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Theory of strongly saturated double-resonance line shapes
in arbitrary angular momentum states of molecules
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We calculate the steady-state probe absorption line-shape function for a strongly driven,
Zeeman-degenerate molecular system. The probe laser is treated to lowest order while the

pump laser is dealt with to all orders. We obtain the probe line shape for the cases of
parallel and perpendicular linear polarization of the two lasers. As expected, the effects of
M degeneracy, as well as differences due to the relative laser polarizations, are most pro-
nounced when Doppler broadening is not important. However, even in the presence of
large Doppler broadening we find a narrowing of the population hole by including the Zee-
man degeneracy and a further narrowing if perpendicular laser polarizations are used.

I. INTRODUCTION

Optical and infrared double-resonance experi-
ments have proven to be an extremely useful tool
for investigating excitation processes in atoms and
molecules subjected to intense, resonant fields. '

In particular, the use of tunable infrared diode
lasers as probes for molecules such as SF6' or
CDF3, during and after their interaction with
CO2-laser pumping radiation, has begun to shed a
good deal of light on the details of the multiple in-
frared photon excitation process, particularly in the
"sparse" regime of discrete vibrational levels. In-
formation can be obtained, from such experiments,
concerning both intrinsic atomic and molecular
properties, such as transition dipole moments, as-
signment of vibration-rotation transitions, observa-
tion of weak transitions including excited-state ab-

sorption, as well as dynamical properties of the sys-

tem, such as relaxation processes, coherence, and,
most recently, the nature of the states involved in
multiphoton absorption. Because of its fundamen-
tal importance to spectroscopy and dynamics, there
has been a considerable amount of work done using
double-resonance spectroscopy.

In this paper, we will be concerned primarily
with "pump-probe" experiments, in which the
pump laser is much stronger than the probe laser,
and in general the quantity of interest is the steady-
state probe absorption line shape or rate of probe
photon absorption versus probe frequency. The
two-level double-resonance (2DR) line shape was

first given theoretically by Mollow. Mollow's
treatment is semiclassical, with fields treated classi-
cally and the atomic states quantized. The Bloch
equations for the system are reduced to algebraic
equations for the probe coherence by treating the
probe as a perturbation and equating orders in the
probe Rabi frequency. The predicted 2DR line has
both absorption and emission (gain) components at
saturation. The theoretical line shape has been con-
firmed experimentally by Wu et al. in a Na
atomic-beam experiment. The pump and probe
lasers were essentially copropagating, with the same
polarizations, in that work. Mollow's theory is de-
rived for a nondegenerate two-state system.

In experiments on actual atoms or molecules in
high-J states, in which the pump and probe lasers
have different polarizations, there will appear
dipole-matrix elements coupling the degenerate MJ
levels ("Zeeman" degeneracy) with %Vs ——0, +1.
The MJ-coupling schemes follow from. the particu-
lar pump-probe relative polarizations, which are the
same couplings giving rise to the asymmetries seen
in resonance fluorescence. Some of these effects
have been treated explicitly by Polder and Schuur-
mans' (for J=—,~J= 2), by Cohen-Tannoudji"
(for J=2~J =1 and J= 1—+J=2 transitions), and
by Cooper et al. '2 (for J=O~J =1,

1 1J=—,~J=—,), in the case of resonance fluores-
cence.

The "three-level" "' double-resonance (3DR)
case has been worked out in detail for M-degenerate
systems by Hansch and Toschek' and by Feld and
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his co-workers. ' This method has been applied to
the measurement of molecular-alignment relaxation
rates in ammonia. ' The explicit MJ dependence
for the three-level case has also been dealt with in
some detail by Drozdowicz et al. ' Feld has
shown' that, in the "weak-saturation" approxima-
tion, in which the pump laser is treated to second
order, the three-level equations can describe a two-
level double-resonance experiment. Schwendeman'
has recently treated the microwave line-shape prob-
lem for a two-level system, including the effects of
spatial degeneracy under partial saturation, using
methods similar to those employed here.

In this paper, we address the question of the ef-
fects of laser polarization on MJ-degenerate "two-
level"' double-resonance experiments under strong

pump saturation conditions. We find that the
three-level formulas play a new and important role
in the line shape at saturation for perpendicular po-
larizations, but that the bulk of the absorption
feature can be described very closely by the Mollow
two-level line shape.

II. GENERAL STATEMENT OF THE PROBLEM

where a=1,2 for ground and excited levels, respec-
tively, and A stands for the set of other labels neces-

sary to specify the molecular eigenstates. (We
suppress A in all that follows. ) We choose our
ground-state energy to be zero and note that both

pump and probe lasers are near resonant:

and

%co)2
—=E2 —E),

ECO =CO —60~2 ((CO~2,

AV= V—CO ((CO~2,

(2.5)

(2.6)

(2.7)

where co&2 is the molecular resonant frequency, b,co

is the pump-laser detuning, and hv is the probe-

pump detuning.
The matrix elements of the laboratory-fixed com-

ponents of the molecular-dipole moment p are, in

general, proportional to a Clebsch-Gordan coeffi-
cient

(J2Mg I p~ I J)M) ) ~ C(J)1Jp,'M)oM)+0) (2.&)

giving an M dependence to the pump and probe
Rabi oscillation frequencies. Since p is a vector
operator, we have the J-selection rule

AJ= —1,0, +1 (2.9)
We are concerned here with the problem of the

excitation of two Zeeman-degenerate levels of angu-
lar momenta J~ and J2 by a strong pump laser and

a weak probe laser. We will solve the equations of
motion for this system for the steady-state probe
absorption rate (probe line-shape function). The
Hamiltonian for our system is divided into a molec-
ular Hamiltonian P M and the molecule-field dipole
interaction

giving the familiar P , Q-, and R--branch transitions.
The M changes for pump and probe fields in (2.1)
will depend upon the polarization vectors e and e '

of Eqs. (2.2) and (2.3).
Given the Hamiltonian P of Eq. (2.1), with ma-

trix elements (2.4) and (2.8), we can form the
density-matrix equations of motion

4

p~+ (2.10)

P =A M —p, (E+E'), (2.1)

where p is the molecular dipole moment operator
and E and E' are the pump and probe (classical)
electric fields, respectively,

where the ellipsis represents decay terms, with the

components pM M defined as
a P

p~ g( =
I J~M~)(JpMp I, a,P=1,2. (2.11)

E (
l cdf + Ifdf)—

2
'

Wg g

E& (
t vf + Ivt)—

2

(2.2)

(2.3)

The probe absorption rate out of the M&th sublevel
is then just the rate of population flow out of

I
J~M~) (rate of photon absorption) if the pump

laser is off, '

4 ~ I
J~M~;A ) =E~

I
J~M~;A ), (2 4)

Here e,e ' are pump and probe polarization vectors,
co and v are the frequencies, and 5', 8" are field am-

plitudes. A is a matrix in the molecular basis set
of eigenfunctions of A ~. Quite generally this basis
is labeled by the molecular angular momentum and
its projection on a laboratory-fixed z axis (among
other labels)

J M (J2M2 I P, e '
I JiMi ) W (2.13)

and M2 is related to M~ by the hllf selection ru1es
which follow from our choice of polarizations. The

++J)MI J J J J
M& ~& &

2 (pM2m& pM, M2) ~ (2.12)

where QJ M, is the probe Rabi frequency
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probe line-shape function is then given by

(2.14}
g GMM' PM'M'
M'

M1,M2

Our solution to Eq. (2.10) will be found to all or-
ders in the pump laser Rabi frequency and to lowest
order in the probe field strength. Choosing e, the
pump polarization, as our laboratory-fixed z axis,
we have for the pump laser

hM =0. (2.1S)

AM=+1 . (2.16)

The general form of the steady-state probe line-

shape function (2.14) is found to be linear and
J J

homogeneous in the level populations pM M and

proportional to the probe Rabi frequencies. There-
fore the lowest-order solution in the probe field
strength involves the populations which are found
in steady state without the probe. Using the
zeroth-order populations we then solve the remain-
ing equations of the set (2.10) for the probe coher-
ences.

III. STEADY-STATE LEVEL POPULATIONS

With the hM selection rule (2.1S) and ignoring
the probe lasers' effect, we can obtain a set of popu-
lation rate equations. The Bloch equations for the
nonzero density-matrix elements are

—iQ J2J1 J1J2 {1) J1J1
(PMM Ph/M } g MM'PM'M'

2 M'

J1J1 J1J1—I' (p —P ) (3.1)

and

If the probe laser polarization is parallel to that of
the pump, then (2.1S) also holds for the probe, but
if it is perpendicular we have for the probe

12
zM =XM+lAN (3.S)

with the pump dephasing rate generally obeying

y~ )(I ]+I'p)/2+(GM~+G~qg)/2 (3.6)

with equality in the strong-collision limit. For an
infrared transition, spontaneous emission can be
neglected, since the radiative lifetime is much
longer than any of the other relaxation times in the
system.

In steady state, the left-hand sides of Eqs.
(3,1)—(3.3) vanish and the pump coherence can be

eliminated by solving (3.3) for p]]rM' in terms of the
populations. We then have

do not occur, since we assume no coherence decays
other than those due to movement of population,
i.e., from 6 diagonal in J~. In other words, all de-
phasing is assumed due to population flow, which
amounts to a strong-collision assumption.

Equations (3.1) and (3.2) are valid for molecular
systems in which collisional relaxation into a bath
of rotational states occurs with rates 1 1 and I 2 for
the lower and upper vibrational states, respectively.

The quantity pg]]I' is the equilibrium population of
the state

~

J M }. The coefficients G~]]r give the
dipole (orientation) and quadrupole (alignment) re-

J Jplaxation rates in the uncoupled (p~ ]]r ) basis set

J~ J~ k J~ J k

M MO —M' M' O—
k

&&(2k+1}g„(J ) (3.4)
J Ja kwith (M '~ o) and so on being the standard 3-J

symbols, ' and gk(J ) the kth-rank tensor relaxa-
tion rates.

In Eq. (3.3), z is given by

2 2 1 2 1 1 2 {2)
PMM (PMM PMM ) g GMM'PM'M'

2 M'

J2J2 J2J2—I z(p~~ —
pMM }

for the level populations and

(3.2)

2121122
&J]]]re(P~M—

P]]rsvp}-
g GMM'PM'M'

J1J1 J1J1
~](PMM PMM }

2 12 11 22
+Z]M1M(PMM PMM } g gg GMM'PM'M'

M

(3.7)

.J1J2
—iQ

J2J2 J1J1 J1J2

2 (PM~ PMM } z~PMM-- 12(pm —p }=0. (3 g)

(3.3)

for the pump-induced coherence. Terms such as

These equations are linear inhomogeneous equations
for the populations and can be solved by standard
numerical matrix techniques for arbitrary values of
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the parameters gk(J). If M-changing collisions can
be regarded as unimportant compared with I 1 or I'2
processes, then the major M dependence in the po-
pulations comes from the saturating-field Rabi fre-
quencies. If we can ignore the additional M depen-
dence obtained through the GMM, then simple ana-

lytic solutions can be found for the populations

J)J) J2J2 2 12 J)J)
(p I +p I )Q, y +2p~~ lz I

121 i

Q,' y"(I,+I,)+2
I

z
I

'I', 1,
(3.9)

for the ground-state M levels and

11 —22 2 12 —22 2
J J (pMM pl +pMM 72 )Q i~ My +2p~M

I

z

Q y' (I,+I )+2
I I

I iI
(3.10)

for the upper levels.
If we assume instead that the gk(Ja) are not zero,

but are much smaller than I 1 or I 2, we can obtain

a perturbation expansion for the populations

"'pM~ by substituting Eqs. (3.9) and (3.10) back

into the Q~GMsipMM terms in Eqs. (3.7) and

(3.8). This gives
r

(1) J1J1 2J] + 1
(p) J)J)

PMM = PMM~MI1

(2) (0) 2 2
~M ~ GMM' PM'M'

M

Qz, ~«~~+G~~)
(3.15)

4Iz I' y +bco'

Also, b,co is from Eq. (3.5) and y=(1 &+I'z)/2.
These expressions display the behavior of the popu-
lation to first order in gk/I when gk+0.

%e observe from the foregoing that the end-state
populations given by (3.13) do suffer a decrease of
magnitude

P~~ .—1 (1) (0)

However, since QM, G~~ ——0, this term is nonzero

only because of the M dependence of the zeroth-
order level populations, which is due in turn to the
M dependence of QJM. We have made numerical
calculations for gk ——0.1I'i (a justification for this
value is provided in Sec. V). We find negligible
differences in the line shapes, as compared with us-
ing the analytic expressions (3.9) and (3.10). Indeed,
the populations of all but the end states are given
accurately by (3.9) and (3.10).

IV. PROBE ABSORPTION
LINE-SHAPE FUNCTION

(1) J2J2
PMM =

2J1+1
(

J J,
PMM~M ~

1

2J1 + 1
( ) J,J,

pMM (~M ~M )
I1

(3.11)
In this section we obtain the probe absorption line

shape for the cases of perpendicular and parallel
laser polarizations.

1 + (p) 1 1 (0) 2 2

I2 p~~ — p~M»~

~(1)
(1) J)J) 1 ~MM' (p)

pz, j, = —g p~~
2J1 —1 M. I 1

I

where Eq. (3.13) gives the population of the end
states with M =+Ji. To obtain Eqs. (3.11)—(3.13),

J)J) J2J2
we have set pM~ ——1/(2Ji+1) and PM ~ =0, corre-

spondin~ to a filled lower and an empty upper level.

The '0'pg~ are from Eqs. (3.9) and (3.10), and

(1) (0)~ GMM' PM'M'
2J1+1

A. Perpendicular polarizations

Our pump laser defines the laboratory-fixed z
axis giving the pump selection rule

hi@ =0 . (4.1)

e '=(e+i+e i)/W2,

so that using Eq. (2.8) we have

(4.2)

(4 3)

for the probe laser. For definiteness we have made
our calculations for P transitions AJ = —1 or

%ith probe laser polarization in the x direction, we
have in polar coordinates

~J M -2 2

, (GM~+G~~)4lzl' +AN

(3.14)

J2 ——J1 —1 . (4.4)

%e then have the level-coupling scheme shown in
Fig. 1.



1532 H. W. GALBRAITH, MARTIN DUBS, AND J. I. STEINFELD 26

J-2
/A

~ t MiJ J-I J-2 -J+ I -J

FIG. 1. Coupling scheme for perpendicular polariza-
tion in a P(J) transition. For the pump laser, denoted by
the double arrows, we have ~=0, and for the probe
laser {single arrows) we have hM =+1.

I

FIG. 2. Laser couplings from Fig. 1 for
M= —J+1,. . .,J—1 levels. Q~ and 02 are pump Rabi
frequencies and Q' is that for the probe laser.

In the weak-probe approximation, we use the po-
pulations of Eqs. (3.9) and (3.10) and keep only
those coherences which are of lowest order in the
probe, i.e.,

J Jp
PM, ~ -0 if ~M~ Mp

~
)—1, a,P=1,2.

(4.5)

Condition (4.5) leads directly to a decoupling of the
various probe coherences from one another. Clearly
then the total line-shape function is built up from
two generic types of subsystems shown in Figs. 2

and 3. The density-matrix equations for the coher-
ences of Fig. 2 are easily written as

' 1/2
]]],S" (J—1+M)(J+M)

fg 2J(2J+1)
(4.13)

and

with ]]4=—
~ ]I ~, for M changes of + l. [With the la-

beling of Fig. 1, Q] QJsr ——1, Q2 ——Qq~, and

Q —QJ~ P~ are the level populations
JJ JJ J—1 J—1

(P] PM 1 M
——1, P3 =PMM, P2 =PM I M 1, and

P4 p3rM' ——')j. Ignoring the G]]r~ of Eqs. (3.1)
and (3.2), we now have for the dephasing rate in the
strong-collision limit

(4.14a)

iQ1 i Q'
P]2 ZP]2 (P2 Pl )+ P]32 2

iQ2 i Q'
P34= ZP34 —(&4 —I'3) —P24, —

2 2

(4.6)

(4.7)

F2=I 2. (4.14b)

As in the derivation of the population rate equa-

tions, we take for the pump coherences their probe-
independent values

)Q2 rQ~
P23 ( —z +]hv)P23+ P24 P]32 2

iQ'
(P2 P3), —

2

tQ2 tQ)
P]4 ( z+]~v)P]4+ P]3 P24 ~

2 2

(4.8)

(4 9)

and

iQ)
P]2 (~1 ~2)

2z

iQ2
P34= -~ (~3 —~4) .

(4.15a)

(4.15b)

iQ~ iQ2 iQ'
P13 ( ~v ) 1)P13 P23+ P14+ P122 2 2

(4.10)

iQ) iQ2 iQ'
P24 (]~v V2)P24 P]4+ P23 P34 ~

2 2 2

(4.11)

where z is given by Eq. (3.5) and where for &-branch

transitions

The system of equations (4.8)—(4.11) is then a
linear inhomogeneous system for the four probe
coherences. The solution for the probe coherence is
then easily written in determinantal form:

and

1/2
p8' J —M

]]] J(2J +1)
(4.12)

FIG. 3. Laser couplings for M =+J in a P(J) transi-
tion.
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i Q' tQ1

2
(P3 —P3)/2

2
2

Q'Qi(Pi Pz—)/4z ( —yi ~ibv)
Q'Qz(P3 P4—)/4z 0

0 i Q3/2

iQ&

2
2

iQ3/2

( y—3+i bv) i—Qi/2
—iQi/2 ( z~—i b,v)

(4.16)

( —z'+i hv) i Q—i/2

i Q—z/2 ( y&—+i hv)

iQ3/2 0

i Q3/2

i Q~/2

0 i Q, /2

( yz~ib—v) —iQi/2

i Qi—/2 ( z+—i b v)

Equation (4.16) is convenient for numerical evaluation. The line shape derived from (2.12) and (4.16) has a
structure which is similar to the two-level double-resonance line shape of Mollow. To see this, we set

yi
——yz ——y and Qi ——Q3——Q and obtain (since P3 Pi and ——Pz P4 now——)

(z i b,v)(y—i b,v) ~—i b,vQ /2z

(z i hv—)(z i hv)(y i b—,v) ~Q (y——i b,v)2
(4.17)

Equation (4.17) is the analog of Eq. (3.11a) of
Ref. 8 with the only difference being that we are
here treating a scalar relaxation rate which is ap-
propriate for molecules and the Mollow line was de-
rived with atomic relaxation processes in mind. In
the calculations below we use only one scalar relax-
ation rate

(4.18)

and then Eq. (4.17) is identical to the Mollow func-
tion. [Of course, the populations are still given by
Eqs. (3.9) and (3.10).]

The recovery of Mollow's result here should not
really be surprising if one compares our coupling
scheme of Fig. 2 with the dressed-atom picture for
the two-level double-resonance problem [see Ref. 9,
Fig. 4(b)]. Clearly then we must recover the Mol-
low result if we have treated the probe laser con-
sistently to lowest order.

By diagonalizing the pump couplings of Fig. 2,
we obtain the Stark shifts seen in the probe line
shape. The Stark split energies are

~~+(~~' in.')'"
Ar+ — ~

2
(4.19)

iQ iQ'
P12 ( 2 i)+ Pl3 zP122 2

iQ' iQ
P23 ( 3 P2) Pi3 P23 i

2 2
I'Q' i Q

P13—+ P12— P23 —Z P132 2

where

(4.21)

(4.22)

(4.23)

I

to both of the levels
~
I) and

~

2) due to the pump
mixing of those states. In the Mollow case, we have

Qi ——Q3 and S3 ——0. As will be seen below, ~S3
~

cannot be assumed to be a small quantity and our
calculations show that the M dependence of the
Qz M cannot be ignored. The effect of Eqs. (4.20a)

and (4.20b) is to introduce a broadening (or splitting
if ~S3 ~

&y) to the Mollow line. Clearly, however,
it the pump laser is powerful and near resonant the
probe absorption of Fig. 2 can be strongly saturated
as it is in the Mollow case.

Let us now consider the system of Fig. 3, where
levels

~
1) and ~2) have M values +(J—1) and

level ~3) has M=+J. Bloch equations for the
coherences are now obtained from Eqs. (4.6) —(4.11)
by setting Qq ——0 and Q= Q1.

If the pump laser is near resonant (
~

b,co
~

&&Q ),
we have resonant probe absorptions at frequencies Z =g1P—l kV (4.24)

Si -=+(Qi ~Q3)/2,

S3 ——+(Qi —Q3)/2,

(4.20a)

(4.20b)

and

z =yi3 i(hv~ Aco—) . (4.25)

since levels
~
3) and

~
4) can now make transitions The solution for p33 is easily found in terms of pi3.
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iQ iQ'
P23 P13+ (~2 ~3 }

2z 2z

where

QQ'Pi3=, , &2 —~3- —(~i -~2)
Q +4z'z z

(4.26)

(4.27)

J-2
ci

~ ~ e

J J- I J-2 —J+ I -J
FIG. 4. Coupling scheme for a I'(J) transition mitk

parallel laser polarizations.

Equations (4.26} and (4.27) are convenient for nu-

merical evaluation. By once more diagonalizing the
pump-laser coupling we see for a near-resonant

pump laser that the probe absorptions are now at
Stark frequencies

S3 -=+0/2, (4.28)

M

(4.29)
The first terms on the right-hand side are Mollow-
like (except for the M dependence of the pump Rabi
frequencies) and characteristic of two-level double-
resonance signals, ' while the last two terms are
essentially three-level double-resonance signals. '

The probe absorption line shape for the
perpendicular-laser polarization case is then charac-
teristic of this superposition.

i.e., the probe absorptions of Fig. 3 are Stark split
by roughly one-half that of those of Fig. 2. The ab-
sorption from level 3 leads to a new transition su-

perimposed on the Mollow-like line. It is also clear
from Fig. 3 that the pump laser cannot saturate this
probe transition, which is characteristic of a three-
level double-resonance signal. ' ' The strength of
this absorption feature in the total line shape is in-

versely proportional to the system angular momen-
tum.

Formally we can write the total probe absorption
line shape as a sum over M values of transitions
from Figs. 2 and 3

V. RESULTS AND CONCLUSIONS

00 PS 402' h
(5 1)

o pe' =0.02,
2n. h

(5.2)

=5
277 2iT 2iT

with values expressed in units of MHz. Also,

(5.3)

(5.4)

J2J2
p~~ =0. (5.5)

These values roughly correspond to those describing
the infrared double-resonance experiments in
SF6. ' ' We further assume that M-changing col-
lisions are unimportant in the problem by setting

In this section we present the results of numeri-

cally evaluating the functions (4.16), (4.17), (4.26),
and (4.27), and form the M sum Eq. (2.14) to obtain
the total probe absorption line-shape function for
the cases of parallel and perpendicular polariza-
tions. In some instances, we use the averaged Rabi
frequency (4.30}to generate the Mollow line. In our
calculations we have fixed our parameters as fol-
lows:

B. Parallel polarixations

(QJ3c) =(pg'/A') /3 . (4.30)

With parallel linear polarizations we have the
selection rule El@=0 for both pump and probe
lasers. This gives the coupling scheme of Fig. 4.
The steady-state populations will still be given by
Eqs. (3.9) and (3.10) and the total line shape is clear-
ly now a sum over the Mollow function, Eq. (4.17),
with the pump and probe Rabi frequencies provid-
ing the M dependence. To compare with the single
Mollow function, we will replace the sum with the
M-averaged value of the Rabi frequencies:

Several independent experimental and theoretical
results lend credence to this assumption. Fluores-
cence experiments on NaK* in He (Ref. 25} yield
total elastic reorientation cross sections

0

o(b,M) &0.3 A2, while total rotational relaxation
cross sections cr(hJ} are 30—100 A . Close-
coupled calculations on He+ HC1 (Ref. 26} give
o(bM)=1 A, while cr(b J)=6—10 A2. Calcula-
tions on Ar-N2 (Ref. 27) give o(bM)/o(AJ)=0. 3,
which is the highest value we have found for this
ratio. Gptical-optical double-resonance experiments
on BaO in a bath of CO2 give o(EM)=8.4+2.4 A2
(Ref. 28), while cr(b J) 50—200 A2 (Ref. 29).
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Similar conclusions are drawn from fluorescence
experiments on I2 (Ref. 30) and Si (Ref. 31), in
which orientation is found to be altered less than ro-
tational state. Corresponding results for polyatom-
ics are less clear, although microwave double-
resonance experiments on linear polar molecules
such as OCS and FCN suggest that dipolar tran-
sitions with hJ =+1 dominate the collisional
transfer; polarized infrared double-resonance experi-
ments on SF6 and BC13 also seem to show a per-
sistance of polarization following energy transfer.
Thus, neglecting GMM relative to I ~ and I'2 is most
probably a good approximation, particularly in
high-J molecules such as we are treating here.

The line-shape function 8" is the number of pho-
tons absorbed per molecule per second and a typical
calculation gives a plot of 8" versus the probe-laser
frequency for fixed-pump-laser detuning. We have
also made calculations in the presence of strong
Doppler broadening and we compare our polariza-
tion cases in copropagating and counterpropagating
configurations for pump lasers on resonance and

detuned. Finally our calculations were all made for
Ji

——10 or I' (10) transitions.

tions, while curve (c) gives the Mollow line. The
calculations verify the discussion of Sec. IV. The
three-level double-resonance components of Fig. 3
appear as the Stark split residual absorptions added
to the Mollow-like line in the perpendicular polari-
zation case. By Eqs. (5.1), (4.12), and (4.28), the
Stark splitting of those components, in units of
MHz, is

S3——+01'2=0.370O/2=+7. 43 . (5.7)

The population of the M =+J states here is -10%
but the effect on the Mollow gain of curves (b) and

(c) is dramatic. This is due to the lack of saturation
of those transitions by the pump laser. Comparison
of curve (b) with (c) shows the effect of the M
dependence of the QJM on the line; the Mollow line

appears "more coherent. "
Figure 6 shows the results with the pump laser

now detuned by + 20.0 MHz. As discussed in Ref.
9, here the Mollow line consists of a Stark shifted
absorption feature and a gain line due to a three-

photon process. As before, the three-level com-
ponents show much less Stark shift and lead to the

A. Homogeneous broadening

Figure 5 shows the on-resonant probe absorption
line for perpendicular (a) and parallel (b) polariza-
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FIG. 5. Probe absorption line-shape function vs probe
detuning from the unperturbed molecular resonance fre-

quency. Pump laser is resonant, parameters are given in

Eqs. (5.1)—(5.6). Curves (a), (b), and (c) give the perpen-

dicular polarization case, parallel polarization case, and
Mollow line, respectively. No Doppler broadening is in-

cluded here.
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PROBE DETUNING (MHz)

I
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FIG. 6. Same as Fig. 5, with pump laser now detuned

by 20 MHz. Curves (a), (b), and (c) as in Fig. 5.
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additional absorption component of curve (a).
Comparing curves (b) and (c), we again see the
slight broadening effects of the M dependence.

B. Doppler broadening

I
CO =CO —S, (5.8)

%e now consider the line shape of transitions
where Doppler broadening is important. In this

case the line shape is first evaluated for molecules

moving with a velocity v and then integrated over a
Maxwell-Boltzmann distribution of velocities corre-

sponding to the temperature T. The pump and

probe frequencies in a coordinate system attached to
the molecule are

0.0—

-2.0—
O
CP
th

I —40—
V
Op

O
E 0.0—
th

O
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CL
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O
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LJJ
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I i I i I

I i I I

V=V —ES ~

s=k v,
I
k

I
=—colic,

(5.9)

(5.10)
-2.0

where k denotes the propagation vector of the
pump beam, E=+1 for copropagating beams and
e= —1 for counterpropagating beams. The velocity
distribution as a function of s is given by

—40—
I i I i I

—
I 20.0 —60.0 0.0 60.0

PROBE DETUNING (MHz)

I

120.0

P(s)= exp( —s Isp),
Sp 7T

6)~2
sp —— v'2kT lm

C

(5.11)

(5.12)

FIG. 7. Absorption lines with pump laser resonant in

copropagating geometry, including Doppler broadening.
Doppler half-width is 40 MHz. Curves (a), (b), and (c) as
in Fig. 5.

[where k= Boltzmann constant, m =mass of mole-

cule, and the full Doppler width at half maximum

(FWHM) =2Vln2sp], which leads to the double-

resonance line shape

W(co, v) =f ds P(s) W(co s, v es) . (5—.13)—

A key quantity in our calculation is hv, the
probe-pump detuning, which undergoes no shift in
the copropagating case and a shift of 2s in the coun-
terpropagating case. This leads to a much greater
apparent coherence in copropagating signals.

Figure 7 gives the on-resonant copropagating cal-
culation corresponding to Fig. 5, with a Doppler
half-width of 40 MHz. Now the M-dependent
broadening is almost totally masked by the Doppler
broadening, and the parallel polarization line and
Mollow line are virtually alike. However, the
three-level components remaining unsaturated give
much less hole burning in the perpendicular polari-
zation case. Not only is the saturation much less,
but the hole shape is distorted or "filled in" because
of the smaller Stark shifts of the strongly absorbing
three-level components.

Figure 8 shows a comparison of parallel and per-
pendicular polarizations in counterpropagating
geometry. The hole burning is greatly reduced from
the copropagating case, but the degree of saturation

0.0 ——
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E

Co -4.0—
0
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0.0 ——40
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I I
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O.O 60.0 I 20.0
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FIG. 8. Same as Fig. 7 but omitting curve (c) and
computed in counter propagating geometry.
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FIG. 10. Same as Fig. 8 with pump laser detuned by
20 MHz.
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FIG. 9. Same as Fig. 7 with pump laser detuned by 20
MHz.

in case (a) is still much less than in case (b), the
discrepancy in peak absorptions being -20% of the
peak value.

Figures 9 and 10 are the off-resonant pump cal-
culations for copropagating and counter-
propagating geometries, respectively. In Fig. 9 we
see that the polarization effect is less with the pump
laser off resonance than in the resonant case of Fig.
7. Again with strong Doppler broadening the Mol-
low line represents the parallel polarization case
quite well. Figure 10 gives a comparison of the de-
tuned pump case in counterpropagation and shows
that the polarization saturation discrepancy has
dropped to 15% of the peak absorption. Here the
population hole is barely visible and is on the nega-
tive detuning side of the absorption line.

In summary, we have found that there are sub-

stantial qualitative as well as quantitative differ-
ences in the probe absorption line shape seen in
parallel versus perpendicular relative polarization
cases. These differences are fundamentally due to
the three-level components of the signal absorption
line and are most strongly manifest on-resonance
and for small values of the molecular angular
momentum. We have also seen that even with sub-
stantial Doppler broadening and at fairly substan-
tial J values, the effects are still easily seen in the
hole shape and depth in copropagating experiments
and in the degree of saturation in counterpropagat-
ing geometries.
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