Eqs. (4.12). This arbitrariness in the off-resonance
continuation of VE is the reason why an unambi-

guous decomposition of the transition amplitude
into a "spontaneous" and an "induced" part is not
possible. It can also be seen that, because of Eqs.
(4.12), V~ tends to zero as Ep~ —1 —0. Equation
(5.4) shows that aE has a vanishing limit, too.
Hence, bz z, tends to 5(E —E' ), and we obtain

a continuity relation, using Eqs. (5.1), (5.2), and
{5.5),
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lim gE (r,R)= lim tpE (r,R) . (5.9)
R~Rcr 0 R~R +0

The functions XE obviously do not contain the

resonance. We expect that the matrix elements in-

volving these functions will depend smoothly on en-

ergy. This expectation is borne out by Eq. (5.7b)
and the equations given in Sec. VII.

VI. THE COUPLED EQUATIONS FOR THE
OCCUPATION AMPLITUDES. CALCUATION

OF OBSERVABLES

We expand the wave function P(r, t) in Eq. (2.1)
as Eq. (2.8) but replace for R(t) &R,„ the lowest
bound state q0 by the resonance state q„and yE
by XE

f(r, t)=f dE+cE {t)exp[ i8—E (t)]yE (r,R(t))+ gc„(t)exp[ i8„(t—)]gr„(r,R{t))
n&1

—1

+co(t)exp[ —i80(t)]qr„(r,R(t))+ f dE cE (t)exp[ i8E—(t)]+E (r,R(t)) . (6.1)

Because of the continuity of the basis states at R (t) =R„, Eqs. (3.1) and (5.9), the expansion coefficients in

Eq. (6.1) are also continuous at R„. Putting the expression for P(r, t) of Eq. (6.1) into the Dirac equation, Eq.
(2.1), we obtain a set of coupled differential equations for R (t) &R„:

cE = —A (o'E I
gE'&exp[i (8E 8E')]cE' (o'E I (p. &exp[i {8E—8o)]co

E'& E)

—f dE' ((pE IXE, &exp[i(8E —8E, )]cE, (E&Ei),
—1

co ———P' ((p„ I pE &exp[i(80 8E )cE—f d—E' ((tp„ IXE, &+iVE, )exp[i(80 8E, )—]cE, (6.2)

cE =—,~ &&E I jE &exp[i {8E 8E )]cE (—&&E I j'r—&+ivE )exp[i {8E 80)]co
E'&El

f 'dE (yE IyE, &exp[i(8E 8E, )]cE. —.

cE. E( —00 )=5E, E, (6.3)

where 5E. E should be interpreted as 5(E;—E) if

I E; I
&1. The coefficients cE E(t) ( —ao

(E;,E &+ Oo) provide a complete description of

Comparing Eqs. (6.2) with Eqs. (2.10), we observe
that the only difference between the two sets
resides —aside from the actual value of E0—in the
occurrence of the matrix element VE defined in

Eq. (5.7). This matrix element describes the spon-
taneous decay of the resonance y, into the positron
continuum which happens without external field.
Whether or not the "diving" of the state into the
positron continuum makes a qualitative difference
for positron production will depend on the relative
importance of the matrix elements ((p„ IIE & and

VE

Let CE. E(t) denote the coefficients cE(t) which

satisfy Eq. (2.10) for R(t)&R„and Eq. (6.2) for
R (t) &R„[joined smoothly at R (t)=R„],and the
initial condition

I

the solution of the one-body Dirac equation, Eq.
(2.1). If the initial condition of a many-electron
system is such that all the states below a Fermi level

EF are occupied, then the probability density to find
a positron of energy E at time t~+ 00 is given
by3, 5, 6

dP+
IcE„E {+~)I'

dE E; &EF
(6.4)

dP
I cE ,E,{+ ~ )I ' .

dE Ey&EF
(6.5)

The evaluation of the positron probability
dP + IdE given in Eq. (6.4) can be simplified even

if the trajectory is not symmetric. Let CEE (t)
denote the coefficients cE(t) which satisfy Eq. (2.10)
for R(t) &R,„and Eq. (6.2) for R (t) &R„[joined
smoothly at R (t) =R,„]and the "final" condition

CE,E (+ 00 ) 5E,Ey ' (6.6)

which can be rewritten in the case of a symmetric
trajectory R (t) =R ( t) as—
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Then the following relation holds:

CE. E (+ 00 )=C E, E ( —m ),
because both terms are equal to

&exp[ t'f)—E (t )]pE (R (t'»
I
«t' t)

If~—co f f
f ~+co

Xexp[ i8—~ (t)]ps (R (t))),

(6.7)

(6.8)

The matrix elements of the time derivative operator
8/Bt which appear in Eqs. (2.10) and (6.2) are ob-
tained by multiplying them by BR(t)/Bt. Taking
the matrix element of the commutator
[8/M, H(R)] between the states tps and yx, one
finds

(
aa

+E gR
+E' =

E E +E gR
'PE' '

where U(t', t) is a time evolution operator in the
Schrodinger picture:

t
U(t', t) =TJ dt "exp[ iH(R—(t"))) (6.9)

with T denoting a time ordering. Using the new
coefficients c, we can rewrite Eq. (6.4) as

dP+
l~z„z (—

dE E; )Ef
(6.10)

VII. ANALYTICAL EVALUATION OF
THE MATRIX ELEMENTS

In order to obtain cx s (+oo) [or c~ @ ( —ao)]

for a given E, we have to solve the coupled dif-

ferential equations forward (or backward) in time
only once because E in these coefficients can be
viewed as specifying the initial {or "final" ) condi-
tion. Intuitively speaking, we solve the Dirac equa-
tion backward in time because we ask: If there is a
positron at energy E and at t =+ Oo, from which
levels could it have come? Summing up the answer
over those levels which were empty at time t = —oo

we find the desired result. Equations (6.5) or {6.10)
are obviously useful for practical calculations.

(7.1)

where H indicates that a principal part should be
taken upon integration. A possible additional term
proportional to 5(E E') do—es not arise because the
radial wave function in yE was chosen to be real. If
the wave function Ps defined by Eq. (5.1) is used,

the term i (85E /BR)5(E —E' ) should be added

to the right-hand side of Eq. (7.1). The matrix ele-
ment of BH/BR is easily calculated in the monopole
approximation:

aH "-. a V(r R)
dr ' (FEFE +GEGE ),

(7.2)

where FE and GE are radial wave functions of yE
multiplied by r, and r,„equals R&+ or R2+,
whichever is larger.

Matrix elements of 8/BR which involve the reso-
nance wave function y, and/or the modified nega-
tive energy continuum wave functions XE are ob-

tained in the Secs. VII A —VII C. We use the ap-
proximation of omitting terms which are relatively
small of order P(E ), E, &E & —1. We also use
the fact that y, has real radial wave functions.
This implies

In this section we express the matrix elements of
the radial derivative operator 8/M in terms of
those of BH/BR between unmodified basis states.

a
f'r

~R
f'r (7.3)

A. gE g, and g~ q, (E, &E,E ~ —1)8
3R E' BR

Using the steps which lead to Eq. (7.1), we find

BH
E fP E0 fP

BR E'- (7.4)

E q&„=(EO—E )Xs qr, + +f~ V~, Ig X,— aR " = — — aR ' aR
(7.&)

Contributions to matrix elements of BH/BR come only from the region 0 & r &r,„,and r,„ is smaller than
-25 fm for U + U when there is a resonance at all. Therefore, &Xs.

I
BH/BR

I qr„) is of order [P(Ex ))'~2
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(since XE by construction does not contain the resonance wave function), and Eq. (7.5) shows that

(+E ~B/M ~q&„) itself is also of order [P(E )]'~. Using this in Eq. (7.4), we see that (XE ~8/M ~X, )

is of order P(E )P(E' )' which in turn implies that the last term in Eq. (7.5) is relatively small of order

P(E ). Hence,

a
X

BH
XE

~
fr BR

(7.6)

Using Eqs. (5.5) and (5.6) for XE, we obtain

BH
&E q„V, = 4E V. VE —JE «'- OE

E —E' +is 4E
BH
BR

e weight function a*, in Eq. (7.7) is peaked at the resonance energy. Therefore, the approximation

p, =a', (p, is expected to be extremely good under the integral. This yields

aH aH aH ~&0
XE Mq -= 4"- aR q" .E I" aR

—q"= ~'E
aR q" .E aR— (7.8)

e last equality is obtained in the same way as Eqs. (7.4) and (7.5). Altogether, this yields

a'- aR ~' =E,—F.

aH aV,'
~E 'E &" (7.9)

Equation (7.9) shows explicitly that aside from a principal value singularity which does not contribute because

of the slow change of the phase factors and the occupation amplitudes multiplying it in Eq. (6.2),

(XE ~B/BR ~p„) is a smooth function of energy, and is small of order [P(E )]'~. In the limit EO~ —I,

wehaveaE ~0and

8
&E

~R Wr

av,'
~'- aR '

E,
" (7.10)

This expression coincides with

a 1 BH
PE gR PO) E E gE ~R $0 (7.11)

because

lim =0,
E() —1 M

(7.12)

if the value of n defined in Eq. (4.12) is chosen to be larger than 2. When n is just equal to 2, however, the
limit of BVE /M does not vanish so that the two expressions (7.10) and (7.11) are discontinuous at R =R„.
This simply means that the derivatiues of the basis states XE (r,R) and gE (r,R) with respect to R are

discontinuous at R =R„ for n =2 although the basis states themselves are continuous. It should be noted

that such discontinuity of the derivative of basis states causes no difficulty at all.
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In an analogous fashion, we obtain from Eq. (7.4)

a'- aR E- E
aH

~E E 'P~
gR ~E' uE'

+V,E' E
aH aE

BR

E' —Eo

aH av, ,

aR
(7.13)

It is again obvious that the matrix element is
smooth in E,E' . In the limit Eo~ —1, we have

aE ~0, VE ~0, and therefore

a 1 aa
~E aR ~' =

E, E ~E aR
'P' (7.16)

a aH
E' —E f — aR

(7.14)

as it should. We also observe that (Xs.
~

8/
BR

~

X, ) is of order [P(E )P(E' )]'

The form of Eq. (7.16) is the same for a bound-state
wave function tpo. In the limit Eo~ —1, it exactly
coincides with this form. The neglect of the last
term in Eq. (7.15) is consistent with the neglect of
the level shift, i.e., the difference E,—Eo in Sec. IV,
which is also relatively small of order P(EO).

B. gE q„(E&E orE& —1)a
BR

We proceed as in the derivation of Eqs. (7.4) and
(7.5) and obtain

aH —E—

—1 adE' I, q)s X ,

(7.15)

It is shown below that (ques ~

8/BR
~
Xz, ) is of or-

der [P(E' )]'~. The last term in Eq. (7.15) is
therefore relatively small of order P (E )

(E, &E & —1) and is omitted. This gives

C. t(s XE (E&E or E& —1;
a

BR

E, &E (—1)

Evaluating the commutator [8/Bt, H(R(t))] be-
tween the states (pz and Pz, we obtain

a 1 aH
E aR E E-E O'E

aR E

a—VE VE aR q.

(7.17)

The matrix element of aH/aR on the right-hand
side is given as

aH
&

aH —v " dE' aH
gE gR

F. PF. gR 0 JE g g ~ + gR E' (7.18)

where Eqs. (5.5) and (5.6) for XE were used. The

approximation ((, =a', y„under the integral

which was used to obtain Eq. (7.8) in Sec. VIIA
yields

aH aH
E aR

+E +E aR +E

aH
&E

(7.19)
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Putting Eqs. (7.16) and (7.19) into Eq. (7.17), we ob-
tain finally

a BH~' aR '- =E —E0

(7.20)

The matrix element (ys ~

BIBR
~
Xz ) is obviously

of order [P(E ))'~; this fact was used in Sec.
VIIB. For Eo~ —1, we find that

(q&s )&/M [Xs ) (E E) —'(q&s [BHIdR [ys )

as it should.
In order to complete the description of the

present method, we finally mention how to calcu-

late the matrix elements (p, ~

dH/dR
~

q&s ) and

(p, ~

dH/dR
~
q&„). These are evaluated by using

the approximation P, =a', y, under integration

as follows:

(7.21a)

f'r
~R 9r 5EO gR PEO /IuEOI (7.21b)

where in Eq. (7.21b) the approximation is used
twice.

The central results of this section are the Eqs.
(7.9), (7.13), (7.16), and (7.20).

VIII. SUMMARY

We have presented an analytical approach to
treat the resonance which appears in the positron
continuum during a collision between very heavy
ions. By introducing a square-integrable resonance
wave function y, and the modified positron contin-
uum g~ which does not contain the resonance, we

succeeded in handling the resonance analytically
and explicitly in all the formulas given. Our pro-
cedure is, in a sense, the inverse of the Dirac-Fano
method of handling quasibound states. In the case
of the Dirac equation for supercritical atoms, we
are given a resonance and look for the definition of
a modified Hamiltonian such that q„appears as a
quasibound state. In constructing y„and P@, we

paid due attention to proper threshold behavior
(E —+1) of all relevant quantities and ascertained
that the matrix elements which appear in the cou-
pled equations (6.2) are easily calculable, and have
the right limit as the resonance energy Eo~ —1.
Moreover, these matrix elements are smooth func-
tions of energy and internuclear distance aside from
a principal value singularity, which does not contri-
bute to the observable quantities. Therefore, the
coupled equations (6.2) can easily be solved, and the
influence of the resonance on the production cross
section for positrons can be studied in detail. Nu-
merical calculations along these lines are given in
the following paper by one of us (T.T.). Since the
resonance width off the resonance energy involves
some arbitrariness, a unique decomposition of the
production amplitude for positrons into an "in-
duced" and a "spontaneous" term cannot be given.
The consequences of this ambiguity for the inter-
pretation of positron spectra are also investigated in
the following paper.
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