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We consider stochastic differential equations for a variable q with multiplicative white

and nonwhite ("colored" ) noise appropriate for the description of nonequilibrium systems

which experience fluctuations which are not "self-originating. " We discuss a numerical al-

gorithm for the simulation of these equations, as well as an alternative analytical treatment.
In particular, we derive approximate Fokker-Planck equations for the probability density of
the process by an analysis of an expansion in powers of the correlation time ~ of the noise.

We also discuss the stationary solution of these equations. We have applied our numerical

and analytical methods to the "Stratonovich model" often used in the literature to study

nonequilibrium systems. The numerical analysis corroborates the analytical predictions for
the time-independent properties. We show that for large noise intensity D the stationary

distribution develops a peak for increasing ~ that becomes dominant in the large-~ limit.

The correlation time of the process in the steady state has been analyzed numerically. We
find a "slowing down" in the sense that the correlation time increases as a function of both

D and ~. This result shows the incorrectness of an earlier analysis of Stratonovich.

I. INTRODUCTION

A. Summary

A common approach to the study of nonlinear,
nonequilibrium systems and their associated insta-
bilities involves a description in terms of nonlinear
stochastic differential equations, as, for example,
Lang evin equations. In this paper we present
analytical and numerical studies of such equations
for the case of multiplicative noise, i.e., for the situ-
ation in which the noise depends on the state of the
system. In particular, we consider the dependence
of model systems on the noise parameters D and ~
(where D is the noise intensity and r is the correla-
tion time) for both white and "colored" (nonwhite)
noise. Our interest here is primarily in situations
involving "external noise. " The motivation for our
work is that there exist a variety of physical situa-
tions in which external noise can be realized and is
of interest, as we describe in Sec. IB. Our analyti-
cal and numerical results should be useful in obtain-

ing a better understanding of the role of external
noise vis-a-vis D and ~ for these cases.

In our analytical approach we obtain two approx-

imate Fokker-Planck equations for the probability
density of a process driven by Ornstein-Uhlenbeck
noise by considering an expansion in terms of the
correlation time of the noise. The first equation is
valid for small ~ and is in fact a particular limit of
the second which is valid for small D. This second
equation is obtained by summing up an infinite
series of terms in the ~ expansion. It is important
to note that the random term of the stochastic equa-
tion is of order (D/r)'r, and therefore our approxi-
mations do not necessarily imply that the random
term is small.

Our numerical simulations have been carried out
for several reasons, the first being to check the
domain of validity of the theoretical work described
above. Another major reason for the numerical
study is that it allows us to study the stochastic
model in regions of the (D,r) parameter space for
which the theory fails to give accurate results. We
also obtain dynamical information which is beyond
the scope of the theory.

We have used our theoretical scheme and simula-
tion procedure to study a model often used in the
literature to describe nonequilibrium systems. The
model was introduced by Stratonovich' in the study
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of an electric circuit. It has been used to describe
"external noise" situations for a parametric oscilla-
tor and for a liquid-crystal system undergoing an
electrohydrodynamic transition. It has also been
shown to be a prototype equation in a variety of
physical systems in which multiplicative noise ap-
pears as the result of an adiabatic elimination of
variables. Finally, recent analytical studies of the
model exist in the white-noise limit. It thus
seems to be a good candidate for a systematic study
of the features of these stochastic equations. For
this model, we have obtained numerically a com-
plete picture of the behavior of the stationary distri-
bution P„and of mean values as a function of the
noise parameters. This picture is well described by
our analytical approximate calculation. In particu-
lar, for D &1 a relative maximum of P„appears
when increasing w. This maximum is absent in the
white-noise limit and becomes dominant for large z.
The relaxation time of the process has been calcu-
lated numerically for both the white- and colored-
noise cases. We have found a slowing down
phenomenon in the sense that the relaxation time
increases monotonically both as a function of D and
of ~. For the white-noise case this slowing down
shows the incorrectness of earlier results by Stra-
tonovich' based on a decoupling ansatz.

The outline of the paper is as follows. In Sec. IB
we discuss the concept of external noise and the sit-
uations which are thought to be modeled by our sto-
chastic equations. In Sec. II we derive two approxi-
mate Fokker-Planck equations for the probability
density starting from stochastic differential equa-
tions. We obtain the stationary solution for one of
these equations. In Sec. III we discuss the Stratono-
vich model in terms of the results of Sec. II. In Sec.
IV we present the results of the simulation and
make a comparison with the analytical results of
Sec. II. Finally, in Appendix A we describe the al-
gorithm used in the numerical simulations. Appen-
dix B contains details of the derivation of the equa-
tion for the probability density.

B. External noise

To discuss the idea of external noise we begin by
noting that the random force which occurs in a
Langevin equation can have quite different origins.
In an ordinary microscopic derivation of a
Langevin equation the random term is interpreted
as associated with the thermal fluctuations of the
system. This "thermal" or "internal" noise scales
with the size of the system (except near instability

points}. A different interpretation of the random
term of a Langevin equation is necessary, however,
when this is thought to model what we call an
"external noise" situation. In these situations one
considers a system which experiences Auctuations
which are not "self-originating. " These Auctuations
can be due to a fluctuating environment or can be
the result of an externally applied random force.
The mathematical modeling of this fluctuation is
made by considering a deterministic equation ap-
propriate in the absence of external fluctuations.
One then considers the external parameter which
undergoes fluctuations to be a stochastic variable.
The noise term of the stochastic differential equa-
tion obtained in this way is usually of multiplicative
character; that is, it depends on the instantaneous
value of the variables of this system. It does not
scale with system size and is not necessarily small.
We can regard the external noise as an external field
which drives the system. Several experimental situ-
ations in the presence of external noise have been re-
cently considered. These include illuminated chem-
ical reactions, electric circuits, an electrohydro-
dynamic instability in liquid crystals, ' Rayleigh-
Benard systems, "and an electronic oscillator. '

It is known' that the presence of noise can stabi-
lize a system that is otherwise unstable. On the oth-
er hand, one has the intuitive idea that a strong
enough noise would destroy the order present in a
system. It then seems necessary to study systemati-
cally the possible effects of external noise on a sys-
tem. Indeed, in some of the experimental situations
mentioned above, it has been observed that the
threshold value for which the system undergoes a
nonequilibrium transition depends on the noise
parameters, so that it can be modified by varying,
say, the noise intensity.

This experimental observation has been interpret-
ed theoretically as being associated with changes
that the stationary distribution of the system under-

goes when varying the noise parameters. ' Al-
though the general validity of this interpretation
may be questioned, it is clear that such phenomena
deserve further theoretical and experimental study.
We should also note here that in an external noise
situation the noise parameters can be controlled
externally. In particular, the correlation time of the
external noise is a parameter independent of the
noise intensity and, to some extent, possible to con-
trol. Therefore, the usual white-noise assumption
for thermal noise is not entirely justified for exter-
nal noise, since a clear-cut separation of time scales
may not exist in some cases.

We finally wish to point out that the term exter-
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II. FOKKER-PLANCK EQUATIONS

A. A general equation and the response function

%e consider a stochastic process defined by a
nonlinear stochastic differential equation of first or-
der in time

q(t) =U(q (t) ) +g(q (t) )g(t), (2.1)

where U(q) and g(q) are in general nonlinear func-
tions of q and g(t) is the random force which we
shall consider to be a zero mean Gaussian process.
The particular case in which g(q (t) ) is constant (in-

nal noise has also been used in the literature in con-
nection with dynamical systems showing chaotic
behavior. ' The effect of noise in such models is an
interesting open question. ' In this context noise
has a different physical origin than the one con-
sidered above.

dependent of q) is commonly referred to as "addi-
tive noise, " while the general situation with a q
dependent g(q) is referred to as "multiplicative
noise. " Equation (2.1) is both intuitively clear and
amenable to study by computer simulation. Howev-
er, Eq. (2.1) is difficult to deal with analytically be-
cause of the (in general) highly nondifferentiable

character of a realization of g(t). For this reason it
is customary to go to a different representation in
which one considers an equation for the probability
density P(q, t) of the process. This will be a nonsto-
chastic partial differential equation, instead of a
stochastic ordinary differential equation like (2.1).

To obtain an equation for the probability density
we shall rely on functional methods. ' These
methods provide an alternative to the often more
used cumulant techniques. ' Functional
methods are very useful for obtaining different ap-
proximations. A general equation satisfied by the
probability density of the process (2.1) is given by

BP(q, t)
at

U(q)P(q()+ g(q), J,d( )((()',, '5(q(() —q)j,
Bg

where

P(q, t) = (5(q (t) —q ) ) (2.3)

I

q(t)= q(0)

+ ds uqs +gqs s (2.4)

and y(t, t') is the noise correlation function.
Equation (2.2) is derived in detail in Appendix B.

It is an exact, fundamental equation on which our
following development is based. Obviously it is not
a closed equation for P(q, t) due to the presence of
the average in the last term. This is so because
5q(t) /5((t') ~~~,~ ~ can not be taken out of the

average symbol because it may explicitly depend on

g(t). Therefore, the problem of deriving an equa-
tion for P(q, t) has been reduced to the problem of
evaluating the response function 5q (t)/5g(t') and of
decoupling the average in (2.2). Of course it is in

general impossible to obtain an explicit exact result
for the response function since this is equivalent to
solving the nonlinear equation (2.1). Except for
linear equations (see Appendix 8) some kind of ap-
proximation has to be made to obtain from (2.2) a
closed equation for P(q, t). Quite naturally these
approximations are approximations for the response
function. Quite different approaches exist for deal-

ing with the response function. Here we shall ob-
tain a forrnal closed expression for the response
function which will be used in our approximations.
From the formal integration of (2.1}we have

%e obtain after functional differentiation'

where v'(q)=Bu(q)/Bq and g'(q)=Bg(q)/Bq.
is an integral equation for 5q(t)/g'(t') that can be
solved, since by differentiating with respect to t we
obtain a differential equation for 5q (t)/5$(t'),

8 5q(t) 5q (t)
Bt g(t')

= [U'(q (t) )+g'(q (t) )g(t}]
5$(t')

(2.6)

that can be solved subject to the initial condition

5q (t) =g(q(t')), (2.7}

which follows from (2.5). Therefore

=g(q(t'))5q (t)
5 t')

+ J,ds[U'(q(s))+g'(q(s)g'(s)] 5q (s)

t & t' (25)
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5q (t)
5~(, )

——g{q(t') )

Xexp J ds[u'(q(s))+g'{q(s))g(s)] .
(2.8)

This is, of course, only a formal expression since an
explicit solution requires the knowledge of the solu-
tion q(s) of the nonlinear equation (2.1).

S. White-noise limit

There exist different approximations that one
may imagine for calculating the response function.
A sensible choice among these approximations de-
pends on the type of noise g(t) that one is consider-
ing. We first consider the case of simple Gaussian
white noise. This noise is characterized by a single
parameter D which measures its intensity, with the
correlation function given by

}(t—r')=2D5(r —r') . (2.9)

Po(q) = exp, dq,
N & u(q)

Dg'(q)
(2.11)

where E is a normalization constant. Equation
(2.10) is the well-known Fokker-Planck equation (in
the Stratonovich interpretation ' ) for the proba-
bility density P(q, t). Since for white noise the pro-
cess (2.1) is known to be Markovian, the funda-
mental solution (2.10) is also the transition probabil-

ity for the process. This property is lost in the oth-
er cases that we are now going to consider, since the
process q {t)will be no longer Markovian.

In this case, only the response function at equal
times t'=t contributes in (2.2}. Therefore using
(2.3) we have

a~
(q, t) =— u (q)P (q, t)

Bt
'

Bq

+D g (q) g (q)P (q, t), (2.10)
0

Bq Bq

whose stationary solution for natural boundary con-
ditions is

takes the cutoff frequency to infinity (i.e., the limit
of vanishing correlation time). In more realistic sit-
uations a Gaussian noise is not uniquely character-
ized by a single parameter D, but also involves the
correlation time of the noise (i.e., inverse cutoff fre-

quency) as another important parameter. If we now

assume that the noise is Markovian and stationary
(in addition to being Gaussian), we know that up to
changes in scale the noise has to be of the
Ornstein-Uhlenbeck form, characterized by a corre-
lation function

y{r —r')= —e- ~'-'~', (2.12)

where v is the correlation time. In the limit ~~0
(D fixed} we recover (2.9). The strength of the ran-

dom term in (2.1) is now measured by (D/r)' but
we shall refer to D as the noise intensity. This noise
intensity corresponds to the white-noise intensity
obtained as a limiting case.

In the following we consider the process (2.1)
driven by Ornstein-Uhlenbeck noise. A possible ap-
proach would be to write an equation for g(t} in
terms of white noise, so that we would have a well
defined Markovian Fokker-Planck equation for the
two-variable process [g(t),q(t)]. From a practical
point of view this is not very useful since, for exam-

ple, the stationary solution of a two-variable
Fokker-Planck equation is not generally known.
Therefore, we consider here the q (t) process
without introducing additional variables. As a first
approximation we consider the vicinity of the
white-noise limit in which ~, although not being
strictly zero, can be considered as a small parame-
ter. In this case, y(t t') becomes a—strongly decay-
ing exponential function and the main contribution
of the response function in (2.2) will come from its
value near t'=t. Therefore a sensible approxima-
tion in this case is to expand 5q(t)lg'(t') around
I,"=t. We will obtain a first correction to the
white-noise limit by keeping only the first term in
this expansion:

C. Small-~ approximation
for Ornstein-Uhlenbeck noise

5q(&) 5q(r) d 5q(r)
5g(&') , , dr' g(r')

(2.13)

The white noise is, of course, only a mathemati-
cal idealization of a broadband noise in which one

I

The time derivative of the response function at
equal times is easily evaluated from (2.8) and (2.1):

= [g'{q(t') )u(q (t') ) —g(q (t') )v'(q (r') }]exp J,ds [U'(q (s) )+g'(q (s))g(s)]
d 5q (t)

~ [g'(q (&))U(q (&))—g(q (&) )U'(q (&))]= —g'(q (&))t'~t g(q(&))
(2.14)
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+0(+ ' ') (2.15)

Substituting (2.13), (2.14), and (2.7) in (2.2) and
neglecting transient terms by extending the integrals
to infinity we have'

BP(q, t) 8
Bt Bq

U (q)P (q, t)

+D g (q) h (q)P(q, t)
a a

Bq Bq

P„(q)=Pp(q) +rP& (q)+ 0(2), (2.17)

where P~ (q) is the first correction to the white-noise
distribution P0. We shall require that

physical boundaries at 1+kg(U/g)'=0. Therefore,
a formal stationary solution of (2.15) (Ref. 19) may
be misleading. The correct way to proceed seems to
be to look for a stationary solution of (2.15) of the
form

where
P& q q=0 (2.18)

h (q) =g(q)I1+rg(q)[U(q)/g(q)]'I . (2 16)

Therefore, we see that the correction to the white-
noise limit to order ~ corresponds to replacing a
factor g(q) by h (q).

We wish now to examine the effect of the param-
eter ~ on the statistical properties of the system. In
particular, we look for the steady-state properties of
the process. We should note from the very begin-
ning that (2.15) has to be handled with care. This
equation appears as a truncation of a series which
we will discuss later on and represents an approxi-
mation which is not uniform for all values of q.
This may lead to unphysical artifacts. In particu-
lar, while the physical boundaries of the problem
appear at u(q)=+Do and g(q)=0, (2.15) has un-

so that P„(q) is normalized independently of r
Here ql and q2 are the physical boundaries of the
problem.

Substituting (2.17) in (2.15) and using the fact
that Pp is a stationary solution of (2.10) we obtain

a
J(q) =0,

Bq

J(q)= U(q)P~(q—)+Dg(q) g(q)P~(q)
cl

Bq

(2.19)

+Dg(q) g'(q) Pp(q) . (2 20)8 2 U(q)

Bq g(q)

Setting the current J(q) =0, we obtain the following
equation for P~ (q):

u (q) —Dg (q)g'(q) U(q)» (q)
Bq Dg (q) g(q)

Pt(q)= —g(q) +

whose formal solution is
'2

Pp(q), (2.21)

P, (q) =CP, (q) —g {q} +U(q) 1 U(q)
Pp(q) . (2.22)

Therefore

P„(q)=Pp(q) ~ 1+r C —g (q)
U(q)

g(q)
1 U(q)

2D g (q)

2

(2.23)

The constant C is here determined by the condition (2.18):
1 '2

C=f Pp(q)g(q} dq+ f Pp(q) dq
g q 2D

1 p't2 U (q) 1 v(q)
2D "si '( ) 2D g(q)

(2.24)

where ( ' ' )p indicates an average with respect to Pp. Equation (2.23) is a general result for the stationary
solution to first order in ~ and will be used in Sec. III as the basis of our analysis for the particular model
whose simulation is reported in Sec. IV.
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D. Sma11-D approximation for Ornstein-Uhlenbeck noise

26

(2.25)

Substituting this expression in the last term in (2.2), using (2.12) and again neglecting transients for simplicity,
we find

We now examine the possibility of including in the equation for the probability density higher-order correc-
tions in r, In principle the expansion (2.13) can be formally carried out to all orders in (t t):—

5q (t) "
( —1)" d" 5q (t)

5$(t') „, n! dt'" 5$(t')

d) y(( —y')(, 5(q(() —q)) D g ( —()"p( .. . sq(() q)) . — (2.26)

To obtain a better understanding of the nature of these series we examine the first term that was neglected in
(2.13). From (2.8) we have

d 5q(t)
dt' g'(t )

=v'(q (t) ) v (q (t) )
g(q(t))
v(q(t))

v'(q(t)) g(q(t))+g qt
g(q(t)) v(q(t))

(2.27)

The first term in (2.27) will contribute a term of or-
der DH to the equation for P(q, t) and it would be
of the Fokker-Planck form of (2.15). The second
term in (2.27) is more complicated because it de-

pends explicitly on g(t). Therefore, after substitu-
tion in (2.26) we will have a term with a factor
(g(t)5(q(t) —q)). It follows from Appendix 8 and
(2.12) that the calculation of this average intro-
duces, to lowest order, a factor DB/Bq. Therefore
our equation will be no longer of the Fokker-Planck
form and will contain terms of order D . It is clear
from the above discussion that in general (2.26) will

lead to an equation for P(q, t), of the form of a
Kramers-Moyal expansion

aP(q t)
&

a'

Qq/
(2.28}

This expansion can be rearranged by classifying the
terms by their coefficient D P (n)m). Terms
nonlinear in D are due to the explicit dependence on

g(t) of the time derivatives of the response function
and, as explained above, this introduces higher-
order derivatives with respect to q in the equation.
Therefore it is obvious that K& and E2 contain only
terms with coefficient BP and in fact contain all
such terms. What we want to show now is that it is
formally possible to sum up all terms of (2.26}
which are of order DH. This summation represents
then the best Fokker-Planck approximation to the
process and contains terms to all order in ~. Since
the terms that we neglect are nonlinear in the
parameter D, such an approximation can be regard-
ed as an approximation for small D, that is, small
noise intensity. It is clear that this series of terms is

I

obtained when neglecting all the terms that would
have an explicit g dependence in (2.25). The ap-
proximation thus amounts to calculating the
response function 5q(t)lg(t') in the limit of small
noise. We therefore calculate the time derivatives
of the response function from

=g(q(t')) exp ds v'(q(s))5q (t)
5 t' (2.29)

q(t)=v(q(t)), (2.30)

d" 5q (t) =8„(q(t') ) exp f ds v'(q (s)),dt" g(t )
(2.31)

d" +' 5q(t), , &.(q(t'))=—v (q(t'))dt'"+' 5((t') v(q(t'))

t
Xexp f ds v'(q(s)) . (2.32)

Therefore, given (2.7) we have

which are obtained from (2.8) and (2.1) to lowest or-
der in g(t). It is obvious that this approximation
for the response function is valid for small D only
because it is going to be replaced inside the average
in (2.2). We have already noted that in this average
g(t) introduces, to lowest order, a factor D. In gen-
eral small D does not imply that g(t) need to be
small pointwise as used in (2.29} and (2.30). From
(2.29) and (2.30) it follows that if
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d" 5q(t)
Ct'" g(t') =u (q(t)) u(q(t)) v(q(t)) . u(q(t))= 2 g(q(t))

v(q(t))

(2.33)

where there are n —1 factors u(q (t) ) between
u {q(t)) and g(q(t))/v{q(t)) and n derivatives with
respect to q. Substituting this result in (2.26) we ob-
tain the following formal sum of the series:

D ~ ( 1)„~ d" 5q(t)
5$(t')

r

=D u(q) I+su(q)
a

5(q(t) q&)—

P(q, t) .( )

v(q)

Thus, defining the function
r

H (q) =u (q) 1+rv (q)
8

Bq

g(q)
u(q)

'

(2.34)

(2.35)

+D g(q) H(q)P(q, t) .8
Bq Bq

(2.36)

The function H(q) can be calculated in practice ei-

ther by an explicit summation of the series obtained

by expanding [1+rv(q)B/Bq] ' in (2.35) or by
finding a solution of the equation it satisfies. This
equation is obtained from (2.35) as

we have in this approximation the following
Fokker-Planck equation for P(q, t):

BP(q, t) 8
Bt Bq

v (q)P (q, t)

depends then on the problem under consideration.
In general the smallness of r is referred to a charac-
teristic time scale of the system. A difficulty that
we wish to point out regarding our approximations
is that they are not uniform approximations for all
values of q. As a consequence the smallness of the
neglected terms depends not only on the values of D
and r but also on the q domain in which one is in-
terested. An additional difficulty with the "small-
D" approximation is the convergence of the series
defining H(q). In general (see Sec. III for an exam-

ple} the convergence of the series depends on the
value of v, so that the soundness of the approxima-
tion not only depends on D but also on r. In this
sense the values of r for which H(q) exists give an

upper bound for the validity of the small-~ approxi-
mation. For these reasons it. is difficult to give a re-

liable, practical, and mathematically sound criterion
for the validity of the approximation. The validity
of these equations is checked in this work by com-
parison with the results of the simulation. It turns
out that, for the model we consider, our equations
give a good qualitative picture for reasonable values

of D and v.. It is then tempting to conclude that in

general they provide one with qualitatively correct
information about the major differences between

colored noise and the white-noise behavior usually
discussed in the literature.

H (q)+r[H'(q)v (q) —H (q)u'(q)] =g (q) .

(2.37)

III. A PARTICULAR STOCHASTIC EQUATION:
THE STRATONOVICH MODEL

Of course to first order in r the function H(q) coin-
cides with the function It (q) introduced in (2.16).
The function H(q) is calculated for a particular ex-
ample in Sec. III. Equations (2.15) and (2.36) are
two approximations to the problem of finding an
equation satisfied by the probability density of the
process (2.1) driven by Ornstein-Uhlenbeck noise.
These approximations are based on considering z or
D as smallness parameters. In our development we
have assumed that (2.1} is written in dimensionless

form so that D and ~ are dimensionless parameters.
The physical meaning of the smallness of D and r

In this section we use the general equations of the
preceding section to analyze in detail a particular
stochastic model defined by the equation

q(t) =aq (t) 13q'(t)+q (t)g—(t) . (3.1)

This equation represents the simplest Ginzburg-
Landau model in which the coefficient of the linear
term fluctuates around a mean value a (where we
take a to be positive). As pointed out in the Intro-
duction this model has been considered in Refs.
1 —7. Since in this paper we are essentially interest-
ed in the study of the properties of the process as a
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q(t) =q(t) —q'(t)+q(t)g(t) . (3.2)

function of the noise parameters we can always re-
scale the variables in (3.1) so that we have an equa-
tion in which all the parameters of the equation are
included in the noise, i.e.,

A,„=4nD —n
2D

A(s)= +s .
1

4D
(3.6)

A. White noise

The stationary-state time-independent properties
of this model are completely known in the white-

noise limit. ' They are obtained from the stationary
distribution (2.11) which in this case is

The number of discrete eigenvalues depends on D.
No discrete spectrum exists for D ) —, (Refs. 4 and

6).
An interesting quantity to calculate is the relaxa-

tion time of the correlation function as a function
of noise intensity D. This relaxation time is defined

by

1 /2D

P,(q) =2 r—'
q

—'+ "~exp—1

2D 2D
1

2D q

(3.3)

T = f, dt'p(t'),

[(q(t+t )q(t)&p —(q(t)&p]
p(t') =

[(q'(t) &,—(q(t) &',]
(3.7)

The moments of this distribution are given by
r

(q"&,=(2D)""r-' r
2D

(3.4)

These exact results are used in Sec. IV to check the
accuracy of our numerical simulation. An interest-

ing property of this stationary distribution is that,
while for small-noise intensity it has a single max-
imum at a value of q&0, the position of this most
probable value shifts to smaller values of q for in-

creasing D. For large enough D, Pp(q)~~ pap.

The crossover between these two qualitatively dif-
ferent forms of Pp(q) [with a single maximum at

q+0 (Fig. 4) and going to infinity at q=0 (Fig. 5)]
can be mathematically characterized by the value of
the parameter D= 1 for which the maximum q
of Po first becomes nonzero. In fact we have

0 if D & 1

qmax (1 D)1/2 f D (3.5)

This crossover behavior of Pp(q) occurs, of course,
in a continuous fashion. Also, although the most
probable value is a nonanalytic function of D
around D= 1, no manifestation of this fact is shown
in the moments (3.4).

The dynamical properties of this model are not
completely known. They can be analyzed in terms
of the eigenvalue problem associated with the
Fokker-Planck equation (2.10) for this problem.
The eigenvalue problem has been discussed in Refs.
4—6. The eigenvalue spectrum consists of a
discrete part and a continuous part which are given,
respectively, by

B. Colored noise

We first consider the results that follow from the
small-~ approximation of Sec. II for this particular
model. The stationary distribution (2.22) becomes

P„(q)=Pp(q) 1 r+1—— q +1 2D+1 2 q
2D D 2D

(3.&)

where Pp(q) is now given by (3.3). From (3.8) it is
straightforward to evaluate the different moments
of the distribution. For the mean value we obtain

(q&=(q&p 1 —r +r (q &p
1 +2D 2D + 1

2D D

(q'&p, (3.9)

where (q"&p are given in (3.4). The effect of r can
be measured here by the relative deviation of (q &

from the white-noise value (q&p. From (3.9) and

where the averages are calculated with the steady-
state distribution. At present no explicit analytical
form has been given for the correlation function
and the dependence of T on D except for the one
obtained by a decoupling approximation. ' The
asymptotic decay in time of the correlation function
has been obtained by the method of Carlemann
imbedding (see also Ref. 7) from which the spec-
trum (3.6) is reobtained. We shall comment on
these two approaches in Sec. IV where we discuss
the dependence of T on D as obtained from the nu-

rnerical calculation of the correlation function.
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(3.4) one obtains that this relative deviation grows
linearly with ~:

&q& —&q&o

&q&o 2

For the second moment we obtain

(3.11)
I

so that, at least to this approximation, its value is
independent of the noise parameters.

In order to find the shape and extrema of P„(q}
for different values of D and ~ we can extend the re-
sult (3.8) to larger values of r by considering the
bracket in (3.8) as a first-order expansion of an ex-
ponential:

P„(q)=Nq exp —r +)/g) ) 2D +1 2D +1
2D

2 & 4
q (3.12)

P„(q) ~ 0 (3.13)
q

for all values of D and r. The extrema of P„(q) are
given by

This ad hoc exponentiation guarantees the positive
definition of P„(q). Also, its extrema are easier to
determine than those of (3.8). The positivity re-
quirement of P„(q) is not fulfilled by (3.8) for arbi-
trary values of r From. (3.12) it follows that

I

larger values of ~. In particular, the appearance of
relative extrema would occur for relatively large 7.
Nevertheless these predictions are qualitatively con-
firmed by the simulation of Sec. V. In any case, to
see in what measure those results are expected to be
modified when ~ is not very small, we now analyze
the "small-D" approximation of Sec. II for this
case.

A solution of the differential equation (2.37) is
given for a variety of simple models by the ansatz

q&0, (3.14) H (q) =ag (q)+6r[g'(q) V(q) —U'(q)g (q)],

2'' [2(2D + 1)—r 1]q'+D 1 —0 (3.15)

For D &1, q=0 is a minimum [P„(q)—+~ „0]and
(3.15) gives a unique positive solution for q .
Therefore for D & 1 the general form of P„(q) is the
same as we had for the white-noise case, although
of course the position of the maximum now de-

pends on the value of ~. In fact, it follows from
(3.15) that it shifts to larger values of q as r in-

creases. For D&1, q=0 becomes a maximum

[Pst(q)~~ Ooo] and (3.15) gives rise to two possi-
bilities. For small values of ~ there is no positive
solution for q and therefore we have again the
same qualitative form of P„(q}as in the white-noise
case. Nevertheless, for large enough r (3.15) has
positive solutions for q which indicate the appear-
ance of a relative maximum and a relative
minimum of P„(q). This form of P„(q) is qualita-
tively different from anything that exists in the
white-noise limit. (See Fig. 7.) The line in parame-
ter space (D,r) for D& 1 separating these two cases
[that is, the line for which the relative extrema of
P„(q) first appear] is given by

H(q)=q 1—27q

1+2' (3.18)

Alternatively, the expansion of (2.35) becomes in
this case

H(q}=q+q3 g ( —I)"2"r",
n=1

(3.19)

which reproduces (3.18) but shows that the sum

only exists for « —,. %e showed in general in Sec.
II that the "small-D approximation" amounts to re-

placing h (q) of (2.15) by H(q). Since in this case

h (q) = q (1 2rq ), — (3.20)

we see that in this model the substitution consists of
the replacement of r by r/(1+2'). Therefore the
summation of the subseries of terms implies in this
case the introduction of a "renormalized" correla-
tion times ~q,

(3.17)

where a and b are determined by substituting in
(2.37). In our case, a = 1, b = —1/(2m+ 1) so that

D = ——+—+(3—12') /4r .
1 1 J/2

2 2~
(3.16) (3.21)

The above discussion of P„(q) is based on an extra-
polation of the result (3.8) derived for small r for

Furthermore, we have shown that the sum only ex-
ists for r & —,. One may argue then that the substi-
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tution of z by ~z in the results of the small-~ ap-
proximation should be a way of taking into account
a small (but not infinitesimally small) correlation
time ~. In other words, we conjecture that such a
substitution will indicate the general trend of the
modifications that would arise when considering in
Eq. (2.28) terms beyond linear order in r Fo.r in-
stance, we conjecture that a better approximation
than (3.10) will be

&q &
—&q)p Dra Dr

&q )p 2 2(1+2r) (3.22)

P„(q)=P„(g(q) )
d

(3.23)

Since the stationary distribution of g is a Gaussian
centered at the origin, with variance B/~, we have

P, (q} = 2q —(q —1)
exp

~&» v 2mDIr 2D/r

The replacement of ~ by v.z is expected to give
better results for &q ) when D and r are small. On
the same grounds we expect that a better approxi-
mation than (3.16) for the line in parameter space
for which P„(q) develops relative extrema for D) 1

will be given by (3.16) with r substituted by r~.
In order to have a more complete understanding

of the behavior of the process it is interesting to
consider the opposite limit of white noise, that is
~~00. In this limit the variable q becomes a fast
variable as compared with g(t) and adjusts instan-
taneously to the value of g(t). The stationary distri-
bution of q (t) then can be obtained' by expressing
g(t) in terms of q by setting q=0 in (3.2) and using
this relation to change variables in the stationary
distribution of g, i.e.,

I

asymptotic behavior (3.24). For r~ 00, an absolute
maximum appears at the deterministic steady state
q=1. For this reason it is not obvious whether
there is any physical significance in this model to
the line (3.16) in parameter space.

In Fig. 1, we display the different regions in
parameter space for which qualitatively different
forms of P„are expected from the above analysis.
[A corresponds to P„(q) in Fig. 5, 8 to Fig. 4, C to
Fig. 7, and D to Fig. 8.] The full line between A
and C corresponds to (3.16) and the dashed line to
(3.16}with r replaced by r~.

Finally we would like to point out that to our
knowledge, no analytical results have been reported
for the dynamical properties of this colored-noise
model. The correlation function and correlation
time will be evaluated numerically in Sec. IV.

IV. NUMERICAL SIMULATION.
COMPARISON WITH

DIFFERENT APPROXIMATIONS

The simulation of Eq. (3.23) has been done using
the algorithm described in Appendix A. For the
white-noise and colored-noise cases we have used,
respectively, Eqs. (A10) and (A25) to first order in
the integration step as discussed in Appendix A.
The inclusion of higher-order terms has been shown
for a different model to be unimportant. In any
case, our results seem to be accurate enough for our
purposes. The accuracy of our procedure has been
checked by comparing the results of the simulation
for mean values and for the stationary distribution
with the exact values (3.4) and (3.3) which are
known for the white-noise case. The details of our

(3.24)

This distribution goes to zero at q~o,q~ao and
has a single maximum at

' 1/2 1/2
1 1 2D

(3.25)

Therefore we expect that for large enough r (and in-
dependently of D) P„(q) will have the same general
form as for D&1 and small ~. The effect of in-
creasing v. is the same as the one of decreasing D for
small ~. In both cases, the strength of the random
term in (3.1) diminishes. From this point of view
the development of relative extrema for D ~ 1 when
increasing r is a natural transition towards the

D

2.5—
\

\

I
I

/

2.0—

I.O

I

l.5—
I

I /

I

0.5— B I

I

0.0 I I 1 l

0.0 0.2 0.4 0.6
FIG. 1. Regions in parameter space (D,~) with quali-

tatively different form of I'„.
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numerical procedure are as follows. In the station-
ary state, data from each run were saved at 500 dif-
ferent times, spaced 40 integration steps apart. The
size of the integration step, 6, was equal to 0.005.
One thousand independent realizations were ob-
tained; the values for (q) and (q ) were obtained

by averaging over both 500 different times and 1000
realizations. In order to obtain P„, a histogram of
1000 runs was constructed at 500 different times.
The data quoted for P„are the result of averaging
these 500 histograms. Because of this reduction in
the number of terms included in the average as well

as the finite size of the grid used to construct a his-

togram, our results for P„are clearly less accurate
than our values for (q) and (q ). We can also
compute P(t') as defined in Eq. (3.7) by averaging
over both time and 1000 realizations. The relaxa-
tion time T, was then obtained by means of numeri-
cal integration.

The mean values obtained from the simulation in

the white-noise case differ typically by less than 1%
from the exact values given by (3.4). The differ-
ences between the stationary distribution obtained
from the simulation and (3.3) are also small. In
Fig. 2 we show this comparison for D=0.9. This is
one of the worst cases that we can consider, due to
the large fluctuations present in P„ for values of q.
These fluctuations are due to the important change
in P„(q=O) for q=O discussed after (3.4). In fact,
the differences between simulation and theory can
only be seen in Fig. 2 for such small values of q.

We first discuss our results for the time-
independent properties of the colored-noise case.
The behavior of the relaxation time for white noise
is discussed at the end when we also consider the

P, (q)
0.8

0.7

0.5

0.2

O. I

0.0 I

0.0 OA 0.8 l.2 l.6 2.0 2.4 2.8 5,2

FIG. 2. Comparison of the simulation (full circles)
with the exact result (3.3) for the white-noise stationary
distribution (full line). D =0.90.

same quantity for the colored noise. The mean
values obtained for different values of D and ~ are
listed in Table I where we have also included the
corresponding values for white noise (3.4) and the
two approximations discussed in Sec. II. In these
three cases we obtained (q )=1. We obtained
values for (q ) which differ from unity by an
amount typically less than 1% for all the explored
values of D and r, in agreement with the theory.
On the other hand, (q) is seen to be sensitive to
changes both in D and in ~. In Fig. 3 we check the
validity of the two predictions (3.10) and (3.11).
This is quite a stringent test of the theory since it
refers to relative deviations from the white-noise
value. With respect to the small-~ approximation
we can see that it gives a good representation of the
data for small enough values of r (= 1/18} where it
is expected to be reliable. We also see that the ap-
proximation becomes better as D becomes smaller.
This is of course expected from the analysis of the r
expansion in Sec. II. One interesting thing to notice
about the small-D approximation is that no matter
what the value of D, the introduction of ~z gives a
significant improvement with respect to the small-~
approximation. This may be accidental, however,
since there is no a priori reason why the approxima-
tion should work for some of the large values of D
considered. On the other hand, for small enough
values of D (D (0.50) we see that the introduction
of ~z gives an accurate representation of the data
(see points 7 —12). We finally remark that the ap-
proximations give good results for values of D and ~
for which the strength of the random term of order
(D/r)' is not small as for examples in points 1, 2,
6—9.

We now turn to the consideration of the form of
the stationary distribution. In Figs. 4—7 we com-
pare our result (3.8) with the simulation results and
the white-noise distribution (3.3) for representative
points of the different regions in Fig. 1. Figures 4
and 5 show the results for a small value of ~. There
clearly exists a good quantitative agreement with
the theory. Of course the deviations from white
noise in this case are quite small but still noticeable.
For larger values of r (Fig. 6) the deviation from
white noise becomes important. Although (3.8)
does not give a perfect quantitative fit of the data, it
gives a qualitatively correct description of the devi-
ation from the white-noise distribution. In Fig. 7
we consider values of D and w for which a priori
(3.8} is not reliable. As expected, the agreement be-
tween the theory and the simulation is worse.
Nevertheless, our approximation, at least in this ex-
ample, does predict the main qualitative feature
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TABLE I. Mean values for different values of D and r. (q) and (q ) are the numerical results .(q)0 corresponds to
(3A), (q ) small r is given by (3.9), and (q ) small D is given by (3.9i with r replaced by rs [Eq. (3.21)].

Point

1

2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.25
1.50
1.50
0.75
0.05
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.75
0.90
1.25
1.50
1.75
2.00
2.50
0.90
2.00
1.50
1.50

18
18
5
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2.5
2.5
1.67
1

&q')

1.01
1.00
0.000
0.990
1.00
0.998

1.00
0.999
1.00
1.00
0.999
1.00
1.01
1.00
1.00
1.00
1.00
1.01
0.990
1.00

0.940
0.730
0.730
0.839
0.987
0.975
0.963
0.951
0.940
0.929
0.907
0.928
0.894
0.813
0.762
0.730
0.701
0.676
0.632
0.813
0.676
0.730
0.730

0.946
0.754
0.793
0.883
0.992
0.985
0.978
0.969
0.963
0.955
0.940
0.928
0.895
0.873
0.836
0.811
0.787
0.767
0.734
0.884
0.787
0.833
0.870

0.946
0.760
0.839
0.918
0.996
0.992
0.987
0.983
0.979
0.975
0.967
0.960
0.944
0.935
0.920
0.912
0.906
0.901
0.896
0.959
0.946
1.058
1.277

&q )smaH D

0.946
0.757
0.808
0.891
0.992
0.985
0.978
0.971
0.963
0.959
0.943
0.930
0.902
0.886
0.857
0.839
0.824
0.811
0.790
0.894
0.826
0.879
0.912

displayed when increasing ~ for Dg 1, namely, the
appearance of relative extrema. This feature is ab-
sent in the white-noise case. For larger values of r,
Eq. (3.24) should hold. In Fig. 8 we show a com-
parison of this prediction and the simulation. Tak-
ing into account that (3.24) is an asymptotic formu-
la, the comparison is very good. The dependence of
Pst(q) on the parameters D and r as follows from

the simulation is displayed in Figs. 9 and 10 where
the stationary distribution is shown for fixed r and
different values of D and for fixed D and different
values of w, respectively. In particular we see in
Fig. 10 that the peak that appears for increasing ~
for D & 1 becomes very important. For large
enough values of ~ a single-peaked distribution ap-

&q &-&q &
0

q&0
0.IO

0.08

0.06
Xip

X)4

I.4—

I.2—

I.O

0.04

0.02

0.0 ' I I I I I l

0.0 0.02 0.04 0.06 0.08 O.IO O. I2 O.I4 0.16

D+ (D rR/2)

FIG. 3. Comparison of the simulation with Eqs.
{3.10) (crosses) and (3.22) (open circles). The straight
line corresponds to Eqs. (3.10) and (3.22) when
((q) —(q)0)l(q)0 is plotted, respectively, vs Dr/2 and
Dr~/2. The numbering of the points corresponds to
Table I.

0 go

0.6

0.4

0.2

0.0
0.0 0.4 0.8 1.2 I.6 2.0 2.4 2.8

FIG. 4. Stationary distribution for D =0.25
18

'

The full circles represent the simulation result, the full
line represents the result from Eq. {3.8); the dashed line
is the white-noise result [Eq. (3.3i].
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FIG. 5. Stationary distribution for D =1.5
18

The full circles represent the simulation result, the full
line represents the result from Eq. (3.8); the dashed line
is the white-noise result [Eq. (3.3)].

FIG. 7. Stationary distribution for D =1.5, v.=—.3'
The full circles represent the result of the simulation,
the full line represents the result from Eq. (3.8); the
dashed line is the white-noise result [Eq. (3.3)].

pears, in agreement with our analysis for r &~1. A
detailed investigation of the line in the (D,r) space
for whch this peak appears has not been obtained
since the transition occurs very smoothly.
Nevertheless, from the results in Fig. 10 it is clear
that the line given by (3.16) with r replaced by rR
gives a much better estimate than (3.16) itself. In
Figs. 6, 9, and 10 it is also clearly seen that when

decreasing D at fixed ~ or increasing ~ at fixed D,
the spreading and support of the distribution are re-
duced, and the distribution becomes more peaked,
with the maximum going to q,„=1. This is so be-
cause in both cases we are reducing the strength of
the random term in (3.10).

We now turn to a discussion of our results for the
relaxation time defined in (3.7). Figure 11 shows a

1.6-

1.4

1,2—
1.2

P„(q)
0.8—

1.0

0.6—

0.2—

0.0 =
0 0 0.4 0.8 1.2 l.6 2.0 2 4 2.8

-0.2- 4

FIG. 6. Stationary distribution for D=0.5, ~= 3.
The full circles are the simulation result, the full line
represents the result from Eq. (3.8); the dotted line is the
white-noise result [Eq. (3.3)].

0.0 I I

0.0 0.4 0.8 1.2 1.6 20

FIG. 8. Stationary distribution for D =1.5, ~=5. The
full circles are the result of the simulation. The full line
is the result from Eq. (3.24).
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plot of the normalized correlation function P(t) for
different values of D in the white-noise case. This
shows a monotonic approach to zero which is
slower for larger values of D. We therefore expect a
slowing down of the process caused by the noise, in
the sense that T wiB increase with increasing noise
intensity. Such a behavior of T is explicitly shown
in Fig. 12 where it is also seen that T ' as a func-
tion of D decreases more rapidly for small D than
for larger D. Earlier results by Stratonovich' give
an opposite result: from a decoupling approxima-
tion Stratonovich obtained that T is a monotonical-

ly decreasing function of D. We conclude from our
numerical simulation that Stratonovich's decou-

pling ansatz gives in this case a completely mislead-

ing result. As a separate fact we mention that
Stratonovich's approximation gives a correlation
function which decays exponentially for all values
of D and w. This is also in contradiction with the
exact long-time dependence obtained in Ref. 6.

The explicit dependence of T on D as displayed in
Fig. 11 is very difficult to extract from the eigen-
value spectrum (3.6). Some information can be ob-
tained in the limit of small D. As D goes to zero,
the bottom of the continuous band of eigenvalues
(3.6) goes to infinity. Therefore only the discrete
spectrum contributes in that limit and the correla-
tion function can be written as

(q(t)q(0))= g c„e

4
~ X0 ~
X

0.4—
X

X

X
X

x ~ ~
~ ~ X

0

X

0
0.2 — 0

0
0

e
X

0 X ~
I I I IO X vla I I

0.4 0.8 I.2 l.6 2.0 2.4 2.8
0.0

0.0

q

FIG. 10. Changes in the stationary distribution when

increasing v. for fixed d =1.5.

T '=2+0(D) . (4.2)

This value of T ' as D~O is in agreement with
our simulation and it is also given correctly by Stra-
tonovich. To first order in D the second eigenvalue
A,2 gives a contribution of opposite sign to that of

This reduces the slope dT '/dD
~ D 0 from the

value of 4 (which would correspond to A, I) but keeps
that slope negative. A reliable determination of this
slope seems to be beyond our numerical accuracy
since for very small D the function P(t) in (3.7) be-
comes the quotient of two very small numbers.
Nevertheless, we do obtain a negative slope which is
significantly reduced from the value associated with

Another interesting aspect of our results is that

where A,„ is given in (3.6) and explicit expressions
for C„are given in Ref. 6. From those expressions
one finds that C„-D" for D &&1. Therefore, to
lowest order in D, T ' coincides with A, &,
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the change of P„(q) at D= 1 is not reflected in the
behavior of T, since T does not show any change in
behavior around D=1. Also, the behavior of T
does not reflect the divergence of the decay con-
stants of (q "(t)) at D =1/n pointed out in Ref. 5.

The behavior of T for the colored-noise case is
qualitatively similar (Fig. 12) in the sense that for a
fixed value of r we also have a slowing down as a
function of D. More interesting is the fact (Fig. 13)
that for a fixed value of D, T ' is also a monotoni-

cally decreasing function of ~, so that the two
parameters of the noise D and ~ are capable of pro-
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FIG. 11. Normalized correlation function (3.7) for
white noise with different values of D.

ducing the same slowing down phenomena.
Finally we would like to comment on the

relevance of our results for T for the experimental
results of Kabashima et al. for a parametric oscil-
lator under the influence of broadband external
noise. The authors report a transition from a state
of oscillatory to a state of nonoscillatory output
current that occurs when increasing the noise inten-

sity while keeping other parameters fixed. This
transition is analyzed in terms of the model (3.1).
The authors also discuss two dynamical properties
of the system. The first refers to the nonequilibri-

um relaxation of the system when it is brought (at
constant D) from above to below threshold by
changing other parameters. It is seen that the decay
constant of the oscillation current decreases linearly

with noise intensity. The second dynamical proper-

ty refers to the correlation time of the output
current on the steady state which is seen to diverge
at the physical point of transition. This last result
is in contradiction with our results for T if such a
transition is identified with the behavior of P„(q)
for D=1 and ~&&1. At this stage we can only add
some words of caution regarding both the charac-
terization of the transition and the applicability of
the model (3.1) for the system of Ref. 2. First we

notice that the effective value of the oscillation was
determined from the peak of the spectrum of the
output current. The identification of this value

with the most probable value of P„(q) is not obvi-

ous. Secondly, the model (3.1) was derived in Ref. 2
after a number of simplifications and the variable q
represents the amplitude of the oscillation current.
The transformation from this variable to the actual-

ly observed current is not trivial [see Eq. (2.6) of
Ref. 2].

FIG. 12. Results of the simulation showing inverse

correlation time vs noise intensity D. The full circles
represent the white-noise result and the crosses represent

the colored-noise result for v.=—.
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crated from the value q(t) by means of the formal
integration of (2.1) between t and t +6:

q(t+5) —q(t)= f u(q(t'))dt'

+ f g(q (r') )g(&')«' .

(Al)

In order to expand the right-hand side of (Al) in
powers of 6, we write

APPENDIX A: AN ALGORITHM
FOR A NUMERICAL SIMULATION

OF STOCHASTIC DIFFERENTIAL EQUATIONS

u(q(&')) =u(q(&))+ [q(&') —q(t)]+ .dU

dg (t)

The numerical integration of a stochastic dif-
ferential equation is intrinsically different from that
of an ordinary differential equation. The presence
of random terms in the equation makes necessary
the simulation of random numbers using Monte
Carlo techniques. What one does is simulate a par-
ticular trajectory, consistent with the stochastic
equation, which corresponds to a particular realiza-
tion of the stochastic term (a certain sequence of
random numbers). The statistical properties in
which one is interested are then obtained by taking
the average over many of these simulated trajec-
tories.

Several rather different algorithms have
been proposed recently to integrate Langevin-type
equations. We will essentially follow the algorithm
proposed in Ref. 35 for general nonlinear equations,
keeping in mind the basic idea discussed above.
That paper is written in the language of the Ito cal-
culus for stochastic differential equations with a
white-noise random term. For a better under-

standing we present below this algorithm in terms
of the more usual Stratonovich calculus. 7 We
also extend the algorithm to the case of stochastic
differential equations driven by an Ornstein-
Uhlenbeck process.

We first consider a general stochastic differential
equation (2.1) driven by white noise, with a correla-
tion given by (2.9). We interpret (2.1) in the Strato-
novich sense. The existence in general of a multi-
plicative noise complicates the algorithm. When
dealing with equations for a single variable q one
could always introduce a new variable for which the
noise becomes additive. This is the variable defined
in (815). Nevertheless, in practice this transforma-
tion is rather involved and it seems better to use the
original variables.

To obtain a discretized version of (2.1) we choose
a small time interval b, . The value q (t +b, ) is gen-

g(q(r')) =g(q(&))+ dg

q(t)

[q(&') —q(&)]+

(A3)

Keeping only the first terms in (A2) and (A3) we
obtain

with

q(r+6, ) —q(r) =u(q(r))h+g(q(t))X, (r),

X,(r) = f g{r')dt'=&2Db, y, (r),

(A4)

where the random number X~(t) is Gaussian with
zero mean value and variance (X~ (r) ) =2DE. It is
written in terms of y~(t) which is defined as a
Gaussian random number of zero mean value and
variance equal to one. The number y&(t) can be
generated from two independent random numbers

r)&, q2 (which are distributed with equal probability
between 0 and 1) by the Box-Mueller formula

y~(t) =( —11nrl~)'~ cos 2m.rlq . (A6)

dg t+6f dt'[q(t') —q(t)]g(t)
dg ()

f dt'g(q(r)) f dh"g(t')g(r"),
q(t)

(A7)

The first term in the rhs of (A4) comes from the
deterministic part of (2.1) and is of order b, . The
second term is of order 6' and therefore dom-
inates for small 4. An important point here is that
although the second term of (A2) gives when substi-
tuted in (3.1) a contribution of order higher than b„
the second term in (A3) gives a contribution of or-
der h. It would be inconsistent to keep the term
u(q(t))b while neglecting this other one. This other
term is obtained as follows. We have
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( (t)) X (h)g g q d ( )
1 (A9)

which is of order h. The fact that such a term of
order 6 appears is due to the very special character
of the white-noise term. It is also important to no-
tice that this term vanished for additive noise.
Therefore to first order in 5, we have

where we have used (A4) to lowest order in b, .
Since we have that

f dh' f dh "g(t')f(t")
t+h,= —, f dt' f dt"g(t')g(t"), (A8)

the contribution (A7) can be written as

tion in error which one may obtain by considering
higher-order terms. On the other hand, 5 has to be
chosen necessarily quite small since it measures the
correlation time of the simulated white noise. " It
is also important to note that we try to simulate
possible trajectories which are erratic in nature and
that our interest is in averaged quantities. Higher-
order terms could become important if one is in-
terested in trajectories themselves.

We now turn to the case in which Pt) in (2.1) is
given by the Ornstein-Uhlenbeck process (2.12).
The Ornstein-Uhlenbeck process g(t) can be gen-
erated from the Gaussian white noise g„ through
the stochastic equation

q (h +&)=q(h)+ u(q(h) )&+g(q (h) )I&
(h)

+- ( (h)) -X (t)+0(b,'")
g(t)= —r 'g(t)+r-'g (h) . (Al 1)

(A10)

This first-order algorithm is the one used in our cal-
culations. The successive corrections to (A10) are,
respectively, of order A,h, A,h, etc., and can
be obtained in a similar way as in Ref. 35, using the
above procedure. We have only considered in our
simulation the first-order contribution, which we
think is sufficient for our purpose. The accuracy of
the algorithm seems to be more sensitive to the ac-
tual value of 6 and to the number X of realizations
(or samplings of the process) used to obtain aver-

ages quantities, than to the inclusion of higher-
order terms in h. ' The statistical error associated
with N seems to be ordinarily larger than the reduc-

Therefore we now have to solve the coupled set of
equations (2.1) and (Al 1). By choosing an integra-
tion step 6 we rewrite (2.1) as (Al) and (All) as

g(t+~) =g(t)+ f [ r 'g(t')+—r--'g. (h')]dh .

(A12)

In this case we will make use of the expansions
(A2), (A3}, and

t'
g(t') —g(t) =f [ r'g(t")—+r g (t")]dh" .

(A13)

The first term on the rhs of (Al) is given by

&+~ t+b, t' g'
u{q{h'}}dh'=f u(q(h))+u'(q(h)) f u(q(h"))dh" +f g{q(t"))g(t")dt"

Q2 Q2
=u(q (h) )&+u'(q(h) )u(q (h) ) +u'(q (h) )g(q (h) )g(t) + 0 (~'"),

2 2
(A14)

where the first equality follows from (Al) and (A2).
In the second equality we have approximated
u{q(t"})and g(q(t"))g{t")by their values at time t.
Using (A3) and (A13) the second term on the rhs of
(A 1) can be written as

f g(q (h'))g(t')dt' =g(q (t))g(t)&+& +& +C,
(A1S)

where

t+h,
C =f dt'g'(q(t) }[q (t') —q (t)]

t'
X f dt"[ r 'g(t")+r '—

g (—t")].

(A17}

(A18)

~+6,
8 =f dk'g(q(t)) f dt"[ r'g(t")—

+r 'g (t")],

~ =f g'(q(t))f(t)[q(t') —q(t)]dt',

(A16)

Using (Al) and approximating u(q(t")) and
g(q(t"))g(t") by their values at time t, as we did in
(A14) we have
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Q2
A =g'(q(t))v(q(t))g(t)—

2
Q2

+g'(q(t))g(q(t))g (t) +O(h ) .
2

(A19)

Xq(t) is not independent of Xi (t) since

(X,(t)x&(t) ) =DE' .

Therefore Xq(t) can be written as

(A22)

(A23)

Approximating g(t") by g(t) in (A17), 8 becomes

g(q (t) )g(t)—
Q2

2

+r g(q (—t) )X~(t)+0 (hsing) (A20) (A24)

X,(t)= J dt' j dt"g (t").
The random number Xz(t) is Gaussian because it is

a linear transformation of g~(t). It has zero mean

value and variance

where yi is defined in (A5) and yz(t) is another
Gaussian number of mean value zero, variance
equal to one, and statistically independent of yi(t).
The number yz(t) is generated in the same way as

y&(t). The term C is easily seen to be of order
higher than 6 . Therefore, from (Al), (A14), (A15),
(A19), and (A20) we have

Q2
g (t +~)=q (t)+U(q (t) )&+g(q (t) )g(t)&+g'(q (t) )g(q (t) )g'(t)

2

Q2 Q2 Q2+U'(q (t) )U(q (t) ) +U'(q (t) )g(q (t) )g(t) +g'(q (t) )U(q (t) )g(t)
2 2 2

r'g(q—(t))g(t) +r 'g(q(t))xp(t)+O(&' ') .
Q2

2
(A25)

f(t)b, ~ X,(t) .
r—+0

(A27)

Using (A27) in (A25) we recover (A10). It is im-
portant to notice that the first four terms on the rhs
of (A25) contribute to the first order in b. algorithm
given by (A10). The fourth term is of order 5 in

(A25) but in the white-noise limit becomes of order
h. For the same reasons as given in the white-noise

case, it would seem sufficient to use the algorithm
given by (A25) and (A26), keeping only the terms of
order 6 in (A25). Since in some cases we are ex-

ploring in our calculations the vicinity of the
white-noise limit, we also include the term
g'(q(t))g(q(t))g (t)b, /2. As we have seen, this

This equation has to be iterated together with the
equation for g(t) The e.quation (All) for g(t) is a
white-noise stochastic equation; therefore according
to (A10) we have

g(t+4)=g(t)+r 'X, (t) r 'Ag(t)+—O(-h'") .
(A26)

We now wish to analyze how (A25) becomes the
white-noise algorithm (A10) in the limit x~0 in
which g(t) becomes g„(t). To first order in b„we
have from (A26} that

I

term is in principle important in this vicinity and
will become negligible for large r. In summary,
most of our calculations use (A25) and (A26), keep-

ing only in (A25) the first four terms of the right-
hand side. Nevertheless in our particular example it
turns out that the fourth term in (A25) is of no im-

portance in the results.

APPENDIX 8

[U (q)+g (qg'(t)]p(q, t) .
Bq

In this context this equation is known as the "sto-
chastic Liouville equation. " The passage from
(2.1) to (Bl) is a well-known method of reducing a

(B1)

In this appendix we give a detailed derivation of
(2.2). We also obtain an exact Fokker-Planck equa-
tion that follows from (2.2) for special models.

%e start by considering an ensemble of systems
in q space obeying Eq. (2.1) for a given realization
of g'(t) and different initial conditions. This ensem-
ble is represented by a density p(q, t} which evolves
in times according to a continuity equation. This
equation expresses the conservation of the number
of systems in the ensemble:
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nonlinear stochastic equation to a linear one.
Equation (81) expresses the variation of p with time
at a fixed point q; therefore u(q) and g (q} are given
functions independent of g(t), while p(q, t) is a func-
tional of g(t) defined through (Bl). The nonsto-
chastic equation for the probability density P(q, t) is
obtained by averaging (81) over the realizations of
(t),

P(q, t)=(p(q, t)) . (82)

We now consider this average over initial conditions
to be independent of that over the realizations of
g(t) and we note that p(q, t) is just the average over
the initial conditions of 5(q (t) —q):

This intuitively obvious relation is known as Van
Kampen's lemma. ' Since in (82) q is a fixed
point, we have

5P(q t) a a
at aq

'
aq

u(q)P(q, t) — g( q)(g(t)p( qt)) .

(83)

We now can write

5[5(q (t) —q)] &5(q (t) —q ) 5q (t)
g(t') Bq(t) g(t')

5(q(t) q) . —5q (t) (}

g'(t') Bq

Using the identity

f (y) 5(y —x)= f(x)5(y —x),a a
ax ax

(810)

(811)

Gaussian property of g(t) for the factorization of
moments. Choosing p(q, t) in (83) or 5(q(t) —q) in
(85} to be the functional (I)[g] and using (87), we
have

BP(q t) (}
( ) (

at aq' '
g(q) I dt'y(t, t')

aq 0

5[5(q(t) —q)]
5$(t')

p(q, t)=(5(q(t) —q) ), (84) we obtain

where q (t) is the formal solution of (2.1) for a given
realization of g(t). We can then rewrite (83) as

BP(q, t)
at

u (q)P (q, t)
a
aq

g (q) (g( t)5(q (t) —q ) ) .a
aq

This equation can also be obtained taking the time
derivative of

(85)

P(q, t) = (5(q (t) —q)),
using (2.1) and the identity

f(x)5(x y) =f(y)5(x——y) . (86}

(87)

The average which remains in (85) can be han-

dled by using the assumption that g(t) is a Gaussian
noise. A Gaussian process is characterized in func-
tional language by a formula due to Noyikov (see
also Ref. 17) valid for a process with mean value

(g(t)) =0,

[5(q(t)—q)] (} 5q(t)
g(t') Bq 5((t') (,)

(812)

g(q) g (q)u(q)=A =const.
aq

(813)

When (813) is fulfilled, the stochastic equation can
be written as

Q=AQ+8+g(t),
where the new variable Q is defined by

(814)

Substituting (812) in (810) we finally obtain (2.2).
Equation (2.2) can be converted into an exact

Fokker-Planck equation in the special cases in
which (2.1) is either a linear equation, i.e.,
u(q)=uq+b, g(q)=1, or is reducible to a linear
equation by a change of variables. The necessary
and sufficient condition for this transformation to
be possible is

where ()()[g] is a functional of g and y(t, t') is its
correlation function

I g(q)

In this case

(815)

(g(t)g(t') ) =y(t, t') .

Equation (87) follows by considering a functional
Taylor-series expansion of (I}[g] and using the

5Q(t) =exp[A (t —t')],
5

(816)

and from (2.2) one easily arrives at an exact equa-
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tion for the probability density in Q space.
Transforming back to the original variables we ob-

tain
aP(q t) a

[AQ(q)+Bjg (q)P(q, t)
Bt Bq

+D(t) g(q) g(q)P(q, t),
Bq Bq

(817)

where

D(t)= I dt'y(t, t')exp[A (t —t')] . (818)

Equation (817) is an exact Fokker-Planck equa-

tion for the process (2.1) when (813) is satisfied. It
is a local equation in time for a process which for
general g(t) is not Markovian.
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