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F. T. Hioe
Department ofPhysics and Astronomy, Uniuersity ofRochester, Rochester, ¹toYork 14627

and Department ofPhysics, St. John Fisher College, Rochester, ¹mYork 14618
(Received 11 September 1981;revised manuscript received 12 April 1982)

A new exact result is presented on the lossless propagation of simultaneous different-

wavelength optical pulses through an atomic medium with general X energy levels in an ex-

tended A or V configuration.

I. INTRODUCTION

In this paper we report a new exact result in the
theory of coherent light propagation through a cer-
tain type of atomic absorbers having several con-
nected dipole transitions among their energy levels.

Coherent effects in many-level atomic systems
have received increasing attention in recent years,
and a number of exact analytic results concerning
special X-level systems have been given. ' We have
recently contributed a set of previously unexpected
conservation laws which apply to the dynamics of a
general X-level system. Those results all apply to
situations in which an atom or molecule is subjected
to steady laser excitation.

Also recently, Konopnicki, Drummond, and
Eberly have obtained new exact results ' in the
theory of lossless propagation of a number of simul-

taneous different-wavelength optical pulses through
an atomic medium with E energy levels in a cas-
cade configuration. These simultaneous solitons are
said to constitute a "pulse. " Our new result in this

paper also concerns the lossless propagation of
simultaneous different-wavelength optical pulses
through a general X-level atomic medium but with
the energy levels in an extended A or V configura-
tion. The two results are, as we shall see, different
and in a sense complement each other.

In order for pulse propagation to occur, it is true
not only that the pulses and the medium have to
satisfy certain conditions, but also that the medium
has to be initially prepared in a certain manner. It
is thus unlike self-induced transparency in a two-

level system. The fact that the simultaneous soli-

tary waves can have widely different wavelengths
also makes them distinct from pulse trains observed
after large-area pulse breakup in two-level systems.
A pulse is a true many-level phenomenon.

II. PROPAGATION OF OPTICAL PULSES
IN MANY-LEVEL ABSORBERS

We assume a plane-wave incident electric field
E(z, t) with E —1 distinct frequency components:

N —1

E(z, t)= g ej J-+, tt'J. J+,(z, t)
j=1

Z
)&exp —iv +1 t —— +c c

JsJ +

(2.1)

where
~ v~,1+ t ~

denotes the carrier frequency of the
jth component, e~ J+1 is its possibly complex polari-
zation vector, and 8's J+ ~(z, t) is its complex ampli-
tude, assumed to be a slowly varying function of z
and t in the usual sense. The frequencies

~ vj J+& ~

are chosen to be nearly resonant with the successive
transition frequencies ~coll+&

~

in a chain of N
dipole-connected energy levels in an atomic or
molecular system. In Fig. 1 we give an example of
a six-level system, showing the convention of num-
bering along the chain of dipole allowed transition

FIG. 1. Possible configurations of energy levels in an
atom. Lines connecting levels 1 and 2, 2 and 3, etc., indi-
cate the allowed dipole transitions (1~2) and (2~3), etc.
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and different possible configurations. The quanti-
ties v)J+1 and co)J+1 may be considered as being
given by

VjJ+1VJVJ+}
co ~1——co coj—~1 (E——j Ej~,—) lfi,

(2.2)

so that for increasing energies (E +1 ~ E ),
vj j+1(=—

I vjJ+1 I
) and coj j+1(=—

I tojj+1I ) are
negative quantities, and for decreasing energies

(Ejei &Ej)~ vj j+1( I vj,j+1 I
) and

toj j+1(= I cot j+1 I
) are positive quantities. This al-

lows the Bloch equations in the rotating-wave ap-
proximation to be expressed in a form independent
of the energy-level ordering.

%e shall express the Bloch equations for an X-

in which the components of s (t) are defined as fol-
lows.

The first , N(N——1) pairs of components of s (t)
are defined, as were done usually, by

~jk pjk+pkj ~

"jk = t (Pjk Pkj ) —~

(2.4a)

where j,k =1,2, . . . , X, k y j, and pJk are the
density-matrix elements in the rotating-wave ap-
proximation. The remaining (N —1) diagonal com-
ponents of s(t) are defined by

level atomic system in the rotating-wave approxi-
mation in terms of the time evolution of the

(N 1—)-dimensional generalized Bloch vector

(2.3)

2

j(j—1)

' 1/2

[P1 1 +P22+ +Pj —1j —1 (j 1)p;;]

2

j(j—1)

' 1/2

[w12+2w23+ . . +(j —1)wj 1 j], j=2,3, . . . , N (2.4b)

where m~k is the usual atomic inversion defined by

jk =pJJ —pkk ~

The generalized Bloch vector so defined has the desirable property that in the absence of decays, the "length"
of the vector is constant (of the motion): i.e.,

N —1

sj(t) =u12(t) + . - +wz(t) =const (of the motion) .
j=1

(2.5)

The equations of motion for the X —I components of the generalized Bloch vector in the rotating-wave ap-
proximation are

j,j +1= ~j,j +1VJj +1 +j +1,j +2VJj +2+ j —1,j "j —1,j +1 ~

jj+1 j jj +1 jj+1++j+1j+2 jj +2 +j—1J J —1 J g1

(2.6a)

+ 2(j+1)
j

1/2

Qj J y]N) g1— 2(j —1)

j
1/2

Qj j~1m),

and for k &j + I,

~jkVJ'k +k —1,kVj, k —1 +k, k p1V),k+1++) 1,)VJ 1 k++j j ~1V)+1,k ~

Vjk ~jk~jk+k —1,&~j,k —1+k, k+1&j,k+1 +j—1,j~j —1,k j j +l~j+1,k ~

(2.6b)
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and

wJ =— 2J

J —1
L

1/2 Q t, (z,t)=Cv, dJJ ] (ull+]),
])Z ]) Ct

j=1,2, . . . , N -1 (2.9)
1/2

+ 2(j —1)

J
+Ji + 1UJi +» (2.6c)

where variables with indices &1 or pN should be
set equal to zero. Here Ajk is the cumulative detun-

ing of the j—k transition and Ql J+, is (half of) the

appropriate Rabi frequency

~jk jk +jk ~

dJi +1~ii +1
Qj j+1——

(2.7a)

(2.7b)

where

COjk = E —EkJ U1+—
C

(2 8)

is the appropriate component of the dipole matrix
element.

The N 18loch equatio—ns (2.6) for the atomic
variables, combined with X —1 reduced Maxwell

equations

is the usual Doppler-shifted transition frequency be-
tween atomic levels j and k (of energies EJ, Ek) and

dJ &+]= &i I
d

I J+»t ~»+]

comprise a semiclassical description of N —1 elec-
tromagnetic pulses propagating in an atomic or
molecular medium with pulse lengths short relative
to atomic or molecular relaxation times. In Eq.
(2.9), C is given by

C =2ir~/Ac,

where ~ is the atomic density, and ( ) denotes
averaging over the Maxwellian velocity distribution
of atoms.

Our simultaneous solitary wave (pulse) solution
of the coupled Maxwell-Bloch equations (2.6) and
(2.9) in the case of the resonant input pulses is ob-
tained as follows.

We first pose the following question. In the
Bloch equations (2.6), if we set all the u(t)'s and
u(t)'s equal to zero for all t except the following set
of u's and u's:

uJJ+2(t), j=1,2, . . . , N —2

uJ. J.+](t), j=1,2, . . . , N —1

and if we also leave all the w(t)'s generally not
equal to zero, can the Bloch equations remain con-
sistent? The answer, as can be easily verified, is af-
firmative, and we obtain the following set of equa-
tions:

uj,j +2 +j+1j+2Uj,j +1+j, j +1UJ'+1,j +2 &

vj j +1—+j+1,j +2uj j +2 +j—1,j uj —1,j +1
' 1/2

2(j+1)+ J J+1Wj+1—

' 1/2
2(j —1)

J i i+1WJ

wi =
1/2 1/2

2j 2(j —1)

J —1 i —1i Vi —1i +
J

QJ J + 1UJ J + (2.10)

If we refer to p =k —j in ujk and VJk to be the order
of the coherences, our above consideration amounts
to restricting ourselves to finding a particular solu-

tion of the Bloch equations in which coherences of
order three or higher are zero at all times. Al-
though this eliminates a number of variables from
our consideration, it still leaves us with a large
number of independent variables to consider. %e
next confine ourselves to an even more special case
in which we postulate that the only independent

=aJ+]aJ. . . a2u]2(t),

wJ (t)=yl w ]2(t),

(2.11)

variables are u]2(t), u]s(t), and w2(t) and that the
remaining variables are dependent on them in a
rather simple way. That is, we postulate the follow-

ing solution:

uj +],j+2(t) Pj I +2(tu)]i

uj+] j+3(t) aj+]uj j ~2(t)
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where aj, Pz, and yz must of course be determined
in such a way that the Bloch equations are satisfied.

We have found that it is possible to have a solu-
tion of the form (2.11) if the pulses are related by

Qj j+](z t) ]yp Q]g(Z t)[j (N j}—l'"
(N —1)'I'

j=2,3, . . . , N (2.12)

which gives

1/2
(j+1)(N —j—1)
(j —1)(N —j—1)

(N 2j)[j(N —j)]
(N —2)(N —1)'i

(3N +2—4j)[2j(j—I)]'~~
6(N —2)

and hence

(2.13}

' 1/2j (N j)(j +—1)(N —j—1)
2(N —1)(N —2)

u. +](t)= U]z(t),
(N —2j)[j(N —j)]'~'

(N —2)(N —1)'

(3N+2 4j)[2j—(j —1)]]~

(2.14)

8

(N —1)(N —2)

' 1/2

12V12 ~

Pulses of the form (2.12) were first used by Cook
and Shore. It is easy to verify that Eqs. (2.12) and

(2.14) reduce the Bloch equations (2.10) into the fol-
lowing three coupled equations for the three in-

dependent variables u]3(t), U]z(t), and w]z(t):

I

requiring the remaining atomic variables to depend
on u13, v12, and w12 in a specific way given by Eq.
(2.14), and the pulses to be given by Eq. (2.12). It
should be emphasized, however, that the solution
remains truly N level, even though special.

It is seen from Eq. (2.15}that the time evolutions
of u]3(t) and w]q(t) are also related, namely, they
are proportional to each other save for a constant
term. Thus if we let

V12 =
' 1/2

2(N —2)
+12~ 13N —1 (2.15}

2(N —1)
9(N —2)

' 1/2

[u ]z(t)—w]z( —oo )]

+2012w12,

6
W12 +12V12 '

N —1

and

(2.16a)

2(N —1)'"
W]g(t) = [W]p(t) — W]p( —oo )],

We have thus reduced the Bloch equations for the
N-level case to a familiar form encountered in the
two-level case. This was done, as we have seen, by

I

Eqs. (2.15) reduce to the familiar form

(2.16b)

V 12

W12
4

(N —1)'"

(N —1)'"
W12

(2.17}

which can be readily solved.
We note from Eqs. (2.14) that if v]q is positive,

vJ J+1 is positive for j &N/2 but becomes negative
for j&N/2. We also note from Eq. (2.12} that

QJ J+1 is positive for all j =1,2, . . . , N —1. Thus

I

in order to be consistent when combining our Bloch
equation result with the reduced Maxwell equations
(2.9), we now need to assume an energy-level struc-
ture such that vJ J+1 changes sign when j ~ N/2 to
cancel out the effect of the sign change in v~ J+1
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when j & N/2. Thus we assume that N, the number
of energy levels, is an odd number (=2n+1,
n =1,2, . . . ) and that the level configuration is an
"extended" A and V configuration shown in Fig. 2,
which has n levels (excluding the top or the bottom
level) in the cascade configuration on each side.
The levels need not be evenly spaced, but the dipole
moments and the frequencies of the incident X —1

simultaneous pulses are assumed to satisfy the fol-
lowing conditions:

X —2j
1V —2 +j,j+ ldj,j +1 +12d12 ~

j=2,3, . . . , N —1. (2. 18)

Furthermore, the initial level populations are as-
sumed to satisfy the following relations:

X —2
.m~ J+~(0)=w~z(0),X—2j

j=2,3, . . . , N —1 (2. 19)

where w ~z(0) is assumed positive.

Assuming the energy-level configuration shown
in Fig. 2 for the atomic medium, and assuming that
the conditions (2.18) and (2.19) are satisfied, then
the existence of the pulse solution follows from Eqs.
(2.17) and (2.9). The set of N —1 simultaneous sol-
itary pulses, which can propagate through the E-
level medium without losses, is given from Eq.
(2.17) by

=4 tan ' exp
7

(2.21)

The evolutions of the atomic variables are given by

j= 1,2, . . . , N —1 (2.20)

where g=t —z/V, V is the velocity of the pulse,
and ~ is the pulse length. The "area" of the pulse is

t
&(z, r) =f, , Q»(z, t')Ch'-~ (N —1)'~'

r

U . .+,(g) = —~,z(0) sech tanh, j= 1,2, . . . , N —1
(N —2j)[j(N —j)]' 4—ko k —ko

J~j+ X—2 7

[j (N j)(j +1)(N——j—1)]' z 0—ko
(2.22)

(3N+2 —4j)[2j(j—1)]' , k —ko—1+—sech
2 , j=2,3, . . . ,S.

(N —1)N (N +1)(N +2)
90(N —2)

(2.23)

0
4

All other u's and U's are equal to zero. %e note that
we have nonzero two-photon coherences in this
solution. The square of the length of the general-
ized Bloch vector is

1V2 1

s(t)
I

= X sj (t) =Q)2+ ' ' ' +WN

I

which as we already mentioned is a constant of the
motion. There are X —1 other independent con-
stants of the motion. '

The pulse solution (2.20) —(2.22) for the special
N=3 case was first given by Konopnicki. For
completeness and easy comparison, we write here
also the N —1 pulse solution which Konopnicki,
Drummond, and Eberly recently found for an 1V-

level medium with the cascade level configuration
as shown in Fig. 3. First the conditions which must
be satisfied for the existence of their pulse solutions,
i.e., the analog of Eq. (2.18), are

2 2
VJ J + 1dJ J + 1

—v12d 12, j—2, 3, . . . , X—1

(2.24)

FIG. 2. "Extended A and V' configurations of energy
levels.

and the initial populations must satisfy

+( )0=~»( )0~ 0, j=2,3, . . . , N 1—
(2.25)

which is the analog of Eq. (2.19). When Eqs. (2.24)
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FIG. 3. "Cascade" configurations of energy levels.

The two pulse solutions Eqs. (2.18)—(2.25) and
Eqs. (2.24) —(2.29) given above illustrate the fact
that pulse propagation requires three conditions:
The N —1 pulses must be simultaneous; the absorb-
ing medium must be, in general, partially excited
out of its ground state in accordance with appropri-
ate initial conditions; and the pulse amplitudes and
the dipole moments of the atomic medium must
satisfy appropriate relations.

We have seen that in obtaining the above pulse
solutions, the initial conditions play an important
role. In the Appendix, we discuss a special type of
symmetry consideration which enables us to predict
the symmetry properties of the solutions.

and (2.25) are satisfied, their pulses are given by

(~) [j(N —j)]' '
h

k —ko

and the "area" is

j=1,2, . . . , N —1 (2.26)

e(z, t)= I&z Q&2(z, t')dt'-~ (N 1)'~'—
0—ko=4tan ' exp

7
(2.27)

The evolutions of the atomic variables are given by

U;,;+i(k) =—~ iz(0»[i(N —i)]'"
k —ko 0—ko

X sech tanh
7 7

j =1,2, . . . , N —1

toj(g) = —m, 2(0) [2j(j—1)l'"
2

, 4—
ko—1+2sech

X2—1

~
s(t)

~

= g $J(t) =u]p+ . +w/

, N(N 1)w~2(0) —. (2.2—9)

j=2,3, . . . , N . (2.28)

All other u's and all the u's are zero. In contrast to
Eqs. (2.22), there is no nonzero two-photon coher-
ence in this case. We find that the square of the
length of the generalized Bloch vector for this case
1s

III. SUMMARY

The principal new result in this paper is the ana-
lytic solution (2.18)—(2.23) for N —1 simultaneous
solitary waves propagating through an N-level
atomic medium, which has an extended A or V
energy-level configuration as shown in Fig. 2 under
the on-resonance condition. We have included, for
completeness, the other analytic pulse solution
(2.24) —(2.29) for the case when the N energy levels
of the atomic medium have a cascade configuration
as shown in Fig. 3, which was found earlier by
Konopnicki, Drummond, and Eberly. In both
cases, we have seen that pulse propagation requires
several conditions: the N —1 pulse amplitudes, fre-
quencies, and the dipole moments of the atomic
medium must satisfy appropriate relations; the
N —1 pulse must be simultaneous or nearly so; and
the populations of the energy levels of the atomic
medium must satisfy certain conditions.

Instead of thinking that the conditions for pulse
propagation are difficult to satisfy, one may think
in terms of how to use these conditions to control
the propagations of laser light pulses, for we now
know the optimum conditions for the light pulses to
propagate through the medium without losses. This
appears to open new possibilities to study ways in
which light can be used to control light. The "light
switch" would consist of a set of coherent pulses
which, when turned on, would prepare the level po-
pulations of the atomic medium in appropriate pro-
portions [so to satisfy Eqs. (2.18) or (2.25), for ex-

ample], and the propagating pulses would consist of
a set of simultaneous pulses of the appropriate form
and frequencies [e.g., of the form (2.20) or (2.26)
and frequencies given by (2.18) or (2.24)]. The use
of such light switch may provide an exceedingly ra-



1472 F.T. HIOE

pid response mechanism which could have Inany
useful applications.

where 0 denotes the generally time-dependent Rabi
frequency and 6 the detuning. If initially at t =0
we have
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APPENDIX: SYMMETRIES OF
BLOCH EQUATION SOLUTIONS

UNDER SPECIAL INITIAL CONDITIONS

Suppose the laser-induced N-level atomic system

(or any level configuration) has the following "re-
flection" symmetry:

+j,j +1 ~N —j,N —j+1 ~

~j,j +k ~N —j—k+1,N —j +1~

j,k =1,2, ... (Al)

Qjj ik(t)=+ON j k~l N j~l(t) i

Vj j+k(t)=+VN j k+1 N j+l(t) ~

Nj j+l(t) +lVN j,N ——j+1(t) ~

(A2)

then (A2) remains true for all later time t (where the
upper and lower signs refer to two separate condi-
tions).

Conversely, we can make the two separate substi-
tutions given by (A2) into the Bloch equations (2.6)
and thereby reduce the N —1 coupled Bloch equa-
tions into two reduced sets of equations with
—,(jlj' —1) equations each if X is an odd number, or
if N is an even number, into two reduced sets with

1

—,N —1 and —,N equations each. The two substi-
tutions can be shown to be associated with the sym-
metric and antisymmetric representations of the S2
symmetric group. We note that solutions (2.22) and
(2.28) are special classes of solutions which exhibit
the respective symmetries given by (A2).

The substitutions (A2) under the special condi-
tions (Al) reduce the number of Bloch equations to
be considered in half. This is a considerable simpli-
fication especially when N is not too large.
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