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Atomic collisions in the presence of laser radiation:
Time dependence and the asymptotic wave function
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A time-dependent, wave-packet description of atomic collisions in the presence of laser
radiation is extracted from the more conventional time-independent, stationary-state
description. This approach resolves certain difficulties of interpretation in the time-

independent approach which arise in the case of asymptotic near resonance. In the two-

state model investigated, the approach predicts the existence of three spherically scattered
waves in this asymptotically near-resonant case.

I. INTRODUCTION

The problem of particles colliding in the pres-
ence of radiation is one that has received much at-
tention in recent years. ' Generally speaking, the
subject has been divided into two regions according
to the degree of asymptotic resonance. If, asymp-
totically, the system is nearly resonant with the in-

cident radiation, the detailed dynamics of the colli-
sion are probably not of supreme importance, and
a semiclassical trajectory-based approach can be
used to treat the problem. On the other hand,
if the system is far off resonance asymptotically,
the collision dynamics play the vital role of bring-

ing the system into a nuclear configuration in

which photons can be absorbed or emitted, so that
a quantum-mechanical treatment of the collision
dynamics ' would be more appropriate, if not
essential, for an accurate treatment of the problem.
We have previously described such a quantum-
mechanical approach, using a time-independent
formalism in which molecular and radiative de-

grees of freedom are treated on an equal footing.
In the case of asymptotic far off resonance, or in a
situation where the radiative coupling vanishes

asymptotically, the approach is relatively straight-
forward. Certain difficulties of interpretation ar-

ise, however, if the system is nearly resonant

asymptotically and the radiative coupling does not
vanish. In this situation, boundary conditions can
only be applied to the "dressed" states (that is,
states which diagonalize the total Hamiltonian). If

these states are observable, by fluorescence during
the collision event, for example, then there would
be no difficulty. However, if the fluorescence life-
time is much longer than the duration of the radia-
tion, or if the collision partners themselves are
detected, the physical system will not be in the ra
diation field when it is observed. Thus it is the
"bare" states which are important. We must then
transform between the dressed state time-indepen-
dent formulation to the bare state time-independent
formulation. The "Rabi flopping" of the system is
a natural consequence of this transformation.

II. THEORY

In the interest of clarity, we will restrict the in-
vestigation to a system of two atoms colliding in
the presence of a linearly polarized single mode
monochromatic radiation field, and interacting
with the field via the electric-dipole interaction,
and presume that only two electronically adiabatic
states Pi and Pz are of interest. (ActualIy, we will
only require that P& and P2 be eigenfunctions in the
asymptotic region. However, if Pi and $2 are cou-
pled by the electric dipole, they must be of dif-
ferent parity and hence are not electronically cou-
pled at all. ) The total Hamiltonian for the system
is then

H=T+V,
V =Hp+H„d+H',
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where T is the nuclear kinetic-energy operator, Ho
is the clamped-nuclei Hamiltonian for the system
in the absence of radiation (with eigenfunctions QI,
)I)q), H„d (with eigenfunctions

~

n ) ) describes the
pure radiation field, and K' is the interaction be-
tween the matter and the fidd, which can be taken
to be
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An appropriate basis for V is then I)t);
~

n ) I; de-

pending upon the shapes of the potential curves, it
is sometimes possible to truncate the basis to only
two states. %e will assume such a case, as depict-
ed in Fig. 1(a), and truncate the basis to include
only the states P; n ) and 42

~

n —1). [Note that
in other cases, as depicted in Fig. 1(b), such a trun-
cation would be clearly erroneous. "]

The relevant matrix elements in this basis are
then

(p;n
~
Ho

~

p&n') =515„„E;(R),

((();n
~
H„d

~
Pj.n') =5;J5„„nkco,

and the coupling term can be denoted ey(R)/2,
where y(R) is the dipole momentum (see the Ap-
pendix). The potential matrix can then be written,
after redefining the zero of energy, as

E, (R)+fun

V(R) = ey(R)
2

E2(R)

Unless y(R)~0 asymptotically, V(R = ao ) will not
be diagonal. But such a diagonal form is necessary

J

FIG. 1. (a) Electronic state ))) i coupled to state )))2

through absorption of a photon —two states are suffi-
cient to describe the system. (b) State )I) i coupled to (()2

by either absorption or emission —three states, P) ~

n ),
P2 ~

n —1 ), and )I)2
~

n + 1), are required to describe the
system.

in order to apply the appropriate scattering boun-
dary conditions. %e must therefore make a
change to the basis X; such that V(R = ae ) ex-
pressed in the g; basis is diagonal (with diagonal
matrix elements g';); that is, to diagonalize
V(R = N) ). We shall denote the matrix which di-
agonalizes V(R) by I . However, we only require
that V be diagonal asymptotically, so only the con-
stant matrix I " is of interest to us. The X; basis
is then given by

(6)

where the I " matrix is explicitly given in the Ap-
pendix, Eq. (A6).

In terms of the X~ basis, the time-independent
scattering problem can be solved, with the asymp-
totic form of the wave function given by

ik R

)I()(k;) ~
3 Xe ' +g f~(kJR, k;)XJ.

which describes particles initially in the g; state
colliding with wave vector k; and being scattered
with amplitude jj, into the states XJ with final
wave vector kJR. (Note that important questions
regarding the orientations of E with respect to the
collision axis, the angular momentum transferred
to the molecular system by the emission or absorp-
tion of a photon, etc., are "buried" in the ampli-
tudes fJ„and will not be addressed here. ) Transi-
tion probabilities and cross sections are then deter-
mined from the square of these amplitudes.

If the system is far from asymptotic resonance,
or if y(R) vanishes at infinity, that is, if

[Ei( N& )+Res E2( m )]»ey( m)—,

I

then I " is really the identity matrix, and

(8)

We can then say, for example, that
~ f2i ~

is the
probability of making a transition from pi ~

n ) to
)l)2

~

n —1), i.e., starting in the electronic state (() I

and absorbing a photon during the course of the
collision. This is the regime in which the quan-
tum-mechanical approach has been applied. If we
wish to extend the use of this method to the nearly
resonant situation, an immediate. difficulty arises:
I " is no longer the identity matrix, so that the g;
are not given by the simple relations of Eq. (8), but
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by the general relations of Eq. (6). While
~ fbi

can still be computed, it can no longer be interpret-
ed as a probability for making a transition from

Pi ~

n ) to P2 ~

n —1). It is important to stress,
however, that the near resonance does not destroy
the validity of the tine-independent Schrodinger-
picture quantum-mechanical approach, although it
does invalidate the simple interpretation of

~
f2, ~

given above.
The essence of the problem is that in many in-

stances we are not interested in the stationary-state
solutions, such as Eq. (7) and involving the
stationary-state eigenvectors 7;, but rather in the
states Pi ~

n ) and Pz ~

n —1). This will be the case
whenever the measurement process occurs with the
system not in the laser field, i.e., if we are detect-
ing the atoms themselves (since the detection ap-
paratus will not be in the laser beam), or if we ob-
serve fluorescence at some time when the laser
field is off. However, an arbitrary state of the sys-
tem can always be obtained as a linear combination
of such stationary states, with the appropriate ex-
ponential time dependence. The description of any
particular state is thus obtained by selecting the ap-
propriate (time-independent) coefficients of the
linear combination, i.e., by choosing the appropri-

ate initial conditions. (In the Appendix, this ap-
proach is used to solve the usual two-state Rabi
problem —the approach we develop here is very
similar. )

The initial conditions we choose are the follow-
ing: at some time t =0 the system is in the
electronic-radiative state Pi ~

n ); the atoms are lo-
calized in space and separated by a distance Ro,
which is sufficiently large as to be in the asymptot-
ic region; and the atoms are moving towards one
another with wave vector k. (That is, the nuclear
motion will be described by wave packets. '

) The
general wave function can be written as

%(t)=pc; Jdk@(k)+;(k)e

where cok ——k /2p; the c; are chosen to make the
electronic-radiative states satisfy the initial condi-
tions, and the function 4( k ), which is peaked near

ko, is chosen so as to localize the particles; that is,

dk C&(k)
'"'"=8(R), (10)

(2~)'"
where 8(R) is localized in the vicinity of R=Rp.
Using the results of the Appendix to specify the c;,
we obtain

%(t)= „,gi i"; X,e
1

i ., R

Jdk@(k)e'"'"e " + QXJe ' J dk C&(k)fj, (qJ, R, k)
J

where we have defined
' 1/2

q, , =k k'+'"(g, —g, )

Let us examine the first integral and expand cok

about cok using the identity
0

(12)

dk 4(k)e'"' e(2~)'"

&
k.(R —Vk &)

=e ' Jdk 4(k)e

+

cok =cok +(k —kp)'vk + (k —kp)
0 2p

where

(13)

fi-
vk = ko,0 p

is the group velocity of the wave packet. We as-

sume that 4( k ) is sufficiently peaked about kp to
make the last term of Eq. (13) of negligible impor-

tance [e.g., when (k —kp) is large enough to be

significant, 4(k) is vanishingly smallj. The first
integral then becomes

I COk

=e '8(R —v„ t),
0

a wave packet unchanged in shape but displaced a
distance vk t from its original position. The

0

second integral is more difficult. First, we will as-
sume that the fj, (qJ, R, k) are slowly varying func-
tions in the vicinity of ko, so that they can be tak-
en outside the integral. We are left with the in-

tegral

J dk 4(k) e
(2~)

(16)

We would like to change the variable of integration
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from k to qj, , but the relationship between the two
variables is nonlinear. We thus define a new func-
tion (T)(qj;) by requiring

d k 4(k)=d qj;-@(qj;.)

sT) will be peaked in the vicinity of q j, , but the
shape of the function will be altered from that of
4. %e now replace q~;R by qJ;"qJ;.R, and approxi-
mate to&. in a manner similar to the treatment of

q&;

cok in Eq. (13), so that the integral becomes

~ 0lN ~ -+ ~D -+
eji i q ),-.{q;8—v Dt)

(2n. )
Id q j,.4( q j& )e

The remaining integral is in essentially the same
form as Eq. (10). We thus evaluate the integral as

Bj,(qj;R —v ()t), a wave packet similar to 8, but

altered in shape. (Note that if i =j, (I) is the same
as 4, and 6 is the same as 8. Thus for elastic
scattering, the wave packet is not distorted. ) The
wave function of Eq. (11) is thus written as

q'(t)=+I )";X;8(R—vk t)e
—i(e'i/h —a)k )t' +Q Xjfj,.(qj,R, k0)

J

~08ji ( pJgR —v pt) j( g —/A' —cg )tq.. i 0
Jl

R
(19)

a,„,(t) =(it),n —1
I
)Ij(t))=g r,",.r,",.8(R—v, ,t)e

To find the amplitude for being in the state ()))2
I
n —1 ), we simply project )Ij(t) onto this state,

—i{S' /A —rok )ti 0

~08,;(q,;R vpt) —(e,/„„p „+++I )";12".f;(q;R, k )
' e

R
(20)

where we have used the fact that I 2j ——($2n —1
I Xj ). Realizing that 822 ——Bi)——8, using the explicit forms

for I'", and rearranging terms, we write Eq. (20) as

—i{E&+Aco+E2/4 kD/2P)f

&( i —sin(Qt/2)8(R —vkpt)
. ye/fi .

0
8(k()R vk, t)—

+ g ( I Y I'e i sgn(5)Q—&/2f (k R k ) eisgn(5)Q~/2f (k R k )]
R

+ I~+
I
()

I e3isgn(5)Qt/2f (
0 R

82i(q2iR —v,' t)

2Q 21 q21 ~ 0 R

('Ye/~) —3i sgn(5)Qt/2 0 R
2 8)2(q)2R —vq t

(0+
I

&
I
)'+(ye/i)2')' R

(21)

The projection of )Ij(t) onto ()I)2
I
n —1) has 4

terms: the first term corresponds to the nonscat-
tered plane wave; the square of the coefficient is
exactly the Rabi probability. That is, this term in-

dicates that two unscattered particles will change
their states in exactly the same way as a two-level

system in the presence of radiation. This is a to-
tally expected result, of course, but demonstrates

the completeness of the present treatment. The
second term represents "elastic" scattering. If
f)i ——f22, then this term would also give rise to a
Rabi flopping. In general, however, f»+f22, and

the time dependence of this term will be more
complicated. We note that, in both of these terms,
the kinetic energy is unchanged. The next two
terms represent "inelastic" scattering, and (when

squared) do not exhibit any flopping behavior.
These terms represent the transfer of energy be-

tween radiative and nuclear degrees of freedom,
during the course of the collision; one term
represents a gain of kinetic energy, the other a loss.
After the collision has occurred (which is the only
time the fj have any meaning), the only coupling
is between the electronic and radiative states, not
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the nuclear states. Thus, there is no coupling be-
tween these states, and hence no flopping between
them.

It is of some interest to examine the coefficients
of these terms, to determine their relative impor-
tance. We define the coefficients as

ye/fi
C) ——C2 ——

0
Q+ /5[

20
(ye/fi)

(&+ )
5

~

)'+(ye/&)'

and plot C, in Fig. 2, as a function of detuning (in
units of ye/fi). For exact resonance, C3 —C4 so
that the inelastic terms are of equal importance,
but as 5 increases C& rapidly goes to zero while C&

goes to unity. The coefficient of the first two
terms also goes to zero with increasing detuning.
Thus, at exact resonance, all four terms contribute;
but as the detuning is increased, only one term will
contribute, and that term is associated with inelas-
tic scattering from Xi to X2. But in this limit,
Xi-Pi

~

n ) and Xi—$2 ~

n 1 ), so that we recover
the "obvious" result in the far off-resonant case.

III. CONCLUSION

In this paper, we have demonstrated how the
time dependence associated with the problem of
atoins colliding in the presence of radiation can be
extracted from a time-independent treatment of the
scattering problem. In general, there are four
terms in the asymptotic expression for the wave
function: two exhibit a Rabi-like flopping and are

0.0
0 i 2 3 0 5 6 ") 8 9 10

.S
FIG. 2. Square of the coefficients which appear in

the asymptotic wave function as a function of detuning
5.

associated with the nonscattered plane wave and
the elastically scattered spherical wave; and two
terms represent nonflopping inelastic spherically
scattered waves. For detuning much larger than
the radiative coupling between the asymptotic elec-
tronic states, all but one term vanishes, and that
term is associated with the "usual" inelastic pro-
cess. Noting that the coupling is usually quite
small, typically on the order of 1 cm ' in a radia-
tion field of 1 MW/cm intensity, the detuning
need only be on the order of 10 cm ' for this to
occur. For detunings larger than this, the usual
time-independent approach is satisfactory, but for
smaller detunings, a time-dependent analysis, such
as presented in this paper, becomes necessary.
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APPENDIX

H =Hp+H„d+H', (Al)

The problem of a two-level atom in the presence
of radiation is usually treated in either the interac-
tion or Heisenberg representation' '; in either, the
mathematical aspect of the problem is the solution
of a coupled set of first-order differential equations
in time. However, the problem can also be treated
in the Schrodinger representation, in which the
mathematical aspect reduces to the diagonalization
of a Hamiltonian matrix; time dependence is then
introduced by an appropriate choice of the initial
conditions of the system. These two approaches
are of course equivalent; but the Schrodinger pic-
ture approach is most appropriate for the generali-
zation of the problem to include collisional pro-
cesses.

The Hamiltonian for the system can be written
as
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where Ho describes the system in the absence of
radiation, H„d describes the pure radiation field,
and H' describes the interaction between them. HQ
has two eigenfunctions, and eigenvalues, denoted

by P; and E;, respectively; H«d is assumed to be a
monochromatic single-mode field described by the
number state ket

~

n ); and H' is assumed to be
dominated by the electric-dipole interaction, which
we can write as

E2)Ei. The states of interest are then Pi ~

n ) and

P2 ~

n —1). Denoting the dipole moment by y, the
coupling terms can then be written as ey/2, where
e/2= 2—abc's. n/v and where we have ignored the
contribution from spontaneous emission. The ma-
trix representation of the total Hamiltonian is then

Ei+nRm
2

(A4)

2
E,+(n —1)r

where E is (in Gaussian units)

(A3)

Actually, nothing is changed if we redefine the
zero of energy, which we now do, so that H is
written as

which is linearly polarized in the e direction, and
where a and a are the usual creation and annihila-
tion operators. The basis for the total system is
taken to be IP; ~

n ) I. This basis is infinite, but is
truncated to include only two states for which
E~+nkco=E2+n'fm; this truncation is the
Schrodinger-picture analog of making the
rotating-wave approximation to be specific, take

E +fico

2

(AS}

We now wish to find the eigenvalues 8'; and eigen-
vectors X; of this matrix. The diagonalizing ma-
trix is easily found to be

—i/2 II+
I
5

I

—sgn(5} Ef
fi

sgn(5) Q+ /5/

where

5=(Ei+fico E2)/A, — (A7) By reference to the diagonalizing matrix, we have
that

' 2 1/2

The eigenvalues are then

8'~,
~

——1/2[E, +fico+E2+ sgn(5)AQ] .

(A8)

(A9)

so cj =I ~J, and

(Al 1}

(A12)

(A10)

where the c's are constant. We wish to choose the
c's such that

We have thus found the stationary-state solutions
to the problem. However, our interest is not in the
stationary states, but rather the evolution of the
system in time, subject to the initial condition that
at t =0 the system is in the state Pi ~

n ), for exam-
ple. That is, an arbitrary state of the system can
be written as

%(t)=g c)XJe
1

The (time-dependent) amplitude for being in the

Pq ~

n —1) state is then simply the projection of
%(t) onto this state:

a2 „ i(t)—:(Pzn —1
~

'Plt))

= +I i) ($2n —1
~ X) )e

J
—f e' t/fi=g r;) I 2je

J
(A13)

Using the expressions for I,J. and O'J-, the probabil-
ity of being in the state Pq ~

n —1) is simply
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2
2(nt y2)

(A 14)2n —1 a2n —1 2g (f1~ )2

which is, of course, identical to the result obtained
via the interaction or Heisenberg pictures.
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