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The semiclassical Lamb theory of gas lasers is extended to the case of lasers operating

simultaneously on two coupled transitions. The theory is formulated in terms of the

density-matrix equations for a three-level gaseous laser medium interacting with the field

through electric-dipole transitions, so that there are two allowed transitions and one two-

photon transition. It is assuaged that there is a single resonator mode near each of the tran-

sition frequencies. Previous treatments of such three-level gas lasers either have used sim-

ple rate equations or have solved the density-matrix equations in an approximate fashion

valid only for low intensities. Thus the numerical approach developed herein represents, to
our knowledge, the first semiclassical theory of three-level gas lasers which is accurate for

arbitrary detuning and intensity. Significant deviations from earlier, approximate treat-

ments are found.

I. INTRODUCTION

In describing the resonant interaction of light
with an atom or molecule, it is often a very accurate
approximation to include in the analysis only those
discrete energy levels that define the resonant tran-
sitions. If the resonant radiation is nearly mono-
chromatic, for instance, the model of the "two-
level" atom is extremely useful. ' The well known
and highly successful Lamb theory of the gas laser
is based on the treatment of the laser medium as a
collection of two-level atoms. '

There has recently been considerable interest in
the resonant interaction of light with three-level
atoms or molecules. (See Refs. 4—8 and the refer-
ences cited therein. ) The analysis of the three-level

system is more complicated than the two-level case,
and certain aspects of the problem have consequent-

ly not been carefully analyzed. This is especially
true for the case of the three-level laser operating
simultaneously on two coupled transitions of a
Doppler-broadened gaseous gain medium. Beterov
and Chebotaev noted in 1975 that "In a three-level

gas oscillator, the picture of saturation effects be-

comes considerably more complicated (than in a
two-level system} and at present there is no theory
of a three-level gas laser. "4 A low-intensity theory
of the thee-level gas laser was published in 1975.
It is our purpose to present a more general theory.

The motivation for this work has been to develop
a more complete understanding of lasers which
operate on multiple transitions. A number of gas-
laser gain media consist of atoms or molecules with
three or more states which are all coupled by al-
lowed transitions in a cascading configuration.
Some examples are CO, He-Ne, DF, and HF. The
existence of several coupled transitions will infiu-
ence the laser gain and index of refraction by caus-
ing the level population and the induced polariza-
tion oscillations to have complicated spatial varia-
tions along the direction of propagation of the light
(the z axis). The spatial variation of any of the level

populations will contain harmonics of the wave
numbers of all the laser modes.

In the two-transition laser there are effects associ-
ated with the direct coupling of the laser modes by
the density-matrix element connecting the two lev-
els between which there Is no allowed transition.
The third-order semiclassical theory of the response
of a three-level gain medium indicated that these
coupling effects are significant. 'o The analysis of a
three-level gas with a high-intensity laser beam sa-
turating one transition has also shown that these
coherence effects qualitatively change the line
shape. " ' The third-order laser theory of Najma-
badi et al. showed that peaks in plots of mode in-
tensity as a function of laser tuning near line center
were caused by these coupling effects. This treat-
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ment did not, however, explore a wide range of
values of the relative tuning of the modes, and
moreover the third-order theory is only valid at low
intensity.

As the simplest example of the multitransition
msmding laser, the three-level laser will provide in-

sight into this class of laser. It is also possible to
construct two-transition lasers for which our ideal-
ized model is a good approximation.

Recently, such lasers have been used to investi-

gate the possibility of using cascading Ne transi-
tions to obtain a tunable laser. ' ' Standing-wave
and traveling-wave lasers were operated with a sin-

gle longitudinal mode resonant with each of two
coupled transitions over a range of detunings, and
numerical results ignoring population pulsations
were presented.

There are various levels of analysis at which one
can approach the theory of gas lasers. For instance,
the theory of laser oscillation can be formulated
simply in terms of rate equations for the relevant
atomic or molecular energy levels. The overall
power output of gas lasers can often be modeled
fairly well, although certain effects, such as mode
locking, find no explanation in this approach.

The rate-equation approximation is normally
used when the importance of hydrodynamic effects
and intensity nonuniformity in the laser make a
more detailed treatment of the density-matrix equa-
tions impractical. Engineering codes used for the
.design of high-power gas lasers always use this ap-
proximation. In the engineering codes, detailed
rates for all excitation and deexcitation processes
are coupled with a hydrodynamics model sufficient-
ly detailed to treat the gas flow and obtain values of
pressure and temperature on which the rates de-
pend. The cavity fields are obtained by coupling a
physical-optics (Fresnel propagation) or geometric-
optics Inodel to the rate equations. At one or more
planes normal to the resonator axis (gain sheets), the
electromagnetic field intensity distribution is input
to the gain medium model to obtain a new intensity
distribution. The field is then propagated to the
next gain sheet after reAecting from any intermedi-
ate mirrors. This calculation is iterated until
several successive round-trip propagations yield
identical results. Such codes have become impor-
tant in the design of high-power lasers, and several
models have been described in the literature. '

Gn the other hand, semiclassical analyses of laser
oscillation, including the detailed treatment of the
density-matrix equations, have generally ignored the
spatial variation of the laser intensity transverse to
the resonator optic axis, as well as any complicated

hydrodynamic effects. The density-matrix equa-
tions are sufficiently complex that the incorporation
of these additional effects makes the problem
exceedingly difficult from a computational, if not
conceptual, point of view.

In the Lamb theory of the single-transition laser,
the gain medium is represented by the decay rates
of the two atomic levels, together with the width of
the Doppler broadening due to the velocity distribu-
tion of the gas. Intensities are specified as dimen-
sionless ratios involving the dipole moment of the
transition, and the gain is specified as a dimension-
less ratio involving the pumping rates and decay
rates. The decay rates and the pumping rates aid
usually considered to be constant both in time and
in space. Phase effects such as mode locking and
frequency pulling (the contribution to the index of
refraction due to the resonant interaction) are
modeled. Polarization components corresponding
to harmonics of the cavity modes are generated due
to the coupling of the off-diagonal terms of the den-
sity matrix with the diagonal terms.

The semiclassical density-matrix formalism used
here is similar to the two-level theory of Lamb
et al. , ' ' and the three-level theory of Najmabadi,
Sargent, and Hopf. Phenomenological decay rates
and level-pumping rates are included. Population
pulsations and coherence between the two transi-
tion amplitudes are also treated. This is an exten-

. sion of previous work in that we have derived a
partial-difference equation for the density-matrix
elements which is valid for arbitrary intensity and
detuning of either mode. This difference equation
was solved numerically using a matrix method, and
the results were averaged over the velocity distribu-
tion. Our calculated results consist of an average
gain and index of refraction corresponding to each
mode. By using a method of successive approxima-
tion, we have also calculated the self-consistent am-
plitudes of the two laser modes.

Some of the structure of the three-level gas laser
can be qualitatively understood by applying the
hole-burning arguments of Bennett. ' Figure 1

shows the assumed level scheme. Suppose that las-
ing is occuring into a mode resonant with transition
b, which is detuned from line center by —Ab. Then
the velocity distribution of the population of level
three is depleted in the vicinity of v~ ——A~/k~ and
—u~, because these velocity groups are Doppler
shifted into resonance with the mode. k~ is the
wave number of the mode. Similarly, the velocity
distribution of the population of level two is in-
creased in the vicinity of +uI, . The velocity distri-
bution of the population inversion of transition b
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FIG. 1. Cascading level scheme. The dashed lines at
the right of the figure show the amounts by which the
laser modes are detuned from the center frequency of
the atomic resonance.
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FIG. 2. Velocity distributions of population inver-
sions of transition a and transition b, influenced by an
intense standing-wave field resonant with transition b.

therefore has two Lorentzian holes, called Bennett
holes, burned into it at velocities +u~.

Level two is the upper level for transition a, so
the velocity distribution of the population inversion
of transition a is a Maxwell distribution with two
Lorentzian bumps superimposed at velocities +U~.
Figures 2(a) and 2(b) show the nonequilibrium velo-

city distributions of the population inversions of
transitions a and b, respectively. When the mode
resonant with transition a is tuned through
b„=+k,hb/kb (while b,~ is kept constant), an in-

tensity bump will result from a bump on the

population-inversion distribution. This structure
has been used to determine the frequency of a tran-
sition within an error which is much less than the
Doppler width. (See, for example, Ref. 22).

These intensity bumps occur in the detailed
theory, but there are also features which cannot be
explained using only population-inversion argu-
ments. Ram an-type terms arising from the
density-matrix element connecting level one with
level three can cause a splitting of one of the reso-
nances under certain circumstances. They also
cause the intensity bump at b„ to have a different
width than the bump at —6, .

In this paper we consider a Fabry-Perot resonator
with nearly perfectly reflecting mirrors. Because
the transverse electric field vanishes at the mirrors,
the resonator modes are standing waves with wave-

lengths A,; =2L/N;, where the N; are large integers
and I. is the separation of the mirrors. The vacuum
(circular) frequency separation of the modes,
bQ, =n.c/L, is always much greater than the fre-

quency width of a cavity mode. The cavity mode
widths are also much smaller than the atomic
homogeneous line widths, so they are small com-
pared to the size of any structure in the lasing tran-
sition line shape. Therefore the cavity modes are
assumed to have zero width for the purpose of the
calculation.

The calculation of the intensities and frequencies
of laser modes is performed as follows. The polari-
zation induced by a combination of cavity modes is
calculated using quantum mechanics. Then
Maxwell's equations are used to derive the cavity
modes resulting from the polarization. Requiring
the cavity modes to be consistent with the induced
polarization (self-consistency) fixes the intensities
and frequencies of the various modes. This is the
condition of self-consistency in the semiclassical
Lamb theory.

Some of the most salient assumptions and ap-
proximations used in the present work are the fol-
lowing. (i) A single linear polarization is assumed
for the field. (ii) The two transitions are predom-
inantly Doppler broadened. (iii) The atomic veloci-

ty distribution is Maxwellian. (iv) The pumping
mechanisms for establishing the population inver-
sions are specified only by constant rate coeffi-
cients. (v) Population deexcitation mechanisms are
modeled by phenomenological rates, as are the off-
diagonal "dipole-dephasing" terms that give rise to
homogeneous line broadening. (vi) Collisions are ig-
nored, except insofar as they contribute to the
homogeneous linewidths of the transitions.

Assumption (i) is valid whenever Brewster win-
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dows are used at the ends of the gain cell. Assump-
tion (ii) is valid in low-pressure gaseous lasers such
as He-we, which typically has a gas pressure on the
order of one Torr. The 6328-A Ne transition, for
example, has a Doppler width (FWHM) of about
1.7 GHz, whereas spontaneous emission and col-
lisions contribute widths of about 20 MHz and 1

MHz, respectively, to its homogeneous linewidth.
Assumption (iii) is expected to be valid to a very
high degree of accuracy, since the thermalizing elas-
tic atom-atom collisions are more frequent than in-

elastic collisions. The electron velocity distribution
will generally be non-Maxwellian, but this is of no
consequence to assumption (iii), as the electron
number densities are very low compared with the
neutral heavy particles.

Approximations (iv) and (v) are excellent when a
flash lamp provides the pumping and only spon-
taneous emission is involved in the decay of the
resonant levels, for then we have simple linear rate
processes. Energy-transfer processes, however, such
as those between He and Ne in the He-Ne laser, are
not as easy to treat. The chemical-kinetics equa-
tions for these processes are nonlinear. There is
typically about ten times as much He as the lasing
Ne, so there is some justification for regarding the
He as a background, unperturbed bath in its interac-
tion with the Ne. But in general, the modeling of
pumping and deexcitation processes by simple
linear rate constants is only a crude approximation
made for the sake of analytical simplicity. The suc-
cess of semiclassical laser theory does indicate, how-
ever, that (iv) and (v) are not terribly restrictive ap-
proximations.

Approximation (vi) may be invalid even when as-
sumption (ii) is satisfied. This is because elastic col-
lisions change the projections of the velocities of the
colliding atoms on the laser optic axis. If the
elastic-collision rate is comparable to the stimulated
emission rate, the selective saturation of the popula-
tion inversion of atoms in specific velocity intervals
will be partially washed out. In low-pressure lasers,
however, the lasing rate is typically much larger
than the collision rate, and (vi) is a good approxi-
mation for such systems.

The next section summarizes our formalism for
the three-level, two-transition gas laser. In Sec. III,
some approximations used in previous work are dis-
cussed for later comparison with our exact results.
Section IV describes briefly the numerical tech-
niques used to solve the basic difference equations

I
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FIG. 3. Laser cavity geometry.

of the theory developed in this work. Solutions for
the laser intensities in terms of the gain and detun-
ing are presented and compared with results of the
standard approximations for various cases of in-
terest. Preliminary results have been published else-
where. Section V is a brief summary of the major
conclusions drawn from this work.

II. SEMICLASSICAL FORMALISM FOR
THE INTERACTION OF RADIATION

WITH A THREE-LEVEL LASER MEDIUM

Our treatment of the three-level laser is analo-
gous to the two-level analyses of Stenholm and
Lamb and Feldman and Feld. The three-level
atoms are assumed to interact with two standing-
wave modes. Each mode is resonant with one of
the two allowed transitions. %e use a density-
matrix formalism, and the steady-state density-
matrix elements are expanded in the z coordinate
(see Fig. 3) in harmonics of the wave numbers of
the two modes. The density-matrix elements are
obtained numerically for assumed amplitudes of the
laser modes, and are averaged over the atomic velo-
city distribution.

The gain of each mode is obtained from the aver-
ages. In a laser cavity, the physical situation is for
the intensity of each mode to reach a steady state
only when its gain is equal to the cavity losses.
These losses are specified by the cavity Q's (quality
factors). Satisfying this self-consistency condition
numerically is complicated in the three-level case by
the dependence of the gain of one mode on the am-
plitude of the other mode. In our work an iterative
method is used to adjust the intensities until the
desired gain was obtained for each mode.
Continuous-wave (i.e., steady-state) operation of the
laser is assumed.

The electromagnetic field is written in the form

E=x[(4
i a. i

Xjp. )cos(v. r+~. )»n(k. i)+(41~s
I
&ii b)cos(»t+~, )sin(ksz)], (2.1)
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where An =
I
~n

I
e ' and ~b ——

l
Ab

l

e' . A, and

Ab will have no time dependence in this treatment,
although the density-matrix equations below are
valid even if A, and Ab are slowly varying in time
compared with the sinusoidal oscillations at fre-
quencieS Va d Vb. Ija and Pb afe the tranSitiOn di-

pole moments and may be assumed to be real num-
bers. x is a unit vector transverse to the optic axis
(z axis) of the resonator. Both laser modes are as-

sumed to have the same linear polarization due to
polarizing elements within the cavity such as win-

dows which are at an angle with the propagation
direction E.quation (2.1) assumes that one of the
cavity end mirrors is located at z =O. Both of the
(standing-wave) modes have nodes at z =0.

Phenomenological pumping and decay rates are
used in the density-matrix equations. Thus the di-
agonal density-matrix elements with the interaction
Hamiltonian V=p.E satisfy the equations

—lvat g y l(Jkg+nkb)z
p2~ ——e '

FJn jU je
j,n

(2.4)

may be assumed to have time dependence
exp( i—vb t ) and p3) to have time dependence
exp[ i—(vb+v, )t]. The only components of p)(,
p22, and p33 with significant magnitudes have no
time dependence. We therefore omit some of the
nonresonant terms of the potentials Vj~ that would
lead to other frequencies.

We consider a group of atoms moving with the
component of velocity u along the z axis. The total
time derivative is then given by the convective
derivative, d Idt =()I()+u8/Bz. The density-matrix
equations obtained by replacing the time derivative
in Eqs. (2.2) and (2.3) by the convective derivative,
and omitting terms with nonresonant time depen-
dence, are well known and will not be reproduced
here. The equations for the density-matrix elements
have solutions of the form

imp = i"fiy (p" n. )——JJ J JJ J

+X(Vj-p i Vjpj—» (2.2)

where yj is the rate at which the population of level

j relaxes to the steady-state value nJ in the absence
of an electromagnetic field. In general, yj will be
the sum of a spontaneous decay rate and a decay
rate due to inelastic collisions. Similarly, the off-
diagonal density-matrix equations are

i |(()jn = trujnpjn t Wjn pjn'

p31 —e

j,n

i(jkn+nkb)z
p33 ——~ Jn Ue

J,n

—ivbt ~, , i(jk +nkb)z
P32 e ~ jnLU)e

J,n

i(v +—vb)t ~ i(jk +nk), )z
~Sjn ue
J,n

p» ——g Bj„(u)e
j,n

p22
—g Cj„(u)e

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

+ g(Vj p „—V „pi~) . (2.3)
m

The decay rates for p;j, i+j, are Pij = —,(y;+yj) if
the gas pressure is low enough that the spontaneous
emission rate is much larger than the collision rate
of the excited atoms. The P's are the rates at
which the oscillations of the atomic dipoles are in-

terrupted due to the decay of the stationary states.
Elastic collisions also contribute to the dephasing of
the oscillations so, in general, Pij & —,(y;+yj ).

An elastic collision can also change the projec-
tions of the velocities of the atoms on the z axis,
and therefore cannot simply be represented as an in-
crease in the P;j. ' Our treatment will include the
effects of elastic collisions only insofar as they can
be treated by increasing the Pj.

A number of terms which occur in the products

Vj~pj~ in Eqs. (2.2) and (2.3) may be neglected.
For instance, if we consider p2& to consist of a num-
ber of frequency components such as p2)'exp(+i v, t)
and pq) exp(+ivbt), then p2)' is the only coefficient
which'has a nonnegligible magnitude. Similarly, p32

All the sums in Eqs. (2.4) through (2.9) run from

j,n = —ao to ao. The coefficients F n and 6 „are
traveling-wave polarization components resonant
with transitions a and b, respectively. In particular,
F~ p and F i p ale the coefficients of right-traveling
and left-traveling polarization waves with the same
spatial frequency as the traveling waves into which
the standing-wave electromagnetic field can be
decomposed. The Gp +~ have similar relationships
with the electromagnetic field resonant with transi-
tion b.

To make our notation more compact, we let

~a=~21 Va ~

Ab =6032—Vb

6,=5,+Ab,

P. =Pe)

Pb =P32

P.=P3) ~
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We also find it convenient to define generalizations
of complex I.orentzian denominators,

L~' =i [6,+u (j k, +m kb )]+p, ,

L, =i [bb+v(jk, +mkb)]+pb

Lj' =i[5,+u(jk, +mkb)]+ p, ,

M,„=i(jk.v+nkbu)+y

Difference equations for the coefficients of the
steady-state solutions are obtained by using (2.4)
through (2.9) in the density-matrix equations (2.2)
and (2.3). After making the rotating-wave approxi-
mation and ignoring other terms which are far off
resonance, these difference equations are found to
be

~jn~jn ~a( j —l, n +j+ i,n)+~a(P j—1,—n — —j+1, n)—+l ln l~j,o~n, o ~

Mjncjn ~a(Fj —l, n +j+1, n) ~a (P—j —1,—n P j+1,——n )

+~b(Gjn —1 Gj,n+1)+~b(G —j, —n —1 G —j, n+1—)+3 2n2~j, o~n, o ~

3
~jnDjn b( j n —1 Gj n+1) b(G —j,—n —1 G —j, n+1—)+V3n35j 05no ~

LjnFjn ~a (Cj —l, n Cj+1,n ~j —l, n +~j + l, n )+~b(~j,n —1 ~j,n+1) ~

b
Ljn Gjn ~b (Djn —1 Djn+1 Cjn —1+Cjn ~1) '4a(~j —l, n ~j + 1,n ) ~

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

dP =xP(u, z) =x tr(pp),
dU

(2.16)

where p is the atomic dipole operator and p is the
density matrix. P is obtained by averaging the dis-
tribution function P(u, z) over the atomic velocity
distribution w (u),

P=x f duw(u)P(v, z) . (2.17)

It is easily shown that E~ p, F
~ p Gp i and

Go 1 are the coefficients of the only Fourier terms
of the induced polarization having a significant pro-
jection onto the cavity modes. Therefore any field
amplification or dispersion must come from these
terms. Only terms which couple to these terms are
of interest. Such terms are

Bjn, Cjn, Djn fol j,ii eveii,

I'J.„ for j odd and n even,

Gj„ for j even and n odd,

S~„ for j odd and n odd .

All other terms are zero. The rest of this work in-

volves the solution of Eqs. (2.10) through (2.15),
and the application of the self-consistency condition
to obtain the intensities and frequencies of the laser
modes. These difference equations were first pub-
lished in our paper announcing some preliminary
results of the current investigation.

The macroscopic polarization density in velocity
space is obtained from the density matrix

I

We have chosen to normalize the density matrix
such that its trace is the expectation value of the
number density of atoms which are in any of the
states 4&, %2, and %3.

Equations (2.16) and (2.17) give the macroscopic
polarization once Eqs. (2.10)—(2.15) have been
solved. The in-quadrature and in-phase com-
ponents of the source polarization density for mode
a are easily shown to be

P'1=2p,.f du w (u)Re(Poi o
—P', o),

(2.18)

P, =2@,f du w(u)lm(E —l, o —Fi,o)

(2.19)

Similarly, the polarization components which in-
teract with mode b are found to be

Pg=2pb f duw(u)Re(GO 1
—Go 1),

(2.20)

Pb =2pb f duw(u)Im(Go 1
—Go, ),

(2.21)

where F+& p and Gp+i are defined in Appendix A.
The superscripts indicate that I'+~ p and Gp+i, and
therefore P~ and P~, are independent of the phases
of A, and Ab. These components of the polariza-
tion density are related to the gain and refractive in-
dex in the well-known way. ' Equations
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(2.18)—(2.21) relate the Fourier coefficients of
(2.10)—(2.15) to the laser gain and refractive index.

Thus, for assumed field amplitudes E, and Eb,
we can solve (2.10)—(2.15) numerically to obtain
the F's and G's. %'e then use the self-consistency
conditions for modes a and b to obtain the gains,
i.e., the gains of the modes must be equal to cavity
losses. The method used to satisfy the self-
consistency condition is to numerically search for
values of E, and Es for which g, and g& are equal
to the assumed loss per unit length of the laser.

Our numerical approach to the solution of the
difference equations (2.10)—(2.15) is described in
Appendix A. Further details of the approach are
available elsewhere.

It will be useful in what follows to introduce vari-
ables for the zero-field population inversions, prod-
ucts of the Rabi frequencies, and other useful quan-
tities:

U~ =A~A~~ Ub =AbAb

1/Pk„——1/Mk„+ 1/Mk„,

1/Pk„= 1/Mk„+ 1/Mk„.

U, =AbA,*,

III. APPROXIMATIONS IN THE THEORY
OF THE TWO- TRANSITION LASER

In the preceding section we developed the basic
formalism for the semiclassical theory of the three-

level, two-transition gas laser. Because of the readi-

ly apparent complexity of these equations, an
analytical solution seems hopeless. Our own efforts
in this direction were indeed fruitless. This is in

stark contrast to the theory of the single-transition
laser, where considerable analytical progress has
been made.

The complexity of the three-level equations has
led to various approximation schemes in the theory
of the two-transition laser. In order to place our
own exact numerical calculations in context, we de-
vote this section to a discussion of the more com-
mon approximations. The comparison of our
difference equations with these approximations to
them will also provide insight into the ranges of va-

lidity of the various approximations. In the next
section it will be shown that all these approxima-
tions are deficient in one way or another in describ-
ing the operation of a two-transition laser.

A. The rate-equation approximation

Jll Jll Jll Jll JP1 Jll

if j~1 or n g1.
Therefore, the diagonal density-matiix elements
have no spatial dependence in the REA. The differ-
ence equations (2.10) through (2.15) are then re-
duced to ten coupled linear algebraic equations

Z, = Re[Ay(F) F))]—2

7Q

2——Re[Ah(6) —6 ))]+/, ,
y2

2
Zb = Re[As(6) —6 ) )]

'Vb

2——Re[A, (F) F) )]+)'g, —
y2

(3.2)

In treating two-level gas laser problems, Lamb
and collaborators have shown that important effects
are associated with the generation of harmonics of
the mode wave numbers in the spatial dependence
of the density-matrix elements. ' ' These harmon-
ics are called population pulsations because, in the
rest frame of a moving atom, the two resonant trav-
eling waves which comprise a standing-wave laser
mode are Doppler shifted in frequency by +kU.
Therefore the diagonal density-matrix elements are
driven at the difference frequency 2kU. This time
dependence is transformed into a spatial dependence
in going to the rest frame of the laser mirrors. "
The rate-equation approxlmatlon (REA) consists of
the neglect of all spatial dependence of higher than
first order in the mode wave numbers. Mode lock-
ing cannot be treated in this approximation, and the
predicted intensity of modes tuned near line center
in a two-level single-mode laser may be too low.
The two-levd theory, including population pulsa-
tions of all orders, was found to include the Lamb
dip, but the decrease in intensity as the frequency of
the mode was swept toward line center was less pro-
nounced than in the REA. For the case of a laser
mode tuned to line center, the velocity distribution
of the population inversion was found to have a
small bump centered at zero velocity in the Bennett
hole, but the intensity versus tuning curve did not
exhibit a similar bump at line center. Outside the
region of the Lamb dip, however, the REA was
shown to be a very good approximation for a
single-mode laser.

In treating steady-state, three-level atomic reso-
nance problems, the REA has often been used. In
our formalism, the REA consists of setting
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L+iI'+, =+A,Z, +Ah(S+i i
—S+i i ), (3.3)

L+iG+i ——+AsZs+A, (Si ~i —S i +i), (3.4)b

L +1,1S+1,1 +Aa G 1 +AbF+1

L ) )S+) ) =+A G )
—AbF+ ),

(3.5)

(3.6)

and

i
b„+k,v

i &P,(1+I,/2)'

(3 7)

for some velocity u, where the dimensionless intensi-
ties of the modes are

4Ua (yl +y2 ) /( yi y&~

Ib =4Ub ( y2 +y3 ) /( }2 Y3pb )

(3.8}

(3.9)

The expression P, (1+I,/2) '~ is the power-
broadened Lorentzian half-width of transition a.
This is the width (HWHM) of the Bennett hole
which would be burned into the population inver-
sion distribution by a single-frequency traveling-
wave electromagnetic field.

The existence of isolated numbers j,n for which
this condition is satisfied does not necessarily imply
the generation of population pulsations. Fourier

where Z, =Co,o —Bo,o~ Zb =&o,o
—Co, o~

1/y, = 1/y, + 1/y3, and 1/ys = 1/y3 + 1/y3. The
second subscripts of L' and F, as well as the first
subscripts of L and of G, have been suppressed be-

cause they are always zero in the REA. This sys-
tem of equations was solved to obtain the REA re-
sults to be presented in the next section. The
closed-form Doppler-averaged solution of Eqs. (3.1)
through (3.6) is rather complicated. These equa-
tions take very little computer time to evaluate nu-

merically, however, while the difference equations
(2.10)—(2.15) can be quite time consuming; thus it
is worthwhile to use the REA equations whenever

they are applicable.
An approximate condition for the validity of the

REA can be derived by using a perturbation argu-
ment. We assume that we know the B, C, D, F+&,
and G+~ in the REA. We can tell when higher
Fourier coefficients become appreciable by examin-

ing the coefficients of the terms B,J, CJ, D;J, and S,J
on the left-hand sides of Eqs. (2.10)—(2.15}. For
example, a necessary condition for the population
pulsations with the coefficient Bj„ to be significant
is that M&„be small for portions of the atomic velo-

city distribution with which one of the modes in-

teracts strongly. Population pulsations will not be
driven by E, unless

( jk, v+nkg, v
~ &yi

~
b„~ &P,(1+I,/2)'

Similarly,

~

b,s ~
&Ps(1 +Is/2). '

(3.1 1)

(3.12)

to allow the generation of population pulsations
with coefficients Co 3 and Do 3.

The direct coupling of the two transition ampli-
tudes by p3~ can also cause the density-matrix ele-
ments pq~ and p3q to contain harmonics of the wave
numbers of the modes. The LJ'„are small when

both modes are tuned near line center and higher-
order S's are resonant. Indeed, the S,J terms only
generate higher harmonics in the polarization oscil-
lations when the modes are tuned in the region of
the Lamb dip, near line center.

To study some of the dominant features of Eqs.
(3.1) through (3.6), when the detunings of the modes
are much greater than their respective linewidths,
we may examine a pair of resonant traveling waves
and ignore the traveling waves that interact with
the opposite side of the atomic velocity distribution.
We set F ~

——G ~
——0 for the case of copropagating

waves or I' i
——Gi ——0 for the counterpropagating

case. Then Eqs. (3.1)—(3.6) reduce to

Z, = Re(A, F) Re(—As G)+g, , (3.13)
2 26

Ta 'V&

Zb Re(Ab G——) Re(A, I"—)—+gb,
2E 2

'Vb 'VZ

L F=—A~Z~ —eAbS,

LbG = —eAbZb+A, S,

(3.14)

(3.15}

(3.16)

L'S= —A, G+eAbF, (3.17)

where F=F~, G =G„S=S& „L'=L&, L =L„
L'=Li „and E= + 1(—1) for the copropagating
(counterpropagating} case. These equations would

have resulted if we had simply substituted
traveling-wave fields into the density-matrix equa-
tions (2.2) and (2.3) rather than the standing-wave
fields. From Eq. (2.18), it is apparent that the gain
for mode a is proportional to ReF. For the
traveling-wave case, we obtain

coefficients with adjacent indices which are coupled
to Bj„must also be large; therefore a chain of B's
and F's, all with appreciable magnitudes, must hnk
Bj„with F& o or F

& o. This condition requires that
u and 6 be small for pulsations to be generated. We
substitute j=2 and n =0 to obtain the condition for
the generation of the lowest-order population pulsa-
tions. We obtain the condition

~~,
~
&y+0, (1+I,/2)' ' (3.10)

Since (3.10) is approximate, we may substitute
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h =A—,ReF =[(I+s,)(1+sb)—W, Wb] 't —[eXW, + T,(1+sb)]g, —[eT& W, +X(1+s&)]pb I t (3 lg)

h =h'gb+h "g, ,

where

(3.19)

A = —ReU, Ub

2L'pb
Lb~+

y2

~L ('+ {L,'I, '+U, )
2Ub pb

Vb

UQL'h"= —Re
LL+Ub

(3.20a)

(3.20b)

The terms in Eq. (3.19) exhibit the dynamic Stark
effect; that is, the resonance structure of the atom is
changed by the existence of a rapidly varying elec-
tric field. To show the effect, we write the second
term as the sum of two expressions, each of which
contains a resonance as 6, is varied,

P

1h"=Re x
6Q'+E+ 5Q'+E

(3.21)

where

E+ = —,{bb i(p, +p,)—
+ I[bb+i(p, p, )]'+4Ub I'~'), —

where

s, =2T, /y, —2X/y2& ss 2T——s/ys —2X/y2,

W, =2mT, /y2 2e—X/ys, Ws 2e——Ts /y2 2e—X/y, ,

T, = UQRQ+ U, RQ~, Tb ——UbRb+ UbR, b, ,

X= U, UbR~b~ R, =Re(ilL')

Z, =Re(qL') ', Z.-b, Re—(qL'L'L')

ri= 1+U /(LsL')+ Ub/(L L'),
and the U's and g's are defined in Sec. II. This
equation is sufficiently complicated that interpreta-
tion is difficult. This is, however, an important
equation from which we can derive equations for
limiting cases which are more easily interpreted.

An approximate version in which only terms of
first order in AQ are retained '" ' has been stud-
ied extensively in the literature. This limit corre-
sponds to determining the small-signal gain of tran-
sition a, while a field of arbitrary intensity saturates
transition b. Javan has described the structure
which occurs in this case for stationary atoms.
The desired equation is

UQL'x—E —E+

~Q =~Q+kQU and ~b =~b+&kbU ~

If hb is very large, E+ is very large, so we Inay
ignore the first term in parenthesis of Eq. (3.21).
The second term can then be approximated as

h" =—Re X

Ub —igt

(3.22)

d~.h= d~. U.Z.R '
Q

(3.23)

Feldman and Feld pointed out that the area (in-
tegral with respect to b,, ) of the gain of a Doppler-
broadened gas is also determined by Z, (U) alone be-
cause Eq. (3.23) holds for any group of atoms with
a single velocity. ' They have also shown that this
principle is independent of the form of the saturat-

The resonance is shifted by an amount Ub/hb.
This is the usual quadratic Stark shift of level two
due to a rapidly varying field when only one other
transition is treated.

For AI, small, Eq. (3.21) is the sum of two reso-
nances with their peaks separated by an amount
R [e(&$+ip, i p, )'+4Ub]' —'. For p, aild p,
small, this splitting is just equal, as one might ex-
pect, to the Rabi frequency of transition b. The
Doppler limit averaging of Eq. (3.21) in some cases
retains the split resonance, but in other cases this
structure will totally disappear.

The denominator of h' also contains the factor
L,L, + Ub, so it also has the form of Eq. (3.21), but
with X replaced by a different constant. We shall
see that the velocity averaging of this term will el-
iminate the splitting for some, but not all, situa-
tions. Javan has discussed the structure we have
noted regarding Eqs. (3.19) through (3.22).

Another important feature of the interaction in-
volves the integral of h with respect to b,'. Javan
first showed that this integral is dependent only on
the population inversion of transition a. Its value
is unaffected by the direct-coupling effects intro-
duced by the density-matrix element p3& when a
field is resonant with transition b. Specifically,
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ing field. It therefore holds for standing waves as
well as traveling waves.

The Doppler-limit integral of Eq. (3.19) can be
obtained in closed form and represents a limiting
case of a three-level laser which is detuned from res-
onance. "' We shall include these equations be-
cause they have a resonance structure similar to
that in our numerical results. Equations
(3.24) —(3.27) give the result for the low-pressure

1

[P.= , (y-1+y2) Pb (y2+y3»

p 2 ( j 1+y3)]. This low-pressure case will be em-

phasized in the numerical results to be presented in

the next section. If Ub is very large, the result
differs qualitatively depending on which is larger,
k, or kb. If k, &kb, the solution reduces to a
I.orentzian whose width is dependent on whether
the beams are copropagating (a=+1) or counter-
propagating (e= —1),

M"—:f du jl,"=—mU, /k, (3.24)

2m U~ Ub k~, k, kb +@kgM'= I duh, ' = Re ~ i —5, +e b,b
——, yl+ y3+

b72 b b b

(3.25)

where Y =(1—4Ub/y2y3)'~ is the power-broadening coefficient for the homogeneous linewidth of transition
b. These equations also apply if a=+1 and k, &kb. The resonance of M' is shifted by Fib,bk, /kb because the
group of atoms centered at velocity u will interact with both laser modes if b,,=k, u and eb b =kbu.

For Ub large, kb & k„and e= —1, the Doppler average of Eq. (3.19) preserves the splitting of the resonance
which occurs for any single velocity group of atoms. In this case

m. U,M"= Im(r/y),
k,

M'= 2n U, Ubk—, /(Ykb)Im(y '{b+ [ , (1+Y—)+i(k, kb)(a—++ d)/(y, k, )]

+b '[ —,(1—Y)+i(k, —kb)(a +d)/(y2k, )]J ),

(3.26)

(3.27)

(q2 P)1/2

with

Rey &0, q =4ko(kb —kn)Ub/kb

z= —6,—hbk, /kb

+ 1{[ky3+(kb —k. )y2]/kb+yl)
1

a+ ——2kb(r+iy—)/(k, kb )—b.,+ip„—
b+ =+a++k, (ipb Y+hb)/kb,

d =k, (&,—1P, )/(k, —kb) .

Equation (3.27) has been shown to correspond to a
split resonance with the splitting proportional to
Ub. ' ' ' Our calculated results show that this split
resonance also occurs when both U, and Ub are ap-
prmiable. Equation (3.26) also exhibits a split reso-

nance, even if Ub is small. For small Ub, no split-
ting of M' occurs and Eq.(3.25) also applies for
kb & k„e=—1.

8. Independent-field approximations (IFA)

Under certain circumstances, the direct coupling
of the dipole transition density-matrix elements p21
and p32 by the element p3~ is negligible. Setting

p31
——0 is known as the independent-field approxi-

mation (IFA). The p» density-matrix element has
terms corresponding to the Raman effect, as well as
to the splitting of the resonances and to the qua-
dratic Stark effect discussed above. When p» ——0,
Eqs. (2.13) and (2.14) are replaced by

Ijn+jn ~n(cj —lnCj+l, n, ~j—l,n+~j +1,n ) i

(3.28)

b~j gjn n~b(+j, l nDj, n+1 Cj,n —1 Cj,n+1) &

(3.29)

while Eqs. (2.10)—(2.12) remain unchanged.
We will now derive approximate conditions for

the validity of the IFA starting, for simplicity, from
the REA traveling-wave equations. Using Eq.
(3.17) to eliminate S from Eqs. (3.15) and (3.16), the
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equations for )'2, and hb are found to be

[1+U, /(LbL, )+ Ub /(L, L, )]A,F
= —U, UbZb/(L~LbL~ )

pe » Ua /phd pc » UbZb /pbZ0 ~

p, » U, Z, /p, Zb, the IFA will give valid results.
It may be shown that in the IFA

[U—, /L, + U, /(L, LbL, )]Z, ,

[1+Ub/(L, L, )+ U, /(LbLe)]~bG

=—U UbZ~/(L LbL )

(3.30)
and

P-n, -m= —Lrim+n, m/L' n, m

b+ g bG tip ——m
=

ll, m 1lpm / ny ——lji

(3.41)

(3.42)

[Ub/Lb+ Ub/(LaLbLc )]Zb (3.31)

In the IFA these equations reduce to

A~E = —U,z, /J . .
AbG =—UbZb/Lb .

(3.32)

(3.33)

Near resonance, L, =-P„Lb=-Pb, and L, —=P, .
Therefore, to ensure that Eqs. (3.32) and (3.33) ac-
curately describe the resonant interaction, the fol-
lowing conditions are necessary:

U. /PbP, «1,
Ub/P. P, «1,
U, Z, /P, P, Zb «1 ~

UbZb/PbP, Z, «1 .

(3.34)

(3.35)

(3.36)

(3.37)

If r& is not too different from r3 and g, is not too
different from gb, then conditions (3.34) and (3.35)
imply (3.36) and (3.37). In some lasers with consid-
erable pressure broadening, for typical operating in-

tensities, the IFA is a good approximation because

S.=4U. (ri+r2)/rirP. ,

fb = 4Ub( Y2+ r3) /r23 3pb .

Then condition (3.34) may be written

I.rir2p. /[4(ri+r2) pbp, ] «1

(3.38)

(3.39)

(3.40)

If elastic collision broadening predominates over
the linewidths determined by the decay of the diag-
onal density-matrix elements, then P&, P2, and P3
will usually have comparable magnitudes, and their
magnitudes may be much larger than any of y&, y2,
or y3. I, is the usual dimensionless intensity of the
laser and is fixed by the cavity Q because of the
"gain equals loss" condition. The dimensionless in-

tensity is typically between 1 and 30, but it can be
much greater. For a moderate value of I„some
gases (such as CO2 at moderate pressures) satisfy
condition (3.40).

It is also apparent from conditions (3.34)—(3.37)
that if P, is large, the IFA may be a good approxi-
mation. More specifically, if p, » Ub /p„

As a result, the rank of the matrix is decreased by a
factor of one half. The terms multiplying the F~
and 6,

&
with i+j &0 combine with other terms,

and most rows of the resulting matrix have 14
nonzero real elements. No row has more than that
number. The difference equations obtained by elim-
inating the Fourier coefficients of the diagonal
density-matrix elements from Eqs. (2.10)—(2.12)
and (3.28) and (3.29) are rather involved and will
not be written out here.

The gain of either transition is a symmetric func-
tion of the detuning of that transition from line
center when the IFA is used, whereas the resonant
contribution to the index of refraction is an an-
tisymmetric function,

PJ( —b,, )=Pf(h, ),
P~( a. ) = Pf—(S, ) . —

(3.43)

(3.44)

A derivation of these properties is given in Ref. 27.
Our calculated gains for the case of negligible
elastic-collision broadening compared with the de-

cay rates of the level populations show a significant
asymmetry with respect to line center, so the IFA is
clearly not a good approximation for these cases.

C. Simple rate-equation approximation (SREA)

Here, the simple rate-equation approximation
(SREA) will refer to the combination of the IFA
with the REA. In the literature, our SREA has
sometimes been called the REA. Effects due to the
burning of Bennett holes in the velocity distribu-
tions of the level populations are still present in this
approximation, as are cascading effects (i.e., the
same atom may undergo successive transitions
caused by stimulated emission from level three to
level two and from level two to level one). We will
show that as a result of cascading, it is possible for
lasing to occur on a transition which has no zero-
field population inversion.

The SREA has been applied to the He-Ne laser
operated as a three-level cascading system by Haken
et a/. In that treatment, decay among the lasing
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levels, which we have omitted, was included. Dis-
cussions of the three-level resonance problem using
the SREA are included in several other publica-
tions. *

As far as we know, the SREA has always been
used in computer models of multitransition high-
energy lasers, which include detailed molecular ki-
netics models. ' ' In fact, additional simplifying
assumptions, such as line-center operation and
homogeneous saturation of the gain curve, are usu-

ally used.
Equations (2.10) through (2.14) reduce to the fol-

lowing set of equations in the SREA:

Z, = 2A, —+—Re(F1 F 1 )—1 1

y2 y1

N 1
———ylN1+ 121 (N2 N 1 )—+ r ', ,

N2 1 2N2+I 32(N3 N2)

—l21(N2 —N 1 )+r2,
3
———13 3

—32( 3
— 2)+r3,

where

(3.54)

(3.55)

(3.56)

of "velocity equilibrium" is also usually imposed on
Eqs. (3.49)—(3.53). If we assume that during lasing
the populations maintain Maxwellian velocity dis-
tributions, we may set p;;=N;w(u) and r;=r/ w(v),
where w(u)=exp( —u /u )/(n' u). After these
substitutions are performed, and the equations are
integrated with respect to velocity, the rate equa-
tions are found to be

2Ab
Re(61 —G 1)+g, ,

y

Zs=2Ab +—Re(61 —G 1)
1 1

y2 y3

(3.45)
l21 ——2U, J du w(v)p, /[p, +(b,,+kv) ],

(3.57)

l32 ——2Ub I du w(u)ps/[pb+(hb+ku) ] .

(3.58)
2A,

Re(F1 F 1 )+gb—,
y2

L+II+I —+~aZa ~

L + IG+ I
——+AbZb

b

(3A6)

(3A7)

(3A8)

Pll = PlP11+121(P22 Pll)+rl

P22 Y 2P22+I32(P33 p22)

I21(P22 Pll)+r2

P33 ) 3P33 I32(P33 P22)+r3 ~

(3.49)

(3.50)

(3.51)

where the diagonal density-matrix elements p;;(u)
are the level populations, r; are the level-pumping
rates, and the stimulated-emission rates are

1 1
l2) ——U, Re +

L, L
(3.52)

Subscripts, which are always zero in the SREA,
have been suppressed; for example, L+I =—L+I p.

Equations (3.45)—(3.48) are almost in the form nor-

mally incorporated in engineering computer codes
which are used to design high-energy lasers. To put
them into that form, we relax the steady-state con-
ditions and write equations for the level popula-
tions

The integrals i&I and l32 are Voigt profiles. Equa-
tions (3.54)—(3.58) treat the saturation of the popu-
lation inversion in an average way rather than al-
lowing different velocity groups of atoms to satu-
rate individually. The velocity equilibrium assump-
tion can cause a drastic overestimation of the power
extraction from a Doppler-broadened laser, such as
a cascading He-Ne laser with a single mode
resonant with each transition. The overall satura-
tion behavior of a Doppler-broadened laser with

many longitudinal modes, however, is reasonably
well represented by these equations, as is the satura-
tion behavior of a laser which is nearly homogene-
ously broadened (i.e., a laser with P's which are on
the order of or larger than the ku's). Bennett holes
are not burned into the velocity distribution for
these cases, and the saturation is essentially homo-
geneous in the sense that most of the velocity
groups of atoms have approximately equal popula-
tion inversions.

In practice, the additional condition b, =4b ——0
is frequently imposed on Eqs. (3.54) —(3.58) in laser
design analyses.

Returning to the more general rate equations
(3.45) —(3.48), we are ultimately interested in calcu-
lating Pf, P$, P~, and P&~. We define

1 1
l32 ——UbRe b +

LI L
(3.53)

—PI P

G =GI —G

(3.59)

(3.60)

In engineering codes, the additional assumption After substituting these expressions into Eqs.
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(3.45) —(3.48) and solving for F, we obtain

A S 2UbSbYbkb

Yg(1+2Sb Ub )

1+2S,U, 1— 2 US
Y i(1+2SbUb)

(3.61)

This large decrease in saturation is caused by the
lasing on transition b feeding the population of level
two. Level two is only being pumped at a rate nqyq,
which is slow because yq is small. Similarly, lasing
on transition a increases lasing on transition b by
preventing the formation of a bottleneck due to the
slow decay rate of level two. When the effective sa-
turation is decreased due to cascading, the power
broadening is likewise diminished.

pa[p, ~b,,~(kav) ]

'V3'Vz

Xz+ Xi X3+Pz
(3.63)

S,= Re
1 1 1

y, L~) L'
)

and

1 1 1
Sg — Re b + b

pb L~) L
(3.64)

Equations for 6 can be obtained simply by noting
certain symmetry properties which hold when in-
dices are interchanged. The corresponding equa-
tion for a two-level atom is obtained by setting
Ah=0 in Eq. (3.61),

ReE
~aSa Van
1+2S,U,

(3.65)

The third level increases the effective zero-field po-
pulation inversion by the amount of the second
term in the brackets in the numerator of Eq. (3.61).
In fact, lasing can occur on transition a even if the
zero-field population inversion ga is negative pro-
vided that lasing on the b transition is adequate to
cause

J duw(u)ReF (u)&0. (3.66)

2''Vb UbSb X2 X21— ——+—«1
y~(1+2Sb Ub ) Yi Yi

(3.67)

Lasing on transition b increases the population of
level two, thus increasing the population inversion
of transition a.

In addition, the saturation is decreased by the
second term in brackets in the denominator. For
some values of the level decay rates, the gain satu-
rates much more slowly when there is strong lasing
on the coupled transition. Suppose that near reso-
nance Sh,A~&~1. Also let yi&&yz and y3&)y~.
Then the term in brackets in the denominator in
(3.61) is

IV. CALCULATED RESULTS

P~(u) =Pg(u)+P~'( —v) . (4.1)

Tables I and II show values obtained using the two
methods. Agreement to three significant digits was
obtained using the two methods for all the trial
cases for which a in Eq. (A10) was less than 10
The first two cases, for which agreement is poor,
had v=0.01 and v=0. 18.

%'e have thus obtained excellent agreement with
earlier three-level resonance calculations. These

Numerical solutions of the exact density-matrix
equations (2.10)—(2.15) were obtained by using a
sparse-matrix method. The general computational
strategy is described in Appendix A.

As a first step in testing our computer code, we
verified that certain symmetry properties were
displayed. These symmetry properties allowed the
velocity integration range to effectively be cut in
half.

We then reproduced known results for a high-
intensity, single-transition (two-level) laser. We
compared intensity versus tuning graphs for the
case of strong saturation of the upper transition and
insignificant saturation of the lower transition with
the results presented in Ref. 24. There was no per-
ceptible difference between our graphs and those of
Ref. 24. The code has also been shown to produce
the same behavior at large detuning and at low in-

tensity as the REA calculations.
As a final more stringent test of our computer

code, we used another method to obtain the small-

signal value of Pas(u) for cases with significant sa-
turation of the gain of the upper transition. We
used the continued-fraction algorithm of Feldman
and Feld to calculate the polarization P~'(v), in-

duced by a small-signal traveling wave resonant
with the lower transition, while a standing wave of
arbitrary intensity saturated the upper transition. '

The in-quadrature component of the polarization,
corresponding to a small-signal standing wave
resonant with the lower transition, was given by
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TABLE I. Normalized values for P, (U) calculated using our difference equations and the continued-fraction method of
Feldman and Feld. A low-intensity standing-wave mode was resonant with transition a. The following parameters were
the same for all cases: y|——1.90, y2 0——SO. , y3=0. 10, p, =l.20, pb=0 30., p, =l.00, $, =0.0. The y's, 6's, p's, k, u, kbu,
and Ub are normalized; only their relative values affect the results.

—a~(U)

Difference
equations

—~,'(U)

Continued
fraction

1.90
1.90
1.90
1.90
1.90
1.90
1.90
1.90
3.80
3.80

3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
1.90
1.90

1.00
1.00
1.00
1.00

—1.00
1.00

—1.00
1.00

—1.00
1.00

0.500
O.SOO

0.500
0.500
0.500
0.500
O.SOO

0.500
0.500
0.500

8.00
5.00
1.00
0.500
1.00
1.00
1.00
1.00
1.00
1.00

13
13
13
13
5

5

7
9
7
7

0.100
0.100
0.100
0.100
1.30
1.30
0.300
0.300
0.700
0.700

0.011
0.182

7X10-4
5X 10-'
1X 10—s

1X10-'
9X10 '
1X10 '
3X10-'
2X 10

0.0330
0.0506
0.0964
0.101 3
0.009 95
0.01609
0.07803
0.08099
0.371 6
0.360 7

0.037 7
0.048 5

0.096 3
0.101 2
0.009 95
0.01609
0.07803
0.08099
0.371 6
0.360 7

checks have also served the purpose of providing
experience in the tolerances needed to obtain a con-
verged solution as defined above.

To study graphs of the mode intensities as a
function of the gain and detunings, we have gen-
erated numerical results corresponding to typical
parameters rather than fitting them to a specific

gain medium. The results shown in Figs. 4 and 5
correspond to the following conditions:

yt ——1.9, y2 ——1.9, y3
——1.0, P, =1.9,

Pb =1.45, P, =1.45, k, u =72.2,
2

kbu =36.1, — ~- ——1.11, — — =1.18,Pa ka

Pb kb

TABLE II. Normalized values for P, (u) calculated using our difference equations and the continued-fraction method
of Feldman and Feld. A low-intensity standing-wave mode was resonant with transition a. The following parameters
were the same for all cases. y| ——0.90, y2 ——0.50, y3=2. 10, P, =0.70, Pb= 1.30, P, =1.50, (,=0.0. The y's, 5's, P's,
k, u, kbv, and Ub are normalized; only their relative values affect the results.

Ub —P~(U)

Difference
equations

—~.'(U)

Continued
fraction

3.80
3.80
3.80
1.90
1.90
1.90
1.90
1.90
1.90
1.90
1.90
1.90
1.90
1.90
1.90
3.30
3.30

1.90
1.90
1.90
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.80
3.30
3.30
1.90
1.90

1.00
—1.00

1.00
—1.00

1.00
1.00

—1.00
—1.00

1.00
—1.00

1.00
1.00

—1.00
1.20

—1.20
1.20

—1.20

0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.?00
0.700
0.700
0.700

0.200
2.00
2.00
2.00
2.00
2.00
2.00
1.00
1.00
1.00
1.00
4.00
4.00
4.00
4.00
2.00
2.00

5

9
9
5

5

7
7
5
5

5

5
7
7
7
7
9
7

0.700
0.700
0.700
1.30
1.30
0.700
0.700
1.30
1.30
0.700
0.700
0.700
0.700
0.700
0.700
0.700
0.700

6X�1-'
02X�-'
3X10-'
3X10
3�X1-'

03�X1-'

1X10-'
3X10 6

3X10-'
3X10 6

2X10-'
2X 10-'
1X�1-'
07X�-'
6X10-'
4X10 6

2X10-4

0.148 2
0.509 3
0.4447
0.1039
0.1194
OA33 6
0.375 9
0.06476
0.07096
0.3544
0.390 1

0.365 1

0.3116
0.2872
0.285 4
0.3999
0.528 1

0.148 2
0.509 2
0 AHA 6
0.103 9
0.1194
0.433 5

0.375 9
0.06476
0.07095
0.3544
0.390 1

0.365 2
0.3117
0.287 3
0.285 5
0.4000
O.S28 2
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FIG. 4. Intensity versus gain for a three-level cascad-
ing laser co» —v, =0, co32—vq ——0. Comparison between
IFA and difference-equation solutions.

LINE CENTER
0 - TRRNSITION R
O«TRRNSITIQN 8

TIQN R
TION 8

I

0.5

QRIN

l

0.7

FIG. 5. Intensity versus gain for a three-level cascad-

ing laser co» —v, =0, ~3~—vb ——0. Comparison between

SREA and difference-equation solutions.

where the y's, P's, and ku's have been normalized
with respect to y3. These parameters correspond to
a case of Doppler broadening (i.e., FWHM Doppler
widths 2&ln2k, u and 2Vln2kbu »B„Bb). The
integrations over the zero-field velocity distribu-
tions of the populations would then yield Voigt line
shapes that for practical purposes would just be
Doppler distributions. During lasing, however, the
Voigt profiles of the level populations are modified
by hole burning in the velocity distribution, and the
intensity versus tuning behavior of the laser is also
modified by coherence effects resulting from the p3]
density-matrix element. Additional gain versus in-

tensity curves may be found in Refs. 23 and 27.
In our approach the density-matrix equations

have been solved by first prescribing the laser mode
intensities, and then the gains have been deter-
mined. It was not possible to invert the equations
and solve for the intensities in terms of the gains.
The condition for steady-state operation, that the
gain must balance the loss, determines the intensi-
ties in a laser. We have assumed in our calculations
that the two modes have the same loss and therefore
the same gain. The Newton-Raphson method was
used to obtain the same gain at both transition fre-
quencies. A, was varied while A~ was held constant
until the relative separation between the gains was
less than 0.3%. The plots show the dimensionless

intensities, I, =42, (1/y~+1/y2)/p, and

Ib 4——A b(1/y 2+ 1/y 3)/p b, as a function of the nor-
malized gain. That is, the gain at each frequency is
plotted in units of go 4——p, n ~ g, /(Au), the
Doppler-limit, line-center, small-signal gain of the
lower transition. It has become conventional in
laser theory to work with dimensionless intensities
as defined here.

Figures 4 and 5 show line-center results; i.e., each
mode is exactly resonant with the center frequency
of the corresponding transition. At each velocity,
the order E of the Fourier coefficients at which the
matrix equation was truncated was selected so that
the maximum relative change of either g, or g~ was
less than 10 in going from order E 2to ord-er K.
This required a maximum of X=11 for the case
shown in Figs. 4 and 5. In calculating the density-
matrix elements over the range of the velocity dis-
tribution for fixed values of I, and Ib, the order E
required for convergence generally fell off as the
velocity increased. This monotonic behavior did
not always hold very near line center, however,
where there was sometimes a small dip in E. De-
creasing the gain and thereby increasing I, and Ib
always increased the number of terms required for
convergence. For example, for a gain of 0.45, a
maximum of %=11 was required for the calcula-
tion of Figs. 4 and 5, whereas for a gain of 0.55, a
maximum of E =9 was sufficient.

References 4—8 and 11—14 describe the rich
structure in the line shape of one transition of a
three-level gas when the coupled transition is sa-
turated. Some of these features were discussed in
Sec. III. An analogous structure occurs in the self-
consistent intensity of one mode if its frequency is
varied, while the frequency of the other mode is
kept constant. Experimentally, the detuning of the
two modes can be varied independently by splitting
the two modes with a prism at one end of the laser
medium and individually adjusting their path
lengths. ' ' To calculate the self-consistent intensi-
ties for a fixed value of the gain, a two-dimensional
generalization of the Newton-Raphson method of
successive approximation was used. This method is
described in Appendix B.

To examine the tuning behavior when both
modes were well separated from line center, we used
the REA equations (3.1)—(3.6). In this case, the
REA is a good approximation.

In the following calculations, the variable g is de-
fined to be the gain in units of go =4jtlb~ gb/(A'u),
the Doppler-limit, line-center, small-signal gain of
the upper transition.

Figures 6 through 9 illustrate the tuning behavior
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FIG. 6. Three-level cascading laser. y& ——0.50,
p, =p, =0.75, y2 y3——pb——=1.0, k~u =kbu =30,
(,=0.0, gb

——1.0, hb ——7.5, g =0.47, P,, /Pb=2. 94.

FIG. 8. Three-level cascading laser. Same as Fig. 6
except g =0.20 and p, /pb ——2.0.

of mode a for k, )kb when mode b is well separat-
ed from line center. The zero-field population in-
version is zero for transition a. Therefore no lasing
can occur on transtion a unless mode b is sufficient-
ly strong to increase the gain enough to be above
threshold over part of the tuning range. A high,
narrow peak occurs on the side of line center oppo-
site that on which mode b is lasing. A lower,
broader peak occurs when modes a and b are lasing
on the same side of line center. This is similar to
the structure which exists in the small-signal gain
of transition a when a strong standing-wave field is
resonant with transition b. As the saturated gain is
decreased (by increasing the cavity Q's), the intensi-

ty of modes a and b increases, and mode a is above
threshold over a larger tuning range. Both of the
resonances are power broadened increasingly as the
intensities increase. Figures 6 through 8 correspond
to atoms with the same linewidth parameters and
transition frequencies. The detuning of mode b is
also the same for all three plots. The gain is
lowered from Fig. 6 to Fig. 7 to Fig. 8, and the in-

tensity of the modes increases in that order. The in-
tensity peaks are broadened as the intensity in-
creases.

Figure 9 corresponds to the case k, =2kb. The
intensity peak of mode a above line center (copro-
pagating case) is very broad. This can be under-

stood by considering the frequency interval b,v„
over which mode a interacts strongly with atoms
which also interact strongly with mode b. The velo-
city interval of atoms interacting strongly with
mode b is hu=hvb/kb. But since Av, =k, hu,
4v, =k, b vb /kb is the frequency interval over
which an increase in the intensity of mode a is to be
expected. The half-width of vb is
bvb ——yb(1+I/2)', or b, vb —-Syb ——5. Therefore
the half-width of v, is 10. The narrower peak
below line center is dominated by Raman-type reso-
nance terms involving denominators of the form
(i[5,+hb+(k, —kb)U]+p, J

', so this simple ar-
gument is not applicable to it. The partial cancella-
tion of the Doppler frequency shifts increases the
velocity interval of strongly interacting atoms when

h, =k, hb/kb, so that the direct coupling of the
transition amplitudes by the p3& density-matrix ele-
ment introduces significant structure.

The case k, &kb is illustrated by Figs. 10 through
13. The resonance below line center (counter-
propagating case) is split, as one would expect by
analogy to the case for the small-signal limit of
mode a. This is not surprising because in the
Doppler limit, one can obtain the zero crossings of
mode a using Eqs. (3.24) through (3.27). Our nu-
merical solutions are not Doppler-limit cases, be-
cause we found it convenient to use fairly narrow
Doppler widths to conserve computer time. The
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FIG. 7. Three-level cascading laser. Same as Fig. 6
except g =0.29.

FIG. 9. Three-level cascading laser. Same as Fig. 6
except g =0.12, k, u =60, kbu =30, hb ——3.75, and

p, /pb ——0.40.



26 THEORY OF GAS LASERS OPERATING ON TWO COUPLED. . . 1565

THREE -LEVEL LASER . . THREE-LEVEL LASER8

0 - TRRNSITION R
o - TRRNSITION 8 0 TRRNSITION R0- TRANSITION B
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FIG. 10. Three-level cascading laser. y~
——0.5,

j 2 —)3—Pq = 1.0, P, =P, =0.75, k, u =30, kqu =60,
(,=0 0& g. b=1.0, kg=15, g=0.3, p, /pb=2. 0.

FIG. 12. Three-level cascading laser. Same as Fig.
10 except g =0.15 and p, /pb ——1.0.

very slow fall-off of a Lorentzian resonance re-
quires a very large integration range to perform a
Doppler-limit integral numerically. The Maxwell
velocity distribution can be selected so that its
HWHM is much broader than the Lorentzian
FWHM, but it still provides a cutoff for the numer-
ical integration.

The splitting of the resonances of Figs. 10
through 13 increases and the two intensity bumps
of mode a are increasingly power broadened as the
intensities of modes a and b increase. Figure 13 il-
lustrates a case for which the double peaked reso-
nance is not well separated because mode b is closer
to line center and has higher intensity. The higher
intensity of mode a due to the higher intensity of
mode b and due to its larger dipole moment also
power broadens the peaks of the split resonance
more than in Fig. 10. This plot contains some error
in the region —2&6, &2 because the REA was
used to generate it. The intensity of mode a is ap-
preciable in this region so population pulsations
should be treated.

The intensity peaks above line center in Figs. 10
through 13 are not split and are similar to the case
for kb (k, . They are narrower than those of Figs.
6 through 9 because k, & kb. Therefore a frequency
interval of mode b interacts with a velocity interval
of atoms which interact with a smaller frequency
interval of mode a, as discussed above.

The full difference equation solution is compared
with the REA solution in Fig. 14. The REA plot
shows appreciable error. This will be the case when-
ever at least one of the modes is tuned within its
power-broadened line width [6&(1+I/2)'~] of
line center.

All of Figs. 6 through 14 show a strong asym-
metry in the detuning of mode a. The IFA will
produce symmetric intensity distributions as a func-
tion of the detuning of one of the modes, and
therefore it is clear that the IFA, and therefore the
SREA, are poor approximations for the range of
parameters represented by these results. Figures 4
and 5, Figs. 7 through 10, and Figs. 4 and 5 of Ref.
23 correspond to cases with nonzero small-signal
gain resonant with both transitions, and both IFA
results and exact results are plotted. The IFA
curves are in error, particularly when the detunings
of the two modes have opposite signs (counter-
propagating case), so the IFA also fails if both tran-
sitions have nonzero small-signal gain.

In Figs. 4 and 5, we see that the IFA and the
SREA are also in error in predicting line-center in-
tensity versus gain curves. The two approximations
lead to different results because population pulsa-
tions are significant at line center. The failure of
the IFA is the result of our selection of P's, which
are about the same size as the y's in performing our
calculations. Conditions for the validity of the IFA

THREE-LEVEL LASER

& - TRFINSITION Fl0- TRRNSITION B

mg

CA

4J~R
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THREE-LEYEL LASER
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DETUNINQ OF R
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o
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FIG. 11. Three-level cascading laser. Same as Fig.
10 except g =0.2 and p, /pb ——1.33.

FIG. 13. Three-level cascading laser. Same as Fig.
10 except hb ——6.0, g =0.3, and p, /pb ——3.0.
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V. CONCI. UDING REMARKS

We have described a theory of a laser operating
simultaneously on two coupled transitions. Unlike
all previous approaches to this type of laser, our
theory is accurate for arbitrary mode intensities and
detunings. As discussed below, there exist lasers for
which our assumptions are not very restrictive.

Previously reported work on the three-level, two-
transition laser has all involved approxilnations to
our theory, some of which have been discussed
above within the context of our approach. Our new

are given in Eqs. (3.34) through (3.37), and for p,
very large, or for all the P's much greater than the
y's the IFA would be a good approximation and the
intensity distributions would be symmetric. For
cases with large detunings, such as Figs. 5 through
8, the IFA and the SREA lead to identical curves.

The REA leads to significant error if at least one
of the modes is tuned near line center, as is seen in

Fig. 14. The REA and exact equations lead to
identical results, however, for large detunings of
both modes from line center.

The computer time required for a calculation
differs greatly, depending on which approximation
is used. For example, the amounts of central pro-
cessor time on a CDC Cyber 176 required to make
the calculations for Figs. 4 and 5, and the time to
perform the same calculations in the REA were

SREA 2.5 sec,

REA 3.0 sec,

IFA 138 sec,

Exact 842 sec.

set of difference equations, which includes the ef-
fects of population pulsations and the direct cou-
pling of the two dipole transitions by the p3)
density-matrix element, were shown to reduce to the
REA and IFA equations in limiting cases. Thus it
has been possible to compare the predictions of the
common approximate approaches with those of our
more exact theory. One of our major conclusions
from this work is that the two primary approxima-
tions, namely the rate-equation approximation
(REA) and the independent-field approximation
(IFA), can lead to significant errors in the calcula-
tion of the output intensities of a laser.

The truncated infinite-dimensional sparse-matrix
method used to solve our new difference equations
was checked with known results for limiting cases.
In the limiting case in which one mode has low in-
tensity while the other is intense enough to saturate
its transition, our results are in excellent agreement
with the well-known continued-fraction method for
solving the density-matrix equations. We have
presented some graphs illustrating some of the
structure which occurs in the intensity of the modes
as a function of the detuning of one of them. This
structure is in agreement with all known results for
limiting cases. For cases which could not be solved
another way, our calculations appeared to converge
to unique, reasonable answers.

As has been the case in most "exact" laser
theories, we have been mainly interested in the gen-
eral features of the laser, without focusing on any
particular laser system. We do, however, wish to
emphasize that real two-transition lasers can be well
approximated by our model. Such a laser of current
interest is the two-color He-Ne laser, which can be
made to operate in a three-level, two-transition
mode of the type considered here. Some remarks
concerning this system are in order.

Figure 15 is an energy-level diagram for Ne. We
show only the dominant transitions responsible for
lasing in the infrared and visible. In the cascading
laser of Schlemmer et al. ' ' the levels 2s2, 3p4,
and 3s2 correspond to our levels 1, 2, and 3, respec-
tively; that is, lasing was observed simultaneously
on the two wavelengths 3.391 pm and 2.395 pm.
At very low pressures, the 3sz and the 2s2 levels
have short radiative lifetimes, of the order of
10—20 nsec, due to the strong allowed transitions
in the ultraviolet to the ground level. But for neon
pressures of about 0.1 Torr, typical of He-Ne lasers,
there is considerable radiative trapping of the
fluorescent radiation, effectively increasing the life-
times to r(2s2)=0. 96X10 sec (y&

——1.04X10
sec ') and r(3s2)=1.1X10 sec (y3 ——9.09X10
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kbu &&y~, y2, y3 made throughout our calculations
should be satisfied if y'& is not as large as about 10
sec '. If the stimulated emission rate is in fact that
high, our theory is of course still applicable, but the
sample calculations presented in the last chapter
would not.

If we assume that radiative trapping of the 2s2
and 3s2 levels is fully effective in reducing the na-

tural radiative linewidths of transitions connected
to these levels, then p, = —,(y&+ yz) =55 MHz,
Pb=55 MHz, and P, =9.8 MHz, omitting again
the contribution of stimulated emission on the 1.15
pm line to y&. The values normalized with respect
to y& are

P~=5 3 Pb=5 3, and P, =0.94,

FIG. 15. Energy-level diagram for Ne.

sec '). On the other hand, the lifetime of the 3pq
level is on the order of 10 sec; this level is not
connected to the ground level by an allowed transi-
tion, and consequently is not radiatively trapped.
The unfavorable lifetime ratio for lasing on the
2.395 JMm transition was circumvented by Schlem-

mer et al. ' ' by broadband lasing on the 1.15 pm
transition, which effectively decreased r(2s2).

For an effective gas temperature of 400 K, the

FWHM Doppler widths are 5vD (3.391 pm)=288
MHz and 5vz (2.395 p, m) =400 MHz. With y& nor-

malized to unity, therefore, we have

y3 ——0.87, y2 ——10, k, u = 145,

kgu =104,

which are also consistent with the sorts of numbers
used in our calculations.

Our calculated results show the same general
structure as the He-Ne experimental results pub-
lished in Refs. 15 and 16. We have not performed a
detailed comparison with these data, however, be-
cause we do not know to what extent the radiative
trapping in the laser affected the homogeneous line
widths p„pb, and p, . To obtain an accurate com-
parison, a detailed treatment of the radiative trap-
ping would be necessary.
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where we have not included the contribution to y~
due to the broadband lasing on the 1.15 pm transi-
tion. This would decrease the normalized y's and
ku's by a ratio y~/(y~+yj), where y& is the stimu-
lated emission rate. Schlemmer et al. did not re-
port the intensity of the lasing on the 1.15 pm tran-
sition, but it is clear that the assumption k, u,

APPENDIX A:
COMPUTATIONAL STRATEGY

It is convenient for the solution of (2.10)—(2.15)
to eliminate all the Fourier coefficients except the
F~„and G~„. We obtain
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As noted following Eqs. (2.10)—(2.15), these Fourier coefficients have nonzero values only for j odd and n

even. Other terms do not couple to F+& p, Gp +~, nor to any inhomogeneous driving term (r, or rb). For j odd
and n even, the following definitions have been used:

r

J,n a 1 1
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The corresponding equations for the GJ „are
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YJ,'n=~J', n+ Ub
1 1

b + b
~~,n+1

+Ua c
1

a

j n+2 b
YJ.,n =—Ub j'~~,n+»

CLJ'+1,

These equations have nonzero terms only for j even
and n odd. The following definitions apply in this
case:

YJJ —„' ———U, /LJ. +1 „,
YJ+1,n+1 U+ 1 1
j,n C 2 C

MJ n+1 LJ+1 „

j+1,n —1 1
Yj n

' =+Uc 2 + c
MJ n 1 LJ'+1 „

—j,—n 1
Xj n ~b b + b

~),n
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X ' "+ =—A*lP, +j,n b j,n~l ~

' ——+A,*Ab /MJ n+),
X.-J'-'-n+' =—A*A'/Mj,n + a b j,n —1

and

F; ( b,„—b,b
—) = F,'—J (b „b,b }

G; 1( 5„—b,b) =— G,J(—h„b,b) .

(A6)

Despite the complexity of Eqs. (Al) and (A2),
considerable simplification may be achieved by not-

ing certain symmetry properties. First, suppose we
interchange the decay rates of levels one and three
and at the same time interchange the zero-field po-
pulation inversions of transitions a and b The. oth-
er parameters characterizing transitions a and b are
also exchanged. Then FJ and G,j are also ex-
changed for all i and j. Specifically, if

A, ~Ab,

V~~Vb

The substitution of Eqs. (A6) and (A7) into the ex-
pressions for the gain and the index of refraction
shows that the gain does not change and the
resonant contribution to the index of refraction
changes sign [see Eqs. (3.43) and (3.44)] when the
signs of both detunings are changed.

Another property of the equations which can be
used to simplify our calculations is demonstrated as
follows. We multiply Eq. (Al) by A, and multiply
Eq. (A2) by Ab. We note that the phases 8, and 8b,
and the Fourier coefficients Ej and Gpj only occur
in products of the form A, FJ, A,'FJ., AbG;J, and

Ab G;*j. We define

F'1 ~.F,II~.
l

2i~~32

then

P, and y2 are unchanged,

F;j~GJ,
(A3)

for all i odd, j even.

The second symmetry property gives the result

that the influence on the laser modes of a group of
atoms with velocity —U is the same as the influence

of a group of atoms with velocity U. This must be

the case because the geometry we have assumed is

symmetric with respect to the interchange of +z
with —z. The following two equations are suffi-

cient to ensure this property in our formalism

G i=)AbG,JI lAb l

FJ and G;J are independent of 8, and 8b Aphas. e
shift 8, (or 8b) in A, (or Ab) causes the negative
phase shift in F~ (or G,i). It may be shown from
this property that the average gain and index of re-
fraction of the laser medium are unaffected by the
phases 0, and eb. Therefore we can assume for
our purposes that A, and Ab are real numbers.

The partial difference equations (Al) and (A2)
can be written as a single infinite-dimensional ma-
trix equation. We define

Fj„ for j odd and neven,

jJ „——0 for j+n even,

Gjn for j even and n odd .

F;J(v) = F; 1—( —u),

G; J(U) =—G; 1(—U) .

(A4) The nonzero fJ„are then reordered as a vector V

where m =m(j, n) The in. dex m increases as the
order

lj l +
l
n

l
of the Fourier terms increases,

These equations are verified by noting that i, j, and

u only occur in the coefficients of F;j and G; j as
the products iu and ju, and the inhomogeneous
terms in the equations change signs when i and j
change signs. A consequence of Eqs. (A4) and

(A5}, if one assumes a symmetric atomic velocity

distribution, is that the polarization oscillations

may be decomposed into standing waves with spa-
tial dependence sin[(ik, +j kb )z].

The third symmetry property involves changing
the signs of the detunings. It can be shown using

Eqs. (Al) and (A2} that

m(j, n) &m (p, q)

if
Ij I

+ I
~

I
& I p I

+ I e l

MV=r, (A9)

where the components of r are the real and ima-

The vector V is made up alternately of the real and

imaginary parts of the f~„. Calculations using com-

plex arithmetic are not convenient because .Eqs.
(Al) and (A2) include both the j'J„and their com-

plex conjugates. The matrix equation is
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ginary parts of the nonhomogeneous terms of Eqs.
(Al) and (A2). Most rows of M have 32 real
nonzero elements and no row has more than this
number.

In the computations, V was evaluated numerical-
ly after Eq. (A9) was truncated at order l; that is,
we set fJ„=O for ~j~+~n~&I. The truncated
sparse-matrix equation (A9) could then be solved.

The matrix equation (A9) was solved for the first
eight elements of V. These are the real and ima-
ginary parts of F+i o and Go+i. Figure 16 illus-

trates the ordering of the elements of V that was
used in the computations. Sequences of numbers

F'+i p(1) and Gp „(l), l =n, n+2, n+4, . . .

were computed, where l is the order of the matrix
equation defined above. Convergence at order p
was defined by the convergence of these four com-
plex sequences to within a tolerance at that order.

In practice, the matrix equation was successively
truncated at order n, n +2, n +4, . . . until the rela-
tive change

K=Max [ ~
Re[F+i,o(p) —F+i,o(p —2)]/ReF+1, 0(p)

~

~
Re[Gp+i(p) —Gp+i(p —2)]/ReGp+i(p)

~ J &5, (A10)

where 5 was some predetermined tolerance. We have converged on the change in RcF+& 0 and ReGO+& be-
cause the laser gain, which we are calculating, depends only on these quantities.

APPENDIX 8: ITERATIVE PROCEDURE
FOR INVERTING TWO EQUATIONS

WITH TWO UNKNOWNS

I

yp. Then numerical estimates are made for BF/Bx,
BG/By, BF/By, BG/Bx at xi and yi. The next esti-
mates of xo and yo are obtained using

We wish to find xo and yo such that
F(xp yp)=Fp and G(xp,yp)=Gp. Values xi and

y~ are selected to be as close as possible to xo and

x2=xi+ [BG/By [Fp F(xi,yi)]—
—BF/By [Go —«xi y»ll/d

0,-5

3F

g, -3 -4, 3 g -y -4, 1

p F

FIG. 16. Ordering of the elements of the vector V Eq. (A9). The first element of the vector is El p.
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y2 =y 1 + {BF/Bx [Go—«xi,y 1 )]
—BG/Bx [F —F(x ~,y t )] I /d,

where

d =(BF/Bx)(BG/By) —(BF/By)(BG/Bx) .

This procedure is iterated until I' and G are close

enough to I'o and Go. . This algorithm was especial-
ly effective in evaluating the graphs shown in Figs.
6 through 14 because the initial estimates for the in-
tensities were obtained from an adjacent point on
the graph, except at the first point in each discon-
nected region of nonzero I, . A single iteration was
generally adequate to obtain x and y such that I'
and G were within 0.3% of Eo and Go, respectively.

'Current address: Mission Research Corporation, 1720
Randolph Road SE, Albuquerque, New Mexico 87106.

M. Sargent III, M. O. Scully, and W. E. Lamb Jr., Laser
Physics (Addison-Wesley, Reading, Mass. , 1974).

L. Allen and J. H. Eberly, Optical Resonance and Tmo-
Leuel Atoms (Wiley, New York, 1975).

3W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).
4I. M. Beterov and V. P. Chebotaev, in Progress in Quan

turn

Electronics, edited by J. H. Sanders and S.
Stenholm (Pergamon, Oxford, 1975), Vol. 3, Part 1.

T. Hansch and P. Toschek, Z. Phys. 236, 213 (1970).
R. Salomaa, J. Phys. B 10, 3005 (1977).

7V. S. Letokhov and V. P. Chebotayev, tVonlinear Laser
Spectroscopy (Springer, Berlin, 1977), Chap. 5.

M. S. Feld, in Fronters in Laser Spectroscopy, 1975, Les
Houches Lectures, edited by R. Balian, S. Haroche,
and S. Liberman (North-Holland, Amsterdam, 1977),
Course 3, Vol. 1, p. 206.

F. Najmabadi, M. Sargent III, and F. A. Hopf, Phys.
Rev. A 12, 1553 (1975).
H. R. Schlossberg and A. Javan, Phys. Rev. 150, 267
(1966).

~M. S. Feld and A. Javan, Phys. Rev. 177, 540 {1969).
T. Ya Popova, A. K. Popov, S. G. Rautian, and R. I.
Sokolovskii, Zh. Eksp. Teor. Fiz. 57, 850 (1969) [Sov.
Phys. —JETP 30, 466 (1970)].
B. J. Feldman and M. S. Feld, Phys. Rev. A 5, 899
(1972).

~E. Kyrola and R. Salomaa, Phys. Rev. A 23, 1874
(1981).
H. Schlemmer, D. Frolich, and H. Welling, Opt. Com-
mun. 32, 141 (1980).

H. Welling and D. Frolich, in Festkorperprobleme, Ad-
uances in Solid State Physics, edited by J. Treusch
(Vieweg, Braunschweig, 1979), Vol. 19, p. 403.
E. A. Sziklas and A. E. Siegman, Appl. Opt. 14, 1874
(1975).
D. B.Rensch, Appl. Opt. 13, 2546 (1974).

P. W. Milonni and A. H. Paxton, J. Appl. Phys. 49,
1012 (1978).

S. Stenholm and W. E. Lamb, Jr., Phys. Rev. 181, 618
(1969).

W. R. Bennet, Jr., Appl. Opt. Suppl. 1, 24 (1962).
H. R. Schlossberg and A. Javan, Phys. Rev. Lett. 17,
1242 (1966).

A. H. Paxton and P. W. Milonni, Opt. Commun. 34,
111 (1980).

B. J. Feldman and M. S. Feld, Phys. Rev. A 1, 1375
(1970).

25S. G. Rautian, Zh. Eksp. Teor. Fiz. 51, 1176 (1966)
[Sov. Phys. —JETP 24, 788 (1967)].

P. R. Berman, Phys. Rev. A 5, 927 (1972).
A. H. Paxton, Ph.D. dissertation, University of New
Mexico, 1981 (unpublished), available from University
Microfilms, Ann Arbor, Michigan, 1981.

2 A Javan, in Proceedings of the International School of
Physics "Enrico Fermi", Course XXXI, Varenna, 1963,
edited by P. A. Miles and C. H. Townes (Academic,
New York, 1964), p. 284.

2 A. Javan, Phys. Rev. 107, 1579 (1957)
B. J. Feldman and M. S. Feld, Phys. Rev. A 12, 1013
(1975).
N. Skribanowitz, M. J. Kelly, and M. S. Feld, Phys.
Rev. A 6, 2302 {1972).
H. Haken, R. Der Agobian, and M. Pauthier, Phys.
Rev. 140, A437 (1965).
The Yale Sparse-Matrix Package developed by A. H.
Sherman, S. C. Eisenstat, and M. H. Schultz was used.
See A. H. Sherman, Yale Sparse Matrix Package User's
Guide UCID-30114 (Computer Documentation,
Lawrence Livermore Laboratory, University of Cali-
fornia, Livermore, Calif. , 1975).

34G. M. Lawrence and H. S. Liszt, Phys. Rev. 178, 122
(1969).
A. Corney, Atomic and Laser Spectroscopy (Oxford
University Press, Oxford, 1977), p. 332.


