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Electron-ion collisions at medium energies.
I. L basis and resonance averaging
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Treatment of the continuum spectrum of a scattering system by a discrete set of pseu-
dostates generated by the diagonalization of the Hamiltonian in square-integrable basis
functions results in spurious resonances. An energy-averaging procedure is formulated
using the Stieltjes mean values for the spectral density. The connection between this I.~

basis approach to scattering problems and the stabilization method is discussed, and an
improved form of the latter is derived.

I. INTRODUCTION

Electron scattering from atomic and ionic tar-
gets at intermediate energies is of current interest,
not only because of its formal theoretical impor-
tance but also for applications to plasma and astro-
physical research. In spite of much effort in the
past, however, no single reliable theoretical pro-
cedure is yet available. ' Difficulties at medium en-

ergies are manifold: (i) There are too many inelas-
tic open channels to be taken into acount by any of
the conventional low-energy approaches. (ii) The
energy dependence of the scattering amplitude is a
result of many resonances and threshold complica-
tions. (iii) The scattering energy is not high
enough so that the long-range nature of the in-
teraction and the exchange effect are negligible.
Thus, attempts to extend both the low- and high-
energy approaches to the medium-energy region
have been only partially successful. Unlike the
low-energy case, the lack of reliable and realistic
model solutions to which various approximations
can be compared makes it even more difficult to
develop a theory in a systematic way.

During the scattering of electrons by atomic tar-

gets, many inelastic and exchange channels can
couple, thus often seriously affecting the scattering
amplitude. ' This effect is conveniently approxi-
mated by including a set of square-integrable func-
tions into the trial scattering function in a varia-
tional or a coupled-channel calculation. Of partic-
ular interest here are the Stieltjes-Tchebycheff mo-
ment method (STMM) developed recently and the
stabilization method (SM); both these methods
employ the L basis set to represent the scattering
function in the interaction region A' but, apparent-
ly, the ways in which scattering information is ex-

tracted from the basis set are quite different.
After a brief discussion of the STMM in Sec. II,
we clarify the relationship between the two
methods in Sec. III and present an improved form
of the SM.

Optical potentials for low- and medium-energy
scattering are also often constructed using an L
basis, with each of the basis states carrying a prop-
erly weighted transition strength describing the
neighboring continuum states. When the basis set
contains some of the open-channel components at a
given energy, the optical potential thus constructed
will exhibit spurious resonances. The question of
energy averaging these unphysical resonances will
be discussed in Sec. IV. Our main results are con-
tained in (3.4) which connects the STMM and SM,
in (3.13) for the generalization of the SM, and in
(4.11) for the smoothed R-matrix elements. Equa-
tion (4.12) is an operator version of (4.11). A com-
parison of the STMM with the closure approxima-
tion to the resonance spectrum is given in the Ap-
pendix.

In the present paper, we consider the extension
of the low-energy coupled-channel method to
medium-energy scattering. For an alternate at-
tempt to modify the high-energy approaches for
medium-energy problems, we refer to Ref. 1.

II. SQUARE-INTEGRABLE BASIS AND STMM

Scattering of electrons by ionic targets is con-
veniently described by the reactance amplitude de-
fined by

(2 1)

where we have neglected the exchange effect for
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simplicity, and where

(Hp E—)4gf =0, Hp H———V,

(H —E)%';f=0, (2.28)

I X„j may be sensibly carried out only for a quan-
tity which involves a sum over I X„j. For this
purpose, define a distribution

B0

that is,
dF(E)= g fb5(Eb E)+g(E) dE, (2 7)

4;f——4; f+Gp V%;f
=4;f+GV4;f . (2.2b)

where Bo is the total number of bound states of H
(which could be infinite),

In (2.2a) and (2.2b), we have taken the standing-
wave boundary conditions so that Go and G in-

volve the principal-value integrations over the ener-

gy variable. Asymptotically, all functions should
be Coulombic for ionic targets.

The short-range behavior of 4 and G is of
course difficult to evaluate, and the STMM em-

ploys an L basis set I X„j for this purpose. It is

generated by a diagonalization of the energy and
normalization matrices

and

fb= I &Yf IXb& I',
(H Eb)X—b ——0 (Eb &0)

(H E)XE——0 (E )0)

g(E}= «g(E) =
I & Yf I

XE) I

df (E) 2

dE

(2.8)

(2.9)

(X„IH IX )=E„5„ (2.3)
The corresponding distribution defined on the set

I X„j is

Noting that X; with E; =E will be similar to VE
in the region A' where V is appreciable, we may
set

dF(E)= g f„5(E„E)dE,—
n=1

(2.10)

%E =X,./N, , (2 4)
where

where N; is a suitably chosen normalization con-
stant, to be discussed more fully below. Apparent-

ly, the determination of N; is not trivial and the
STMM provides a prescription for N; without ever
evaluating the continuum functions. Once N; is
known, then (2.1) can be expressed as

Rf —(Yf IX';)IN;, Yf=VCf (2.5)

Since the set IX; j for n =1,2, . . . , N approximate-

ly spans the full spectrum of H, we have in the re-

gion A',

(2.10')

Integration of dI' and dF gives

E 0

F(E)= f dF(E')= g fb(Eb)+ f g(E')dE',
b=l

(2.11)

where E,h is the threshold energy for the continu-
um spectrum of H, and

%(E)
F(E)= g f„(E„),

n=1

n=l
(2.6a)

with

E„&E for n &N(E) .

(2.12)

which is to be compared with the exact closure re-
lationship

80

g I Xb ) (Xb
I
+ f I

XE & &XE
I
P(E')dE'

b=l

=5(r —r ') . (2.6b}

Note that, although
I
X„) at a single E is not

correctly normalized, the sum (2.6a) is still a good
approximation to (2.6b) and will approach (2.6b) in
the limit N~ ao. Therefore, the smoothing of

Evidently, F(E) is a reasonably smooth histogram
which can be compared with F(E), while dF is
quite distinct from dF. F can now be used to gen-
erate g(E}, an approximation to g (E)=dF IdE, by
taking the Stieltjes mean values, as

dd" 1 fn+i+fng(E)—= =—,E„&E&E,+~ .
bE 2 E„+1—E„

(2.13)

Thus, the correct spectral density g (E) is approxi-
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mated by g(E) without ever introducing the contin-
uum function %E. Combining (2.9), (2.10') and
(2.13), we have

and with (2.10a)

I'= I~IE E, (3.5)

(E )
'1/2

f;(E;)
I+(f;+i If; )

2(E;+) E;)—

(2.14)

Note that, in the limit when the number of terms
X in the set IX„I gets very large, E„~~ E„a—p-
proaches zero while (ft+~ +f;)l2~f;, so that
eventually X;—+0. However, in the definition of R
given by (2.5), the integral involving X; will also
approach zero in this limit X~ oo, thus resulting
in an indefinite form for the reactance parameter
R. This situation is similar to that encountered in
the stabilization method to be described in the next
section. In fact, f; also goes to zero as N~ ao,
but the ratio (f;IN~ ) will approach a definite value
g', as shown by Langhoff.

N N

Af= pa„X„and Sf-g b„X„. (3.6)

Then, as 1V —+~,

M=(X; lH E
l

P'f—)
l E =0,

~=(x, lH E
l ~f)—l;=o,

(3.7)

As expected, the normalization constant X; indeed
is related to the asymptotic boundary condition.
This establishes the connection between the SM
and STMM of Sec. II, which in turn suggests that
the instability of the SM may also be present in
the STMM. Consider the behavior of M and A
for large X. Since the short-range behavior of Wf
and Ãf are chosen arbitrarily, we may set, in the
region A',

III. STABILIZATION METHOD

The set tX„ I generated in (2.3) contains a great
deal of dynamical information of the interaction
region A, but very little of the asymptotic boun-
dary conditions. The stabilization method (SM)
extracts the scattering information by projecting
X„onto a particular channel of interest. Thus, the
scattering function is written in a form

which is the origin of instability in the SM.
and M~ are in turn related to f; and X; so that we
expect ' a similar instability to appear in the
STMM.

An obvious improvement of the SM and STMM
may be to expand M in a Taylor series around E;,
as

.N(E) =M(E; )+(E E;)—
dE g.

N

%f=%f, P'f+R, @f+——g c„X„.
n=1

(3.1) (3.8)

In (3.1), both P'f and Sf satisfy the boundary
conditions at the origin and asymptotically behave
like Coulombic regular and irregular functions.
The short-range behavior of /f and Ãf in the in-
teraction region A~ is chosen completely arbitrarily
(but of an explicit form). Then, for E=E;, we
may require that

(x, lH E le, )=0, —

which immediately reduces to

(3.2)

(X~
l
H E le ) w(E~ )'

(3.3)
(X; lH E;

l ef) ~(—E;)

Comparing (3.3) with (2.5) by setting 4f P f we-
have

where

dE I,
= —(X; lP'f) lE+ Xi H E—

t

(3.9)

and simi1arly for A'. From a practical point of
view, it is important to know when the leading
terms in the expansion of M and A are sufficient-
ly small compared with the terms proportional to
(E E;) When M—(E; ).and 3P(E;) are very small,
however, it is possible to adjust the parameters in

Af and 4'f such that these terms are idenically
zero. [As an alternative, we can increase E in
(3.1), which then results in shifts in E; and X~ such
that M and A no longer vanish. ] Then, with

N~
———(X, lH E

l
Kf) lE= %(E)lE—, —

(3A)

M(E;)=0=%(E;),
we have

(3.10)
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R, =—
dW
dE

dA
(3.11)

where

G, =gix„) (x„~, (4 3)

(Xi
i
5 f ) —0—(x'

i xf )

Then c; '=N; from (2.4), and

(3.12)

dE E,

In (3.11), we explicitly retained the c; coming from
the last sum in (3.1) as this term can be quite im-

portant. However, (3.11) can be further simplified

by requiring that

R=R +R,
where

(4.4)

is a variational approximation to the exact
6~= [Q(E —H)Q] '. Here and in (4.1), we sim-

ply assume that X„are in the Q space orthogonal
to P. Obviously, 6, will have singularities at
E=E„,some of which give rise to true physical
resonances, while others are spurious if the Q space
contains open channels. We write the exact reac-
tance matrix as

R, =—
(x, H —z ');

(3.13) E'= (pe'i —v
i
pe),

z~=(pe'i VG~V
~

pq),
(4.5a)

(4.5b)
where (3.10) and (3.12) are imposed on P'f and

In (3.13), the normalization constant N; is as-

sumed to be nonzero and should be obtained by the
method of Sec. II.

with

(Ho E)P@=—0, P(H E)P+P=—0,
Q(H —E)QG&Q = —Q .

(4.6)

IV. RESONANCE AVERAGING

Comprehensive treatment of low-energy electron
scattering may be given in terms of the coupled-
channel method (CCM), in which strongly coupled
channels are explicitly included in the wave func-
tion

co N

%-%,= g Q~u~+ pc„X„
1

—=P%', +Q%', , (4.1}

P (H E+ VGP V)P+,—=0, (4.2)

where we have neglected for simplicity the an-

tisymmetrization of the incoming electron with the
target electrons, and the g, denote the target states.
The last sum contains the pseudostates which
simulate the neglected channels. At low energies,
where only a few channels are open, the projection
P can span all the open channels while QV, de-

scribes the closed-channel effect, including possible
true resonances. On the other hand, at higher en-

ergies where more channels become open, Q%', will

necessarily contain open channels and may give
rise to spurious resonances which are eventually to
be averaged over. To examine this problem, we
write the coupled equations for P%',

R Q of (4.5b) may be wntten in a slightly different
but more symmetric form

E~=(pe'i vx~v pq'),
where

(4.7)

Ã~= [Q (E H —VG V)—Q]

G =[P(E H}P]—
The shift operator VG Vin S~ does not change
the main discussion below so that we will simply
neglect it here. Then, using (4.3) we have

g~-R,~= g i ( Y ix„) i
/(E —E„), (4 g)

where Y =VP+ . Incidentally, note that, when
P%', contains all the open channels, E (E„ for al-
most all E„and we have the bound on R ~ given

by R, in accordance with the minimum principle.
For medium energies where the singularities in

(4.8) are spurious, RP requires averaging. Burke
et al. have recently studied the applicability of the
I-averaging procedure originally developed for the
nuclear optical potential. (For this purpose, it is
more convenient to consider the T matrix). Based
on the consideration of the previous sections, we
examine here an alternate procedure. We immedi-

ately identify
i ( Y

i X„) i with f„of (2.10'), and
set
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N(E) N{E)
P'—= 2 f.= X 1&I"IX. & I'

n=1 n=1 E—+oo
N-+ ce

(4.9)

which is equivalent to F of (2.12). Thus, we can
readily obtain the mean values

1 f.+i+f.
g(E) —— E (E (E

E
(4.10)

In order to apply g(E) to the evaluation of RP, we
further fit the histograms g(E) by a smooth func-
tion g(E). Then, RP can be set equal to the
principal-value integral

RP(E)=R I dE'g(E')/(E E'), —

which is a perfectly smooth function of E. In addi-
tion to the convergence of the procedure (4.10) as
X~ 00, we have here the powerful constraints
(4.9).

It is also possible to obtain a smooth optical po-
tential by directly examining the operator VG, V in
(4.2). The procedure is quite similar to the above,
and we obtain

(4.11)

F. , pv vp
PVG7-'VP= g ~ I ""

+1—E E

where
(4.12)

Qn«')= , (Qn+i+—Q.» Qn =—le�&&&.
l

(4.13)

and the bar denotes a suitable smoothing of the
histogram operators Q„~i + Q„which are constant
if E' is in the interval E„&E'g E„+1.

The absorption effect of the Q space (which is
partially open) may be recovered by unitarization,
i.e., by using the Heitler equation and converting
the R matrix to a T matrix. More directly, from
(4.12), we may set the imaginary part of the G~
contribution to the optical potential to

—i~+ pvlQ qg&gEg —E)&Q qg
l
vp, (4.14)

open

proaches have been proposed' ' in recent years,
but their usefulness is yet to be fully explored. As
discussed above, the extension of the coupled-
channel method to medium energies requires a set
of pseudostates which can give rise to spurious res-

onances. We have given a simple procedure to
average over these resonances. Applications of the
results obtained here to actual physical systems
would be very complicated for a complex electron-
ion system, but computational difficulties seem to
be within the capability of present-day computers,
especially if one limits the size of the P and Q
spaces and then constructs the appropriate Hamil-
tonian for such a system. As a sequel to this pa-
per, we will report on the study of these questions,
including the effect of radiative coupling, ' which
becomes important for heavier ions. Eventually,
we plan to apply the theory to the evaluation of
dielectronic recombination" and Auger ionization
amplitudes. '
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APPENDIX

1

Q(E —H)Q E E'—(Al)

then, for a "correct" choice of E at each fixed E,
we will have the correct R&. Of course E is not
known a priori and Ref. 1, for example, discusses
various ways to estimate this average energy.

(i) Consider an operator identity

In connection with the resonance averaging pro-
cedure discussed in Sec. IV, it is of practical in-

terest to consider the closure approximation on G~
defined by (4.6) and its approximation GP given by
(4.3). If we let

where the sum in (4.14) is over the open channels
in the Q space.

1 1 1

a b b+b(1/c)b ' (A2)

V. DISCUSSION

where a and b are arbitrary operators and c=a —b.
If we choose

At present, there exists no uniformly reliable
theory for medium-energy scattering. Several ap-

a =Q(E —H)Q

b =Q(E —E)Q, c =Q(E —H)Q,
(A3)
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then

where

Q 1

E E 1+2 (A4)

An approximation to A of the form

A=A, = gA ~x„)(X„~A ~x„)-'(X„~A (A6)

A—=Q Q.
E

(A5)
gives immediately

g~ GP= 1 —gA ~x„)(X„~A+A'~x„)-'(X„~A
E

(A7)

This form was used in obtaining a maximum prin-
ciple' when the Q space is completely closed and

by a proper choice of the parameter E such that
A&0 for all E &E.

The second term in (A7) corrects for the simple
closure approximation represented by the first
term. For a large enough set IX„],GP should be-

come insensitive to the choice of E. We also note

that (A7) does not seem to have the obvious singu-

larity structure of the original GP. Therefore, E
may be chosen such that E-E is not too small and

yet the second term in (A7) is kept small.

(A8)

GQ
Q(E —H)Q

and thus

1

Q(E H)Q
[Q(E—H}Q]

(A9)

(ii) An alternative choice for b in (A2) is

b =Q(E—H)Q,

c =Q(E —E}Q,
which results in

Gfl +GP = g— I
X.& (X

I
E—H

I x. & '(X.
I

—x ~x„&(x„g(s—H)g+-~a ej x,&
n

(Alo)

Again, (Alo} may be made not to blow up at E by choosing a proper E, since the final result should not b

too sensitive to E so long as enough terms are included in the set IX, J. It should be stressed that, although

(A7) and (A10) are similar in form, they are two quite distinct approximations.
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