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A theory of resonantly enhanced degenerate four-wave mixing in two-level systems in-

cluding the effects of atomic and photon angular momentum is presented in the absence of
pump-induced saturation of the transition. It is shown that there exist three distinct

quantum-mechanical amplitudes leading to the third-order polarization density. These

quantum-mechanical amplitudes are shown to be sensitive to the states of polarization of
the incident fields. The quantum-mechanical transport equation in the m representation is

used to calculate the output signal in the various regimes of laser detuning, atomic

linewidth, and polarization states of the radiation field for collinear interaction.

I. INTRODUCTION

The phenomenon of degenerate four-wave mixing
(DFWM) has been a popular research subject re-
cently due to its potential application to laser spec-
troscopy, wave-front compensation, and signal
processing. In the case of resonantly enhanced ex-
citation, degenerate four-wave mixing provides a
powerful tool to study the physical properties of
atomic and molecular systems. Pressure-broadened
linewidths have been measured in both two- and
three-level atomic systems. Degenerate four mix-

ing shares the same important feature with saturat-
ed absorption or two-photon spectroscopy, i.e., it
yields Doppler-free spectra. Current theories have
treated the atomic system as having nondegenerate
energy levels, an approximation valid only for the
case when the polarization state of all radiation
fields are equal. In this regime, the mechanism for
the generation of the signal via DFWM arises from
spatial modulation of the population difference.
However, in general, real atoms possess angular
momentum which arises, for example, from spatial
symmetry of the potential energy. The effect of the
existence of angular momentum leads to the viola-
tion of the assumption of nondegenerate energy lev-

els. In this case, the relative orientation of the po-
larization state of the radiation fields leads to the
existence of new physical mechanisms giving rise to
the four-wave mixing signal. ' The same mechan-
isms are present in the study of the Zeeman laser
and polarization spectroscopy. ' The generalization
of quantum levels to include magnetic degeneracies
allows the possibility of studying depolarizing col-
lision effects in resonantly enhanced degenerate
four-wave mixing. "

We present in this paper a study of the ampli-

tude, polarization, and spectral properties of the
four-wave mixing signal generation by the nonlinear
interaction of three input fields in a resonant two-
level system with degenerate states. In Sec. II, we
outline the approximations and model used in the
description of the physics. Section III presents a
qualitative picture of the fundamental physics that
arise owing to the several choices of electric field
polarization. Section IV presents a detailed calcula-
tion of the third-order response of the medium in
the perturbation regime, i.e., the intensities of the
applied and generated fields are assumed to be
below saturation. Section V provides illustrative ex-
amples of the dependence of the signal on the rela-
tive orientation of the input field polarization states
as well as the choice of angular momenta for the
energy levels. We conclude by summarizing the
main results in Sec. VI.

II. APPROXIMATION AND MODEL

We shall assume the following.
(a) The radiation field can be described in the

classical picture and be written as

E(r, t) = —, g e„S'„expi(co„t—k„r)+c.c. ,

(2.1)

where e„ is the unit vector describing the polariza-
tion state of the field. g'„ is a slowly varying en-

velope such that

I
k„.V e (2.2)

co„and k„are the frequency and wave vector,
respectively. k„ is the unit wave vector.

(b) The atom is described by a two-level system
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with degenerate states (an example of which is
shown in Fig. 1). The frequency difference between
the upper and lower states is coo. The states are la-
beled by its total angular momentum J and z com-
ponent Mz of the angular momentum.

(c) The interaction of radiation with the quantum
system is described via an electric dipole coupling
of the form

V(r, t)= —))7 E(r,t), (2.3)

where p is the electric dipole moment operator.
The interaction process is near resonant so that the
rotating-wave approximation is valid throughout,
i.e.,

I. —ol «~.+0. (2.4)

(d) The lower state is populated initially by in-
coherent pumping processes. Relaxation processes
are taken into account via effective decay rates.
The spontaneous emission processes from the upper
to the lower state are neglected in our description.
The inclusion of such processes, which leads to op-
tical pumping phenomena, necessitates a more ela-
borate description of the response of the medium as
observed by Omont. ' This work does not take into
account the effects of optical pumping.

Taking these assumptions into account, the
density-matrix equations which described the
response of the medium to external fields are given

by the following.

Population:

tl I+ v ~ JPJ)M).J)M) I(v )+ .~ g I J)M) J2M2PJzM2 J)M) PJ)N)J2M2 J~MpJ)M) I
Ef1

M2

(2.5)

r7)
I Y2+ " )PJ2Mpg2J)t2 ~ ~ ) J2M2 J)M)PJ)'M)'. JgM2 PJ2M2 J)M) J)M') 22M2 j

1

atomic coherences:

1 1
I)')g+))-)+ v'~ IPJ)M).J2M2 . ~J)M).J2M2IPJ2M2J2M2 PJ)M) J)M) l+ ~. X g t)t I ))t'Pg I' J ))t'"M,

1

JiMi.JiM i JiM ) .J2M2
p. , V

M'
1

pJ2M2. JiMi pJiMi. J~M2

Zeeman coherences:

(2.6)

(2.7)

(2.8)

V)Pi M ~~ = .
& ~( J)M):J,~,PJ,~, ,&)M, PJ)M):~,st», ))t, ,J)))t J

2

(2 9)

I|2+ v v )PJ2M2 J2Mp ).g ~ ) ~2M2' )M)PJ)M) JgM2 P'~p))t2' )M) J)M) J2M2 I'.
1

(2.10)

I J2 IM2I &

I Jl IM) I &

RESERVOIR

where v. t))' describes the effect of atomic motion
and gives rise to such effects as Doppler shifts and
spatial hole burning. A, )( v ) is the velocity-
dependent incoherent pumping rate to level

l J) ).
y„and y„' are the effective decay rates of the popu-
lation and Zeeman coherence, respectively. yi2 is
the effective linewidth of the transition

l
J) )~

l
J2). b, =co—t))p is the laser detuning

from resonance. Also,

FIG. 1. Two-level system with degenerate states as a
model of a resonant transition. ~o is the transition fre-
quency, and J and M are the total and Z projection of
the angular momentum of level a, respectively.

2 J1M1'J2MQ ~e„S'»

—l Olf
PJl M).J2M2 PJiMi. J2M2

(2.11)

(2.12)
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We have used the simplified notation that given any
operator S,

(2.13)

ef =a+
NA

DIU

eb= g+

is the matrix element of B between states
I
J,M, )

and
I
J2Mz). The set of equations (2.5)—(2.10)

describe the response of the medium to external ra-
diation fields.

The geometry of the interaction process is chosen
to be collinear, i.e., the input and generated waves
propagate along a line (Fig. 2). The input fields
consist of the forward pump 8'f, backward pump
8'b, and the probe g'~. The generated field is denot-
ed by the signal 8', . We shall be interested in those
terms for which the phase of F, is the complex
conjugate of 8'z. One should note that in the fully
collinear geometry, there are additional waves that
will not be considered in this work' and, in princi-
ple, they can be isolated by choosing a nearly col-
linear geometry. Ducloy and Bloch' showed that
the nearly collinear assumption is valid provided
that 8 & 2y/kug (natural linewidth/Doppler width).
For the case of sodium atoms confined to a cell at
room temperature, the acceptance angle 8 is 0.1'.

III. PHYSICAL PICTURE

We shall consider the physical picture of the non-
linear interaction process in both the lower and
upper level of the quantum system. Each level will
be characterized by its effective energy decay rate

yq to the reservoir. The discussion to be followed is
valid for any of the two energy levels.

First, consider the choice of polarization state of
the radiation fields illustrated in Fig. 3. The elec-
tric dipole selection rule implies that only AM =+ 1

transitions are allowed with o+ polarization. There
exist two distinct physical contributions to the gen-
erated signal 8', . The first one arises from a spatial
modulation of the population in magnetic state
M + 1 of level

I
Jz ) generated by the interference of

the forward pump 8'f and probe 5'~. The coherent

A
e =a+

FIG. 3. Quantum-mechanical path giving rise to the
normal population mechanism.

et= g
SON A

ED IU

Bb= g-

e =a+

M+1

Nb

M+ 0

scattering of the backward pump 5'b off the spatial
modulation yields a signal field 8', with polariza-
tion state g+. The second contribution arises from
the spatial modulation generated by the backward
pump 8'~ and probe 8'z, and the coherent scattering
is performed by the forward pump 8'f. Again, the
polarization state of the generated signal is identical
to the forward pump, i.e., cr+ radiation. Since both
physical contributions involve the generation of po-
pulation and scattering dynamics between only two
magnetic states, we shall denote this type of physi-
cal mechanism as normal population.

Consider now the choice of polarization state il-
lustrated in Fig. 4. There exist two additional dis-

E(
t

el

E.,

h""" 'i;t

SONAN

MEDIUM

FIG. 2. Interaction geometry. 8'f and 8'b form a set
of counterpropagating waves. Resonant medium is com-
posed of a set of two-level systems.

FIG. 4. Two quantum-mechanical paths giving rise to
the cross-population and Zeeman-coherence mechanisms.
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N —No —k+ v =0,
N —No —k& v=0 .

(3.1)

(3.2)

The coherent scattering of the other pump wave,
which generates the signal wave, yields the reso-

tinct physical contributions. The first one arises
from the generation of a spatial modulation of the
population in the M+1 state of level

~
J2) via the

interference of the forward pump g'f and probe g'~.
However, the coherent scattering of the backward

pump 8'~ proceeds along R different channel. It ex-
ctt~ an optical coherence ~e~ween

~
J,M+ I) and

~
J&M+2) which generates a o radiation field.

Since it couples a different channel we shall denote
this physical mechanism as cross population [Fig.
4(a)]. The second physical mechanism arises from
thc gcncI'ation of a spatial modulation of thc Zcc-
man coherence between

~
J2M —I ) and

~
J2M+1)

by means of the action of the backward pump 5'b

and probe 8'z. The coherent scattering of the for-
ward pump 8'f yields a signal whose polarization
state is o' [Fig. 4(b)]. It should be noted that tlM

generated signal for this case has a polarization
state which is the complex conjugate of the polari-
zation state of the probe. We shall denote this
physical mechanism as Zeeman coherence.

In the collinear geometry, these three physical
mechanisms share an important property. They
yield a Doppler-free spectrum for the generated sig-
nal if the resonant medium is Doppler broadened.
To understand this characteristic, let us consider
thc dynamics Qf thc 1ntcl"RctioIl of moving atoms
with the external radiation fields. The generation of
the spatial modulation of either the population or
Zeernan coherence involves the excitation of the

quantum system by means of the pump
(n=f, b) and the probe 8'~. In the language of
Doppler shifts, the resonance conditions for the
generation of the spatial modulation are

nance condition

N —Np+kp v =Q . (3.3)

In writing Eq. (3.3) we used the assumption of
counterpropagating pump waves, i.e., kf+kb ——O.

The velocity group that satisfies the resonance con-
dition (3.1), (3.2), and (3.3) are those with v=0.
Hence the spectrum of the generated signal is a
Lorentzian centered at the transition frequency No
and its width is determined by the natural or
collision-broadened linewidth.

IV. NONLINEAR RESPONSE OF THE MEDIUM

The medium response is determined by the polar-
ization

P(r, t)= J d vtr[p( rv, t)p, ], (4.1)

where p is the density matrix satisfying the evolu-
tion equations (2.5)—(2.10) in the case of two-level
systems with degenerate states, and p is the electric
dipole moment operator. The integration over velo-
city takes into account the averaging over the ran-
dom motion of the atoms. We shall assume that
the system is in thermal equilibrium and is
described by the velocity-distribution function

3/2

Ku0

where uo ——(2k&T/m)', k~ is the Boltzmann's
constant, T is the equilibrium temperature, and m is
the mass of the atom.

In the unsaturated regime, the polarization (4.1)
is obtained by means of thc perturbation solution of
the density-matrix equations (2.5)—(2.10). A set of
perturbation chains, which identifies the three dis-
tinct physical mechanisms discussed in Sec. III can
be written in the following manner.

norma/ population:

%1)PJM.JM
(0)

1 1 2 2

PJIM).J)M]~
, PJ2M2.J)M)

cf0$$ population.

~ f)
PJ)M ) ..J2M2

(0)
PJ)M) ..J)M) ~ -(&)

PJ2Mi.J)Mi
L

(2)
PJ2M2 ..J2M2

(2)
PJ,M, :J,M,

(&)
PJ2M2:J2M2~

(2)
PJ)M).J)M) ~

~3)
PJI M )

..J2M2

~3)
PJ2M2..JiMi

~3)
PJ)M )

'.J2M2

-(3)
PJ2M2.J)M )

~3)
PJ)M).J2M2

~3)
PJ2M2 .'J)M)

(4.3)

(4.4)
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Zeeman coherence:

~3)
PJ,M, :J,M,

(2)

2 2 2 2 PJM.JM

-(3)
PJ,M, :J2M2

~3)
PJ2M~.J)M)

~])
(0)

PJ)M ).J2M2

P lM).J)M& ~1)
PJ2M2.J)M)

(2)
PJ)Ml .J)M)

(4.5)

where the superscript denotes the order of the per-
turbation parameter which is given by the Rabi fre-
quency p, Efh. The primed superscript indicates
the case for which M+M'.

If the input radiation fields are in arbitrary polar-
ization states, then one can decompose them in
terms of 0.+ and 0. components and apply the
three basic physical contributions (4.3) to (4.5) in or-
der to generate the nonlinear polarization (4.1).
Hence, it is necessary to know the strength and
spectral behavior of each physical chain.

An intuitive approach can be presented to
describe the essence of the spectral behavior of the
normal population, cross population, and Zeeman-
coherence terms. The basic dynamics of absorption
and reemission processes are necessarily the same
for all three mechanisms since they are insensitive
to the angular momentum of the atomic species.
However, the strength of the interaction in the pres-
ence of foreign perturbers is not the same for the
population (normal or cross) and Zeeman-coherence

contributions. In the case of the population, no
changes in the projection of the angular momentum
is involved, i.e., collision effects on the population
are simply visualized as an effective decay rate ac-
companied by changes in velocity. However, col-
lision effects on Zeeman coherence involves the
dynamics of changes of the projection of the angu-
lar momentum of the system. Hence, in general,
the pressure broadening contributions to the popula-
tion and Zeeman-coherence term acquire different
magnitude and are reflected in part by the effective
energy decay rate y„and Zeeman dephasing rate
y„'. ' In the absence of foreign perturbers, the Zee-

man dephasing rate y'„must be given by the
spontaneous-emission rate I which is the same as
the energy decay rate in the collisionless regime.

A direct application of the perturbation chains
(4.3) to (4.5) yields the following expression for the
polarization contribution to the degenerate four-
wave mixing signal:

P(r, t) =(SN+Sc+Sz)S'f Ãb 8'pexPi(tot+ kp. r),
where

e ~(2)~~ ~ -+
~
w.N=nfp Z, Z, I J2M2J1Mi(i J1Mi J2M2.eb)(PJ2M2J1Ml. ep)(I J1M1 J2M2 ef)

M) M2

+ fp XX(&J,M1J2M2 ef)(PJ2M2J, M, ep)(PJ, M, :J2M2 eb)PJ2M2J, 'M, +( ~f)
M) M2

is the contribution due to the normal population mechanics,

S, =Rf'p' g g p J M J M, (pJ M, J M eb)(i2J,M, :J,.M, ep)(iJ J,M J.M ef).
M1 MI1 M2

(4.6)

(4.7a)

+Rfp g g(P J,M, :J M f)(PJ M:J,M, p )(PJ,M, J M' eb O'J M':J, M, +I
M M ™)
M2+M

is the contribution due to the cross population mechanism, and

(4.7b)
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S =Rf g g PJM JM(P ~ g))r' b i JM JM
M1M M2

~2+M g

++f g g (PJ M) JgM2 . f )(P'g M J I' ~~P i J M':j M) s ~~2~2 ))'
Mp M),M)

M)QM)

is the contribution due to the Zeeman-coherence mechanism.
The frequency-dependent factor R„'z ' is defined as

(4.7c)

r

(2iA') y)~/i(6+k&. v) y)q+i(h —k„v) y» i(i)).—k& v—)

n =f,b and -m =1,21

y +i(kq —k„).v
(m) (m') ~ I

&np &np &f

(4.7d)

(4.7e)

and for the case of collinear interaction, it reduces to the following expression:

g(m)() 1 &o 1 iy&2
~

. . -- z
ikup (2i))i)' (1+6)(y)/+i' ) y„, —(1—E)(y)2+i&) kup

4

—Z
(1—&)kup

z
y +(1—e)(y)2+id) kup

lcm

(1—e)kup

1 1 iy)2 —6z
2i 5 y —(1 e)(y)2+—i 5)

(
kup

T

&Xi2+~

y —(1—e)(y)q —iA) kup

Elm

(1—e)kup

~7m

(1—e)kup
(4.8)

( ) &o 1 2ri2
(2iA')' y y»+b. ' y)~+i&

(4.9)

(b) y)2 and b, »kup but y &kup. These condi-
tions imply that the frequency dependence of R„'p '

will not be affected by the effect of atomic motion.
However, the strength of the signal is determined by
the ratio of y~/(1 —e)kup. This conclusion reflects
the fact that atomic motion can lead to the destruc-
tion of the spatial grating generated by the interfer-

where e= + 1 if n=f and e= —1 if n=b.
Z(a+ib) is the plasma-dispersion function. Ex-
pression (4.8) is valid over all regimes of detuning
and Iinewidth, from homogeneous to Doppler-
broadened quantum systems.

Let us consider the frequency dependence of R,'~™
in the following regimes.

(a) y)2, y~ and h&&kup. These conditions are
satisfied by a homogeneously broadened system, so
velocity effects play no role in determining the form

l

ence of 8'„and 8'p. In this case,

(m)
R„p ——

&o 2X~z

(2ifi) y)2+6 y)2+i&
r

1 77Pl

ikup (1—e)kup

and one can show that ratio of Abp to Afp is given

by

IFmZ lkQo .

(4.11a)

(c) y)q, y~, and b, &&kup. These conditions are
satisfied by an extreme Doppler-broadened system.
In this regime velocity effects play a substantial role
in determining the frequency dependence and am-
plitude of R„'p '. In particular,

( ) &p V'm

(2i))i)' y~kup(y)2+~&)
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(m) 0 + 7T

(2ifi)3 (kuo)
(4.11b) S', =i l S'IS'b S'~e,

* (Sw+Sc+Sz) (4 12)
2C60

Furthermore, the ratio of Rbp to Rfp at 5=0 is
given by

y y$2/(kuo)

which reflects the fact that the contribution of the
spatial interference generated by 8'b and 8'p is
negligible compared to the one generated by 8'f and
8'p, i.e., atomic motion leads to a washout of the
grating generated by 8'b and 5p.

'

Now consider the properties of the polarization
states e, of the generated signal for a given set of
polarization states of the input fields. In the
SVEA, the evolution of S', is governed by

where l is the nonlinear interaction length. We have
assumed that absorption effects are negligible (ab-
sorption coefficient multiplied by i is much less
than 1). The polarization state of S', depends only
on the couplings of the matrix elements of the di-
pole moments with the polarization states radiation
fields. This coupling reAects the fact that there are
three distinct quantum-mechanical paths leading to
the third-order polarizations as discussed in Sec. III.
Furthermore, the couplings depend only on the
magnitude of the angular momenta J1 and J2, and
the dipole moment for transition. They are given

by the following

Xormal population:

I„= g &M2
I
p'e

I Mi &&~i
I p 'e 1~2 & &~2

I
v"'~&

I
~i &&~i

I

p'e 1~2 &

M)M2
(4.13)

cross population:

Ic"=
Mi, M2, M2

&Mi
I
p'e. 1~2&&M21p ~p I

~i &&~i
I j e IMz &&M2 Ii e.

*
IMi & (4.14a)

I(2)

M2, Mi, M i

M)QM )

&~2 li .e: 1~i &&~i
I v e 1~2&&M21p ~& I~i &&~i li e. 1~2& (4.14b)

Zeeman coherence:

&~i I) '&F1~2&&Mz
I ~ ~p l~'i &&~l

I v em IM2&&~21m e.*1M' &

M2, Mi, M i

M)+M)

(4.158)

Iz ——(2)

M),Mg, M

M2+M2

&~21i
.~,'l~i&&~i li e 1~2&&M21i ~& l~~&&~ili e. 1~2& (4.15b)

where we have used the fact that

b 2

e, S.= g g R„'i"I.'~'

n =fP=1

2 b
S', =i l S'i S'b S~p g g g R„p I

2CE'0 a P=1 n =f
(4.16)

with a=%, C, or Z and noting that IN' ——Iz ' ——Iz.
The quantities I'p' depend on the total angular mo-
ments J1 and J2 as well as the electric dipole mo-
ment of the transition. Iap' can be calculated to
yield exact analytical expressions given specific
choice of input field polarization states, which will
be the subject of the next section. Expression (4.12)
can be rewritten as

Equation (4.16) together with Eqs. (4.8) and
(4.13)—(4.15) are the main results of this paper.

V. EXAMPLES

We shall consider several choices of the relative
orientation of the radiation field polarization states
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for the case of optical transition JI ——J~J2 ——J+ 1.
Generalization to the other cases J1——J~J2 ——J and

JI ——J+1—+J2 ——J are straightforward and the re-
sults will not be yven here. We shall decompose
the polarization states in terms of the circularly po-
larized components

o+ ——+(x+iy }/~2

and

cr=(x iy }/—v 2.
This representation corresponds to the choice of the
quantization axis along the propagation path.

The quantities I'~' contain a combination of four
inner products of the dipole moments operator with
the polarization state of the radiation fields. The
decomposition into circularly polarized components
together with the selection rules for electric dipole
transition lead to the result that there exists only
three possible components of I'~' which are finite in
magnitude. They are

(p.~+}(p ~+)(p.o+)(p.o )—
(p ~+)(p o+)(p.rr+)(p 0+)

and

(p, ~+)(p.~+}(p.~+}(p.o+) .

In writing these terms, we have assumed, for sake
of simplicity, that the p represents matrix elements

and the order of appearance of the inner product is
preserved as they are shown. The finite magnitude
of these three terms results from the requirement

that the initial and final quantum states for the sig-
nal generation process must be identical, i.e., the ex-

pectation value of the electric dipole moment opera-
tor is the trace of the product of the density opera-
tor and the electric dipole moment. The existence
of only these three terms is consistent with the fact
that the third-order susceptibility tensor in an iso-

tropic medium has three independent components. '

To remind the reader once more that these three
terms correspond to the three quantum-mechanical
amplitudes discussed above. The quantities

&JM, IpIJM, &

are given in terms of the reduced matrix elements
and the Clebsch-Gordon coefficients. ' The reader
is referred to Ref. 19 for details of the computation.

J
F(J)=—, g I

&J+1M —1Ip I
JM&

I

The polarization state of the four-wave mixing sig-
nal is o.+.

Example 2. Consider the choice of polarization
states such that

ef ——o+ ——e& and e~ ——u

Then the mechanisms are cross population and Zee-
man coherence. The signal field is given by (in the
absence of foreign perturbers)

S', =i I S'f Sb S'p [G (J)(Ryp +Rbr' )
2c6'p

+H(J)(R&& +Rb& }]
where

J+1
G(J)= —,

m= —J—I
I
&/+1M Ip I

JM —1&
I

x I &J+1M Ip I
JM+1& I2

and

1&J+1M—1Ip I
JM& I'

M= —J
x I &J+1M+1Ipl JM& I'.

The polarization state of the four-wave mixing sig-
nal is o

For an inhomogeneous medium in the extreme
Doppler limit, the contribution due to the Zeeman
coherence is negligible due to atomic washout of
Rb~'. Hence, it is possible to isolate the cross-
population term. One can choose the case for
which e~ =o.+ ——eb and ef ——o which leads to the
isolation of the Zeeman coherence component in the
extreme Doppler limit.

Example 3. Now consider the case for which

e~ ——x=e~ and e~=y. For this choice all three
physical mechanisms contribute to the signal field,

Example 1. Consider the case where the polariza-
tion states of all the input fields are o.+. Then the
physical mechanism giving rise to the four-wave

Inixing signal is due to normal population. The sig-
nal field is given by

2 b
S'g i—— lS'f S'bS'pF(J) g g R„'q', (5.1)

2c6'p P=l n =f

S', =i lS'f S b S'p [ , G(J) „L(J)+ ,M—(J)](R—~p—'+Rb—p')
2c6'p

+[—,G'(J)——,L '(J)+ —,M'( J)](Rg~'+RE') ],
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where

J+1
(I &J+1M lv I

JM+» I
"+1&J+1Mle,

I
JM —1& I'),

M= —J—1

J+1
X (I &J+1M Iv I

JM+» I'I &J+1M+2lv
I
JM+1& I'

M= —J—1

+1&J+1M lc I

JM —1& I'1&J+1M 2 II—I
JM —1& I') .

The prime quantities can be obtained from the
unprimed quantities by the following transforma-
tion: (1) interchange M with M+1 inside the
parentheses and (2) change the summation limits
from +J+1 to +J. Unlike the previous example
where the polarization characteristics yield positive
definite quantities, we can find choices of angular
momenta such that 5', =0.

One finds that for transitions J=0—+J =1 and
J=1~J=1, the three quantum-mechanical ampli-
tudes add up to give a total cancellation of the sig-
nal. This prcdiction has bccn conflirmcd ln dcgcn-
erate four-wave-mixing experiments in sodium va-

por, involving a single-photon excitation of the D2
line. The laser was tuned to the

3 Sig2(F= 1)~3 P3/2(F —0)

transition. VA'th the choice of polarization states of
the radiation field as presented above, no signal was
observed in the detector.

I

linear geometry, we found that in the extreme
Doppler limit the spectral response of the signal is
Doppler free. This property together with the in-

herently high signal-to-noise ' makes the degenerate
four-wave mixing a powerful tool for the studies of
atomic and molecular spectra. With the choice of
polarization states such that the counterpropagating
pump fields are linearly copolarized and the probe
field is cross polarized, we found that the generated
signal is null for electric dipole transitions
J=1~J=0 and J= 1—+J =1 (in the absence of
buffer gases). This effect arises from a complete
cancellation of the sum of the quantum-mechanical
amplitudes providing a unique approach for the
studies of collisions in these transitions. "And last,
we also showed that it is possible to isolate each of
the quantum-mechanical amplitudes by an ap-
propriate selection of the polarization states of the
radiation field in the inhomogeneously broadened
regime.

VI. CONCLUSION

We have presented a description of the three
quantum-mechanical amplitudes or nonlinear opti-
cal coherences responsible for the signal generated
in a degenerate four-wave-mixing process. The am-

plitudes correspond to the distinct excitation paths
that a set of three arbitrarily polarized radiation
fields can interact with a quantum system whose

Hamiltonian is spherically symmetric. In the col-
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