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In the calculation of two-photon transition probabilities and related radiation-matter in-

teraction problems, the "length" and "velocity" forms of the dipole interaction give results

that can differ by many orders of magnitude if a complete set of exact eigenfunctions is not

used. These differences have been illustrated in the case of the 1s-2s two-photon transition
in hydrogen by Bassani, Forney, and Quattropani [Phys. Rev. Lett. 39, 1070 (1977}],and it
was concluded by these authors that for this problem the length form of the interaction is
far superior to the velocity form when an incomplete set of bound states is used. In order
to remove the question of gauge and thereby to improve the accuracy of such calculations
when a complete set of exact eigenfunctions is not available, this paper proposes a modified

form of the second-order equation. The modified equation, which employs a unique

average-frequency approximation, is derived through incorporation of a sum rule that is a

direct result of gauge invariance. It contains the length and velocity forms as limiting

cases, and, like those equations, is exact for a complete set. Conventional length or velocity

equations violate this sum rule for an incomplete set, and therefore are subject to large er-

rors. The use of this modified equation is illustrated for the 1s-2s transition of hydrogen.

Using only the 2p state as the "set" of intermediate states, the modified equation yields re-

sults that for all photon energies are within 2%%ui of the exact probability amplitudes. For
the 1s-2s problem, the accuracy is comparable to that obtained from length- and velocity-

form equations employing an ordinary average-frequency approximation and closure. Un-

like the modified equation, however, these latter equations require a separate calculation of
matrix elements of r or p, which may be inconvenient for a many-electron system. The
modified equation should therefore be useful when these matrix elements are not easy to
calculate, or when the best gauge form for the problem is not known.

I. INTRODUCTION

In 1977 an important paper by Bassani, Forney,
and Quattropani' showed that the calculated two-
photon transition probability for the hydrogen 1s-2s
transition is independent of whether the "length"
(—qE. r) or the "velocity" ( —qlmc)A p form of
the electric dipole interaction is used. This result
was obtained by using known dipole matrix ele-
ments ' for the complete set of exact eigenfunc-
tions for bound and continuous states of the isolated
atom. Though statements to the contrary have been
made from time to time, the equivalence of the two
forms of the interaction holds to all orders of per-
turbation theory providing a complete set of exact
eigenfunctions (bare or dressed) describing the true

physical state of the system is employed. '
A question often addressed' is "which of the

above two forms should be used if a complete set of
exact eigenfunctions is not available'"' This ques-
tion permeates many facets of physics—

multiphoton spectroscopy, polarizability and light
scattering, ' y-ray" and particle physics, ' and oth-
er problems where perturbation theory is employed
to describe the interaction of charged particles and
electromagnetic fields

The purpose of this paper is to present a modified
second-order equation that is independent of the
gauge question in commonly encountered problems
where one does not have a complete set of exact
eigenfunctions. Through comparison of exact re-
sults for the ls-2s two-photon transition of hydro-
gen, the paper then illustrates advantages of this
modified equation compared with conventional
equations used for such calculations. Finally, ex-
tension of the theory to problems other than the hy-
drogen atom will be briefly discussed.

II. THEORY (TWO.-PHOTON ABSORPTION)

In this and the two subsequent sections, the equa-
tions are based on intermediate states that form a
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complete set. The question of incomplete sets will

be raised following these discussions.
If the starting point for the theory is chosen to be

the length form of the interaction one has, follow-
ing Bassani et al. ,

'
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where 8~; is the two-photon transition probability
per atom per unit time, A is the Rydberg frequency
(3.29X 10 Mc/sec), e is the electronic charge, ao is

Aco =co(f) co(—i) co)——coz, (2)

where i and f label initial and final states of the
two-photon transition, and ~& and co2 are the pho-
ton frequencies. Emphasis will be placed on the di-
mensionless amplitude function'

the Bohr radius, and E],E2 are the electric fields
associated with the two photons. The frequencies co

in this and subsequent equations have been divided
by 2m%, as in Ref. 1. The argument of the energy-
conserving 5 function is
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D [~0]= —,g (I+Piz) (3)

useful for algebraic manipulation, where

and

[co(n) —co(i )—coz][co(n) —co(i) —co )]

for co~,cozen[co(n) co(i)]—, where g„represents a
sum over quantum numbers for the discrete states
and integration over those for the continuous spec-
trum, which together form a complete set. The
usual sum over all electrons gkrk for the length
operator has been reduced to a single term in (3) in
anticipation of dealing with the one-electron prob-
lem. The operator P&z interchanges the frequencies
co~,co2 and polarizations e~, e2 of the two photons.
Combining the contributions (I+P&z) in (3) yields
the compact form

D [~ol = 3
2co ~c02

where D [J] is the amplitude function in the veloci-
ty form and

[co(n) —co(f)][co(n)—co(i)]
[co(n ) co(i ) —coz] [co—( n) co(i ) —co ) ]—

Using a bit of straightforward algebra and the
energy-shell constraint bco=O from (2), it can be
shown that the two frequency factors are simply re-
lated to one another,

In a case often encountered where co(n) ~ co(f), both
F„and I'„' are positive and lie within the range
+0—+1. Note also that as co(n) +no, F„~—O
while F„'~1:the length form emphasizing contri-
butions from low energy states and the velocity
form einphasizing those from high-energy states.

~.=uo (I+Plz)(ei'(fir ln)(n lr I&) ez)

X [co(n)—co(i)—col] .

The frequency factor F„given by (5) is characteris-
tic of the length form of the dipole interaction.

If it is desired that the starting point be the velo-
city form instead of the length form, the above for-
mulation is altered because of a change in the fre-
quency factor

III. THEORY (INELASTIC LIGHT SCATTERING)

For light scattering, the scattered photon ("down-
ward transition") can be treated as if it has a nega-
tive frequency. Energy conservation is therefore
different from (2):

Aco=co(f) co(i) co)+coz, — — (10)

where co] is the frequency of the incident photon
and ~z is the frequency of the scattered photon.
There is also a sign reversal of co2 following the
operation ( I+P~z) in (3) of Sec. II. It follows that

F„'(Sc)=1+F„(Sc),
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and the treatment of inelastic light scattering (iaaf)
parallels that for two-photon absorption. The
remainder of the paper will be concerned only with

the two-photon absorption.

IU. THE C„SUM RULE

The relationship (9) between the two frequency fac-
tors can therefore be satisfied only when a sum rule,

pc„=o, (13)

is valid. This sum rule, of course, holds only for a
complete set of intermediate states n This. pro-
cedure for obtaining (13) is a trivial example of
more powerful methods that can be used to obtain
interesting sum rules from gauge invariance.

The sum rule (13) can be equivalently derived' '
starting with the commutation relationship,

N N Pka, g rk = ifig-
k=1 k=1 7?l

(14)

between length and velocity operators of an N-

electron system. The importance here is that the
sum rule is a direct result of gauge invariance.
Violation of the sum rule is a violation of gauge in-

variance.
It is well known that the length and velocity

forms of the interaction matrix elements often give

very different results in the case where an inexact
set (an incomplete set of states or approximate
eigenfunctions) is used. Any result that is not
gauge invariant therefore runs the risk of incurring
errors that are as large as those associated with

switching between the two gauge forms. ' Conven-

tional second-order amplitude equations, when used
with an inexact set, violate the sum rule (13), are
not gauge invariant, and are therefore subject to the
ambiguity of the gauge question and to unnecessary
errors. A question naturally arises about the possi-
bility of modifying the conventional equations so
that they do not violate the sum rule when an inex-
act set of intermediate states is used. If this can be
accomplished, one source of error, perhaps a major
one, can be removed from such calculations. As
shown in Sec. V, it is indeed possible to resolve this
question rather simply in at least one way.

Because of the equivalence of the length and velo-

city forms of the interaction, ' one can equate

D[Jo] and D[J] from (4) and (7), which then yields

+F„c„+gF„'c„=o.

U. INEXACT SETS

In most problems in physics, one is not endowed
with the luxury of having a complete set of exact
eigenfunctions. For consideration of such inexact
sets, the contributions to (4) can be split into two
parts: D'[Jo] from "characterized" states and
D "[Jo] from "uncharacterized" states. Character-
ized states are those for which the exact eigenfunc-
tions or good approximations to them are known, or
they may be states for which appropriate spectro-
scopic constants have been determined experiroen-
tally. The spectroscopic constants required are the
frequencies and dipole length matrix elements oc-
curring in (3). The uncharacterized states are states
in the g„about which nothing is known except
that such states are needed to fulfill the sum rule
constraint given by (13). Thus,

D [Jo]=D'[Jo]+D"[Jo]

g'F„c„+g"F„c„
n n

where the superscripts c,u label partial sums over
characterized and uncharacterized states. F„ is a
smoothly varying, transparently convergent func-
tion of the frequency co(n). On the other hand, C„
contains phase information, and its value is apt to
be oscillatory over any small set of terms. The con-
vergence of C„ is therefore not so simply deter-
mined as is that of F„. These properties suggest
that an approximation to the g„" terms in (15) can
be made through removal from inside the sum of a
factor Fx, where Fv is the same as F„except that a
constant frequency ~(K) is substituted for co(n).
One can interpret co(K) as an effectiue or auerage
fvequency of the uncharacterized states.

Because of the sum rule (13), it is possible to
write

g"c„=—g'c„.

This procedure results in a modified expression for
the probability amplitude,

D = g'(F„-F,)C„. (17)
2co ic02

The value of co(K) is often higher (more positive)
than any co(n), since states nearest the ground state
are normally better characterized. If E~ is not too
different from zero for a particular set u, the length
form of the equations is the closest approximation
to the actual amplitudes. It is in the opposite case,
where F~~ 1, that the limiting velocity form is su-
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perior. See below.
Since the sum rule (13) has been incorporated into

(17), that equation is expected to be independent of
whether the length or velocity form of the equations
is used. This is easily shown to be the case, since
from (9), F„=1 F„'—and, in addition, F» =1 F»—.
Thus, one can equivalently write

D =— g'(F„' F»)—C„
2' lc02

(18)

for D, which is (7) with an average-frequency ap-
proximation analogous to that in (17). Thus, the re-
sult D of (17) [or (18)] is independent of the gauge
form chosen, even though an inexact set of inter-
mediate states n has been employed. The gauge la-
bels [Jp] and [J] have therefore been dropped. In
the case of a complete set, D, D [Jp], and D [J] are
all equivalent and exact.

Providing (15) is an accurate representation of the
true amplitudes (not true for crudely approximate
eigenfunctions), the exact result D[Jp] =D[J] ca—n
be written as a linear combination' of the limiting
length and velocity forms, weighted by what may be
thought of as an accuracy factor for each form:

D [Jp]=aD'[Jp]+ (1 a)D'[J],—
where

g" (1 F„)C„—

(19)

(20)

1 1 1 1
C+ = 1 — —COl + — +COl

3 n 2 4 n2

nl nlXR loR20 (21)

Fn= .
NlN2

(22)
1

1 — —col
n

1 1
+CO&

4 n2

and (1 a) =F». Th—us, F» is an approximate accu-
racy factor for the length form. Conversely, Fz is
an approximate accuracy factor for the velocity
OA11.

VI. APPLICATION TO HYDROGEN
1s -2s TRANSITION

For the ls-2s transition, i = ls, f=2s. One has
(bound states)

Now assume hypothetically that nothing is
known about states for which n y2. In that case,
there is only one characterized intermediate state,
the 2p state. Required are

R lo =+ 1.29027

and

R20 = —5. 196 15

The frequency co(K) can be estimated by fitting the
exact probability amplitude

D [Jp]=—11.7805

for toi ——0.375 from Table I of Ref. 1. Using this
method, to(E) =+0.0171. Inserting these parame-
ters into (21)—(23), the scattering amplitude D[2]
from the modified equation (17) is determined.
These values are shown in Table I for various col.
Included also in the table are values' of D [Jp] tlie
exact amplitude using all discrete and continuous
states, and

D'[Jp] =D [Jp2],

the amplitude obtained from the length form when
only the 2p state is included in the "set" of inter-
mediate states. Errors in D[2) are less than 2%,
while errors in D [Jp2] are 10—50% except for the
three largest values of col. Clearly, the modified
equation (17) is much superior to the limiting E r
equation, even in the case where the entire set of
bound states n =2, 00, is used in the latter equa-
tion.

Extending the set of intermediate states beyond
2p expectedly gives better results. See Table II.
Not only do the percentage errors remain about an
order of magnitude less for the modified equation
compared with the limiting length form, but the
convergence is somewhat faster as additional states
3p, 4p, etc., are added.

If one starts the derivation with the A p gauge,
where F„' =1—F„and Fz ——1 —Fz, identical results
are obtained, as mentioned earlier. This is true even

though, because of the essential degeneracy of the
2s and 2p states, the 1s —2s probability amplitude
from the limiting velocity form using the 2p state
alone is identically zero for all col. In this case, all
contributions to the amplitude derive from the
Fz C„ terms.

CO lC02
Fsc =

1[1+co(E)—co)][—,+to(E)+to(]

where tp( ls) =—1, cp(2s) = —~,
cp(np) = —I/n, where n =2,3,... .

(23)

and

VII. OTHER AVERAGE-FREQUENCY
APPROXIMATIONS

In Sec. VI, it was found that the modified equa-
tion, which is independent of the gauge form used,
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TABLE I. Comparison of theoretical probability amplitudes for various ~] using only the
2p state as the "set" of intermediate states: D[2] is from the modified equation (17), and
D [J02] is from the limiting E r equation. Compared with these results are the exact theoreti-
cal results D [Jo] from Ref. 1. The percent errors relative to these exact results are given in
parentheses for both D [2] and D [J02].

0.3750
0.5250
0.6750
0.6875
0.7000
0.7125
0.7250
0.7375
0.7475

D [Jp]
—11.7805
—14.7319
—41.1484
—49.6878
—62.6595
—84.5252

—128.683
—262.165

—1334.33

D [2](%E)

—14.8339{0.69)
—41 ~ 8616( 1.73)
—50.5207( 1.68)
—63.6348(1.56)
—85.6713(1.36)

—130.037(1.05)
—263.772(0.61)

—1336.18(0.14)

D [J02](%E)

—17.8785(51.8)
—21.2839(44.5 )
—49.6624(20.7)
—58.5113(17.8)
—71.8331(14.6)
—94.0971(11.3 )

—138.712(7.79)
—272.722(4.03)

—1345.37(0.83)

'co(K) is set equal to + 0.0171. This causes D[2]=D[JO]=—11.7805 for co~=0.3750.

is a far better approximation of the true value of the
two-photon transition amplitude than either of the
two limiting forms —length or velocity —of these
equations. A great advantage of the modified equa-
tion is that, except for the choice of co(K), no addi-
tional matrix elements or parameters are required
beyond those ordinarily employed when using the
limiting forms, the calculation being an elementary
variation on these. Use of the modified equation
also eliminates the question, "which is the best
gauge to use for the problem at hand?" This is
equivalent to removal of an added parameter when

using the conventional equations.
In spite of these advantages, it probably has al-

ready struck the reader that the comparisons made
in Sec. VI are unfair. An equation containing an
adjustable average-frequency term was compared

with equations having no such "correction term. "
This criticism is partly justified. However, in
choosing an alternate average-frequency approxima-
tion, one must again confront the question of gauge.
If the chosen approximation violates the sum rule,
it must therefore depend on the gauge form used.
If this gauge form is a poor representation of the
calculation being performed, then the accuracy fac-
tor a of (20) takes on some unpredictable value far
removed from its acceptable limit, and errors can
arise. In problems using a very limited set of inter-
mediate states n, o. may not be very close to either
of its limits; neither the length nor velocity form is
a particularly good approximation to the problem
under consideration. Furthermore, the relative sign
of an arbitrary average-frequency correction term is
not always known, and additional information or

TABLE II. The values of D[n] using the modified equation (17). The maximum principle quantum number used in
the incomplete sum over states is n. For each n value, ~(E) has been adjusted in order to give the best fit;
D[n]=D[JO]= —11.7805 for r0~ ——0.3750. The percent errors (%%uoE[Jon]) in the last column are for the limiting E r
gauge and refer only to the photon energy co]——0.7000. These should be compared with (%E) for the modified equation
under the 0.7000 heading in the table; percent errors are larger for smaller co] and smaller for larger col. In general,
percent errors for the limiting E r form are more than an order of magnitude larger than for the modified equation.
Also compare with Table I, where the n =2 values are given.

D [n]
(%E

n =3
4
5
6
7
8

9
10

0.5250

—14.7735(0.28)
—14.7608(0.20)
—14.7561(0.16)
—14.7537(0.15)
—14.7524(0. 14)
—14.7515(0.13)
—14.7509(G. 13)
—14.7505(0.13)

0.6750

—41.3982(0.61)
—41.3137(0.40)
—41.2833(0.33 )
—41.2688(G.29)
—41.2605(0.27)
—41.2554(G. 26)
—41.2519(0.25 )
—41.2495{0.25)

0.7000

—62.9855{0.52)
—62.8721{0.34)
—62.8319(0.28)
—62.8128(G.2$)
—62.8020(0.23)
—62.7953(0.22)
—62.7908(0.21)
—62.7876(0.20)

0.7250

—129.111(0.33)
—128.957(0.21)
—128.904(0. 17)
—128.879{0.15)
—128.865(0. 14)
—128.856(G. 13)
—128.850(0. 13)
—128.846{0.13)

0.7475

—1334.88(0.04)
—1334.67(0.03)
—1334.60(0.02)
—1334.57(0.02)
—1334.55(0.02)
—1334.54(0.02)
—1334.53(0.02)
—1334.53(0.02)

co(E) %E[Jan]

0.126 6.44
0.174 4.78
0.198 4.14
0.212 3.83
0.221 3.64
0.227 3.52
0.232 3.45
0.235 3.39
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calculations are necessary in order to determine
this. In the modified equation, this question of sign
is automatically taken care of by the sum rule.

To illustrate some of these points, the Is-2s hy-

drogen transition will again be considered. An al-

ternate method suggested for comparison by one of
I

the referees of this paper is equivalent to making an
average-frequency approximation on the entire
F„C„part of the g„"term of (15), rather than on

the frequency factor E„alone, as was done in previ-
ous sections. After some rearrangement of terms
and invoking closure, one obtains in the length form

3QO (f
~
(e~ r)(e2 r) ~i &

D(L) = (I+Pt2)
2 co(L) co(i—) c02—

+(I+P12)g e1 &f Ir l~&(n lr Ii& e2
n cu n —co l —cop co L —co l —cop

This average-frequency approximation, though it approaches the exact result as co(L)~ oc, clearly violates the
sum rule (13) for an inexact set. It must therefore be dependent on the gauge form chosen. In the velocity
form, the equation is

ao (f
~

(e&.r)(ez. r)
~

i &

D( V) =— [co( V) co(f)—][co(V) —cu(i)](1+P)2)2' ic02 co( V) co(i )—coq—

+(I+P )g'e &f lrln&&nlrli& e [ — f ][ — ]
co(n) —co(i) —cop

[cu( V) —cu(f)][co( V) —cu(i)]
co( V) co(i ) —cop— (25)

The "best" average frequencies cu(L) and co(V) in

the two approximations are expected to be different.
Before utilizing (24) and (25) for the Is-2s transi-

tion, note that these equations contain matrix ele-
ments of (e&.r)(e2 r). Their use therefore requires
additional calculations or information beyond that
needed in the limiting length or velocity equations
or in the modified equation. For an atomic or
molecular many-electron system, the accurate
evaluation of such terms may be nontrivial, ' and

I

their presence is a distinct inconvenience. Another
disadvantage is that one does not know which equa-
tion, (24) or (25), is the best. The answer to this
question is not ordinarily known, and methods bare-

ly short of guess work must be used to make this
decision.

Table III shows the results of using (24) and (25)
for the 1s-2s transition in hydrogen. The matrix
element (2s

~

r
~

Is & has the value —2.9797.
Values of n have also been included in this table, in-

TABLE III. Two-photon probability amplitudes for the 1s-2s transition calculated from
the average-frequency approximations (24) and (25). These values and their percent errors
should be compared with those of Table I from the modified equation (17) obtained using
the same fitting procedure.

0.3750
0.5250
0.6750
0.6875
0.7000
0.7125
0.7250
0.7375
0.7475

D(L, 2){%E)

a
—14.7946(0.43 )
—41.6259( 1.16)
—50.2514(1.13)
—63.3271{1.07)
—85.3194(0.94)

—129.634(0.74)
—263.310{0.44)

—1335.66(0.10)

D ( V2)(%E)

—14.7566(0.17)
—41.2216(0.18)
—49.6776(0.02)
—62.4757(0.29)
—83.9680(0.66)

—127.214( 1.14)
—257.519(1.77)

—1302.17(2.41)

0.659
0.692
0.829
0.849
0.872
0.898
0.928
0.961
0.992

'co(L) is set equal to —0.1419 and co(V) to +0.0325 to match the correct value D[ ]Jo
= —11.7805 for co~

——0.3750.
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dicating the superiority of length-form calculations
over the range of frequencies considered. The best
average frequencies, obtained by fitting to the exact
amplitude at co~

——0.375 and assuming, as in Sec.
VI, that the set of intermediate states consists only
of the 2p state, are co(J- ) = —0.1419 and
ro( V) =+0.0325. The fit, being forced at
co] ——0.375, causes the percent error for the results
from all the equations to be abnormally small for
low cubi.

VIII. CONCLUSIONS

The results from (24) and (25), perhaps surpris-
ingly, are of similar accuracy for the hydrogen
problem even though the limiting length form is su-
perior for this problem (a near unity). However,
something is obviously going wrong with the
velocity-form equation as resonance is approached.
The modified equation (17) [or (18)] gives results
that have accuracy comparable to that of the clo-
sure forms. The central point of this paper, of
course, is not to improve hydrogen 1s-2s calcula-
tions, but rather to suggest a simpler, more con-
sistent, nevertheless accurate, method of performing
calculations of two-photon transition probabilities
on complex atoms and molecules. Et is expected
that when the best gauge form to use for a specific
problem is not known, or when the electronic corn-
plexity of the system leads to doubtful accuracy of
r or p matrix elements, the use of (17) would be
preferred over (24) or (25). For example, experi-
mental oscillator strength data can be used in (17)
without having to calculate or estimate these addi-
tional matrix elements.

As in all average-frequency approximations,
some intuition or knowledge must be used in the ap-
plication of (17). The value of ~(E) is not known a
priori, though intelligent guesses can sometimes be
made. In the H-atom problem, the 2p set led to an
co(E) just above the ionization limit. As further in-
termediate discrete states were added, co(E) ap-
proached 0.25. See Table II. These values do not
depend on gauge when using the modified equation.
There may be disadvantages associated with the fact
that the best average frequencies in equations like
(24) and (25) are different in the two gauge forms.
It must be remembered that the characterized set
has to be a reasonable representation for the prob-
lem being calculated. If it contains only states
whose eigenfunctions are poorly known or are oth-
erwise inappropriate, for example, intermediate d
states in the 1s-2s transition of hydrogen, useless re-
sults will be obtained. Questions concerning ap-

propriate states and the value of co(E) can some-
times be answered if a single experimental point (or
exactly known theoretical point) is available, as was
illustrated in the case of the ls-2s transition. Un-
fortunately, few theoretical papers have traditional-
ly reported partial two-photon amplitudes, only
squared amplitudes. It is therefore impossible to
use (17) to reinvestigate most existing literature
transition probabilities without a full reworking of
such computations.

Extension of the methods to more complex elec-
tronic systems is fairly straightforward. Take, for
example, the two-photon (e& ——co2) cross-section cal-
culations of nitrogen and oxygen recently reported
by Omidvar. The transitions in question involve
the promotion of an electron from the 2p orbital in
the ground state to 3p. Intermediate states are those
for which 2p~ns or 2p —+nd (n & 3). It is essential
to include both types when applying the modified
formalism. Taking only n =3 as the set, it is noted
from Omidvar's paper that the s and d promotions
enter X'„C„with the same sign for nitrogen but with
the opposite sign for oxygen. Estimating the value
of co(E) to lie 0.2598 above the ionization potential,
similar to the case for hydrogen, yields (units of ao)
cross sections for nitrogen 3.24 X 10 ("S),
6.94)&10 3( D); and for oxygen 2. 10)&10 ( Po),
6.31&&10 ( P2). Omidvar, using eight intermedi-
ate bound states (n =3—6) but omitting the contin-
uum, obtained cross sections that seemed to be con-
verging. These values were 3.49 &(10
5.07&10, 2. 18&10, and 8.41)&10, respec-
tively, for the above four transitions. The agree-
ment is sufficiently good to show that no serious
violation of the C„sum rule has occurred by omit-
ting the continuum. Nonetheless, looking at the hy-
drogen results, it is not valid to conclude that the
continuum contribution is negligible when apparent
convergence has occurred for the bound states.

In the resonance case, where co& or
co2=co(n) co(i), the —contributions from E„C„so
dominate those from the nonresonant terms FzC„
in (17) that it is immaterial whether one uses the
limiting length form or the modified form of the
equations. This is illustrated by the case where
m& ——0.7475 for the 1s-2s transition. Furthermore,
to deal with the resonance condition, damping
terms i I'(n) must —be incorporated in the denomi-
nators in the usual manner.
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