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The theory of scattering of a charged particle in the presence of a laser field is formulat-

ed variationally. If the field is slowly varying, its dominant effect over a wide range of
field intensities will be to modify the asymptotic motion of the projectile. A trial function

is chosen which correctly accounts for the projectile-field interaction in asymptotic states.
It leads to a variational approximation for the transition amplitude which generalizes ear-

lier versions of the low-frequency approximation in two respects. Firstly, the field is not

restricted to be of the form of a monochromatic plane wave but, more realistically, is taken

to be a pulse of finite length. Secondly, the target may carry a net charge. The dependence

of the transition amplitude on the variable EE, which represents the energy trarisferred to
the field, is modified by the presence of the long-range Coulomb interaction; additional

terms which depend logarithmically on EE are found. The variational expression for the

transition amplitude consists of two factors, one depending only on the external field and

the other representing the amplitude for single-photon spontaneous bremsstrahlung. The

present analysis of this bremsstrahlung amplitude is based on the assumption that AE is

sufficiently small so that the dominant contribution to the spatial integration comes from

the asymptotic domain. The low-energy approximation obtained in this way provides a
generalization of Low's theorem on spontaneous bremsstrahlung to include the effect of the

Coulomb tail.

I. INTRODUCTION

Variational methods have provided a powerful

tool in electron-atom scattering calculations. It
seems reasonable to expect that they will also prove
useful in dealing with situations, currently of some

interest, in which the collision takes place in the

presence of an external radiation field. If one

adopts the simplest representation of the field —a
monochromatic plane wave of infinite extent —the

scattering problem takes on a form which closely

resembles the usual time-independent version of the

theory and variational principles for the transition
amplitude of the Kohn or Schwinger type are easily
derived. ' In more realistic models the field is
represented as a traveling pulse of radiation and
stationary-state methods are inapplicable. Rather,
one may apply the variational principle for the
time-evolution operator given by Lippmann and
Schwinger to this time-dependent scattering prob-
lem. Here we indicate the utility of the variational
approach by using it in the Lippmann-Schwinger
version to derive an approximation applicable to
scattering in an intense, slowly varying external
field. The variational principle is well suited for

this study since the basic physical approximation,
namely, that over a wide range of intensities a slow-

ly varying field has its dominant effect on the
asymptotic motion of the system, is easily incor-
porated by an appropriate choice of trial function.
Furthermore, the first-order correction term in the
approximation for the transition amplitude appears
automatically in the variational approach. As will

be seen in this paper, the derivations are simpler
and the results are of a more general character than
those reported previously. One would also ex-

pect this method to provide the basis for systematic
improvements in the approximation procedure.

We shall be particularly concerned here with the
case where both the target and projectile carry a net
charge (electron-ion scattering). Effects of the
long-range Coulomb tail can be accounted for by
suitable modification of the asymptotic form of tri-
al functions. The small parameter in the problem is
the energy hE which is transferred from the atomic
system to the field. As will be sho~n, the expan-
sion of the transition amplitude in powers of ATE,

previously derived for scattering by a short-range
potential in a monochromatic field, is modified in
the Coulomb case by the presence of terms which
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depend logarithmically on hE. This is seen to be a
direct consequence of the logarithmic phase factor
which appears in the asymptotic form of the
Coulomb wave function. The matrix element

analyzed here is precisely the one which determines

the spontaneous single-photon bremsstrahlung am-

plitude. [The influence of the external field is con-

tained in a multiplicative factor, as shown in Eq.
(2.28) below. ] Our result therefore provides a gen-

eralization, to include the effect of the Coulomb

tail, of the well-known soft-photon approximation
obtained by Low. The appearance, in the modified

Low formula given in Eq. (3.28) below, of a func-

tion containing a logarithmic singularity could have

been anticipated from an examination of
Sommerfeld's exact expression for the bremsstrah-

lung matrix element for scattering in a pure

Coulomb potential. Terms which depend loga-

rithmically on the photon frequency appear in clas-

sical treatments as well. Here the problem is done

quantum mechanically and allows for a potential
which contains a short-range component in addition
to the Coulomb term.

The fact that the present treatment allows for
laser pulses of finite length is significant since it en-

ables us to develop a proper physical picture of the
interaction based on wave packets which spend only
a finite amount of time in the field. ' Effectively,

I

the electron-field interaction is cut off asymptoti-

cally. As observed previously, " the cutoff is neces-

sary in treating the limiting case of a static field;
without it the asymptotic electron momenta would

be unbounded. The cutoff is also of particular sig-
nificance in Coulomb scattering since one would

otherwise be obliged to build into the trial function

the distortion by the field of the asymptotic form of
the Coulomb wave function, thereby complicating
the calculation considerably. The omission of such

distortion effects in earlier treatments of Coulomb

scattering in a monochromatic laser field' ' could

perhaps be justified by appealing to the wave-packet

picture and treating the monochromatic wave as a
limiting case of a finite pulse, but we make no at-

tempt to do so here.

II. VARIATIONAL PRINCIPLE

A. Formulation

The laser field is taken to be a pulse of radiation

traveling in the z direction and described by the
classical vector potential A(~), where ~=t —z/c,
with A(r)=0 for

~

r
~
) ro. The incident electron,

in the period before it enters the field, moves under

the influence of the Coulomb potential g/r; its wave

function is assumed to be of the form

X-+'(r, t;0)=(2M) exp(i/A) E-t+ p
~ r+ —In[(pr —p r)/A'] (2.1)

Here E-=p /2m and r is the distance of the elec-

tron from the target, the latter being taken to be
fixed. Effects of the internal structure and the tar-
get are ignored here to simplify the discussion.
Wave packets are to be constructed by taking a su-

perposition of functions of the form (2.1) corre-
sponding to different values of the momentum p.
As is readily demonstrated, ' the packets are con-
centrated about the classical trajectories correspond-
ing to motion in the Coulomb potential. In the fol-
lowing the asymptotic states will be interpreted ac-
cording to the wave-packet picture, although, to
avoid an excessively cumbersome notation, we shall
not explicitly carry out the wave-packet construc-
tion.

Suppose now that the electron has entered the
field but is sufficiently far from the target so that
the scattering potential is still well approximated by
the Coulomb tail g /r. The wave function

( —i%'7 —eA/c) g [+ ]+-
2m r

(2.2)

which has the approximate solution

X'-+'(r, t;A)=g' +'(r, t;0)-exp[i@' +'(r)/A]- (2.3a)

with

—e p.A(r')
mc

e2g 2(~')
+ 2

d~'.
2mc

(2.3b)

g'-+ '( r, t;A) satisfies the time-dependent Schro-

dinger equation



134 LEONARD ROSENBERG 26

Corrections to this approximation are of two types.
First, there are correction terms of order HI/mc,
where HI is the electron-field interaction energy. "
Such terms are properly neglected in the present
nonrelativistic treatment of the problem. Second,
there is a term in the Schrodinger equation of the

form

.( imp )g(+)( t.p)
mc

X exp[i@'-+'(r)/fi]

which is neglected in constructing the asymptotic
solution. The error thus incurred is corrected varia-

tionally, as we shall see below. It is important to
note that while the factor ( —iA V —p )g'-+' vanishes

P

only like 7'+'/r for large r, the error term displayed
P

above is proportional to A(~) and this factor van-

ishes in the wave-packet picture in the very early

stages before the electron has entered the field.
The asymptotic states appropriate to the post-

collision stage are taken to be

X:','( r, t;A) = (2m%) exp(i /A') E-„,t +—p
' r —g, in[(p'r +p' r )/A']+ g&':, ~(r) (2.4a)

with

T4', '(w) = —(1—p,
'
/mc)

p Z
Tp

e p'-A{~')

mc

eA (z)+ 2
dr' .

2mc

I

with G'+'{r,t;r', t')=0 for t &t'. The S-matrix
element of interest may then be expressed as

S-.-= lim f X':,"(r,t)P'-+'(r, t)d r

lim i f X:',"(r,t)G'+'(r, t;r ', t')
t~ oo P

I
& —+ —oo

(2.4b)

It will be convenient in the following to introduce a
constant shift in phase which allows us to replace

4:, by 4-. —:4-.( —) (+)
P P P

The wave function f'-+', which evolves from the
p

initial state 7'-+ ', satisfies
p

&(X'-+'{r ', t')d rd r'.
P

{2.8)

The defining relation (2.7) for the Green's func-
tion may be represented symbolically as

i% Hg-—+'(r, t) =—0, (2.5)

P'-+'(r, t)= lim i f G'+'(r, t;r ', t')
t'~ —ao

where G'+' is the retarded Green's function satisfy-
ing

where H is the full Hamiltonian, including the
short-range component of the projectile-target in-

teraction. Formally, we have [writing X'-+'(r, t')
P

rather than X'+'(r, t';A) to simplify notation]

Now a variational principle for any object 0 whose
inverse 0 ' is known follows directly from the
identity

0=0,—0{0 '0, —1), (2.9)

where 0, is an estimate of 0; replacing 0 on the
right-hand side by a trial function 0, (which may
be different from 0,) introduces an error of second
order. This procedure may now be applied to the
calculation of the S-matrix element. (In the follow-
ing the subscript t stands for "trial" and should not
be confused with the time parameter. ) We write

=5(r —r ')5(t —t') (2.7) and
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i X:', (r ",t")6'+'(r ",t";r,t)d r"
P

S-,-,= lim X:',"(r,t)P'-+, '(r, t)d3r . (2.12)

where 8 is the step function, and define the trial S-
matrix element as

Applying the identity (2.9) to 6'+' and then form-
ing the matrix element (2.8), we obtain the identity

S-,-=S-,-,+ —. dt d r g':," H i%— —P'+'(r, t) .pp ppf p gg pt {2.13)

S'-",- = lim 7:'.'*(r,t)g'-+'(r, t)d r
r (2.14b)

vanishes due to the presence of a rapidly oscillating
logarithmic phase in the integrand. ' We are then
left with

Let us now establish the relationship between the
S-matrix element and the amplitude of the
outgoing-wave component of the wave function.
Writing g'-„+ '=g'+ +g-+ ' we have, from Eq. (2.8),

S-,-=S-,-+S-,- .(i) (2)
p p p p p p

(2.14a)

Here

S'-„',- —= lim f g:', (r, t)P'-+'(r, t)d r . (2.14c)

This term is nonvanishing in spite of the rapid os-
cillations of the integrand as t~ Oo since the spatial
integration is singular. Now the contribution from
any finite spatial domain is nonsingular so that we

may confine our attention to the asymptotic region.
The scattered wave P- may be expressed as a su--(+)

P

perposition of outgoing-wave solutions of the
Schrodinger equation corresponding to different
values of the final-state energy; this accounts for
the fact that energy may be transferred to or from
the field. We therefore write, for r~ oo,

1(-+ (r, t)-(2W) ~ f dE-F'+'(q, p)exp (i/fi) E-t+q—r — In(2qr/fi)+4-(r) r, (2.15)

where q =qr, the caret denoting a unit vector. The
angular integration in Eq. (2.14c) may now be per-
formed using an integration by parts procedure,
with only the dominant asymptotic contribution re-

tained; this fixes r in the direction of p'. ' To keep
the radial integration well defined as E- varies in

the neighborhood of Ep a small positive ima-

ginary part is temporarily added to E-. The radial

integral, with only its most singular part retained,
becomes

iA
(2n) —,f dr exp[i(q p')r/fi]—I p

1~( —4m)
2m E- —E-,

exp[i (E-, E- )t/fi]—
lim = —2mi5(E- —E-,),

r ~ E- —E-,
p

we find

(2.16)

S~g~',- =( —2ni)( —4a')(fP/2tn)(2M) 3F(p', p) .

(2.17)

It is clear that, for consistency, this same connec-
tion between the S-matrix element and the ampli-
tude of the outgoing wave must be maintained in
choosing the trial function and trial S-matrix ele-
ment in Eq. (2.13).

In the absence of the external field energy is con-
served so that

Here we have allowed the integration, which should
have been cut off at some large radius rp, to extend
into the origin. The evaluation of the dominant
singular contribution is unaffected by these approxi-
mations. After making use of the identity

F(p', p)=5(E, E)I(p', p)—
We then have the familiar result

p p
{2')5(E-,—E )p ( p', p )

(2)

(2.18)

(2.19)
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with the t-matrix element related to the scattered-
wave amplitude according to

t(p', p)=( —4m)(fi /2m)(2+4) f(p', p) . (2.20)

B. Low-frequency approximation

%'e assume in the following that the external field
is slowly varying relative to the collision time and
that it is not strong enough to appreciably affect the

I

target system. The field will then have its dominant
effect on the asymptotic motion of the projectile.
This suggests the choice of trial function

P'-„+,'(r, t) =exp(l/fi)[ E-—t +4-(r)]u'-+'(r),

(2.21)

where u'-+' is the outgoing-wave solution of the
P

time-independent Schrodinger equation in the ab-

sence of the field. It has the asymptotic form

u'+'(r)-(2M) i2 exp(i/A) p r+ in[(pr p. r)/—fi] +r 'f(pr, p)exp(i/A') pr — In(2pr/A')
P JP

(2.22)

for r~ op. To account for the structure of the target this form is to be multiplied by the wave function of the

target system in the initial state, undistorted by the field in first approximation. (The variational approxima-
tion will then be correct to first order in the target-field interaction strength. ) Associated with the trial func-

tion (2.21) we have, according to Eq. (2.12), the trial S-matrix element

S-„,-,= (2nt')5—(E-, E-„)t(p'—, p)exp(i/A)[4-„(ro) —4-,(ro)], (2.23)

so that the effect of the field is limited to the intro-
duction of a phase factor in this first approxima-
tion.

The variational principle provides a convenient
framework for generating an improved estimate of
the transition amplitude. The replacement of the
exact wave function g':, ' in the identity (2.13) by a

P
trial function P':,I which involves a first-order error

leads to an estimate of S-,- which differs only in
P P

second order from the true value. In the low-

frequency approximation we have

l(",,'(r, t) =exp(i/R)[ E-,t +4-,(r)]u—'~, '(r) .

l

The variational estimate is

S-,-„=S-,-, + —. dt d rg:',;( —)»

P P P P& 7$ p t

&( H iA —P'+'—.at-
(2.26)

To simplify the integral we transform from the set
of variables [t,x,y,z] to the set [r,x,y, z]. The term
(E-—E-,), which appears in the exponent in the
integrand, then becomes (E-—E-, )~+A'k. r with

P P

(2.24) Rk (E
P

E
P

) (2.27)

u':, '(r) =[u'+-', (r)]' . (2.25)

The requirement that u':. ' satisfy the Schrodinger
P

equation with incoming-wave boundary conditions
allows us to make the identification

In the following we consider the case where
E- —E-, is nonvanishing, so that the term S-,-

P P
~

P P&

makes no contribution in Eq. (2.26). The variation-
al expression then reduces to

S-,-„=—. dr exp(i /fi) [4-(r) 4-,( )r+ ( -E, —E- )r] — — +
oo eA(~) z

i' P P mc mc
p 'A(g) e A (g)+
mc 2mc

d r u':, '(r)e '"''( —iAV —p)u'-+'(r)
P P

(2.28)
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The "free-free" matrix element which appears in

Eq. (2.28) is similar in form to the amplitude for
single-photon spontaneous bremsstrahlung with
co —=(E-—E-, )/A playing the role of the photon

P P

frequency. If the scattering potential is of short

range the Lippmann-Schwinger integral equation
for the wave function may be used to derive an ex-

pansion of the matrix element in powers of co. The
coefficients of the first two terms can be expressed
in terms of the on-shell t matrix and its first deriva-

tive with respect to the energy variable; this is
Low's result, reproduced in Eq. (3.26). When used

in conjunction with Eq. (2.28) we obtain a soft-

photon approximation for scattering in an external

field which generalizes earlier versions based either

on the assumption of a periodic field or a con-
stant crossed field. " In Sec. III we shall be con-

cerned with the further generalization to include the
case where the potential has a Coulomb tail. The
analysis based on the Lippmann-Schwinger integral

equation is inapplicable in that case. Instead, we

base our treatment on an asymptotic expansion of
the wave function in configuration space. ' To sim-

plify notation we shall continue to ignore the effects
of the internal structure of the target. However,

these effects are easily incorporated in the final re-

sult [Eq. (3.28)] by reinterpreting the field-free

scattering amplitude which appears there as the arn-

plitude for scattering from a composite target.

III. ANALYSIS OF THE
BREMSSTRAHLUNG MATRIX ELEMENT

If we ignore recoil corrections of order p/mc (di-

pole approximation) the matrix element in Eq.
(2.28) takes the form

M(p', p ) =— A(r)
mc

(3.1)

Here we have set %=1 for simplicity; this factor
will be reinstated at the end of this paper. We have
also made use of the orthogonality property of the
continuum wave functions along with the relation
{2.25). A standard transformation leads to the al-
ternative form

M(p', p) = ——. (E-—E-, )A
ic

~ u'+-', (r)ru'+'(r)d r,—P P

(3.2)

more convenient for our present purposes. We seek
an evaluation of M for small values of E-—E-,.

P P
The integral in Eq. (3.2) is singular in the limit
E-—E-.~0. Such a singular behavior can only
come from the asymptotic domain of integration.
We retain the dominant contribution, then, by re-
placing the wave functions in Eq. (3.2) by their
asymptotic forms. The integral can then be ex-
pressed in terms of the on-shell amplitude for
scattering in the absence of radiation. Contribu-
tions to the integral which remain finite in the limit
E

p
E

p
0 are ignored in our approximation.

To proceed, we gather together some well-known
results and write the asymptotic wave function as

p ( p") g (2I+I)i [ui (p, &) Si(p)ui—(p, r)]p&(p p),r~ oo 1=0
(3.3)

with

(~i+%)lP =e

The Coulomb phase is

gl ——argI (l +1+in)

(3.4)

(3.5a)

I

purely Coulombic for small values of r. The spheri-
cal Coulomb function ul+' satisfies the radial
Schrodinger equation in the presence of the
Coulomb potential and has the asymptotic form

(+)(pr)e i (Pr —la'/2)(2pr) in

with

n =gmlp (3.5b)

(l + 1+in)(l —in)

2/pr

and 5l represents the additional phase shift arising
from the fact that the scattering potential is not

(3.6)

If we keep only the leading term in this expansion,
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and insert it into the right-hand side of Eq. (3.3), we

recover the asymptotic form shown in Eq. (2.22)
with the scattering amplitude replaced by its
partial-wave expansion

f(pr, p)=(2ip) ' g (2l+1)S~(p)PI(r p) .
I=O

(3.7)

By including the r ' correction term in Eq. (3.6) we

gain a more accurate evaluation of the matrix ele-

ment (3,2) while requiring only the physical
(measurable) field-free scattering parameters as in-

put data. Terms of order r and higher in the ex-
pansion will not be retained here. Note that if the
target is a polarizable system the effective potential
will contain, in addition to the Coulomb tail, a com-
ponent which behaves as r for large r. An
asymptotic expansion of the radial wave function
for a potential of the form g/r +g'/r is easily gen-

erated by an iterative procedure. One finds (for
positive scattering energies) that the first two terms
are correctly given by Eq. (3.6). It follows that the
approximation for the bremsstrahlung matrix ele-
ment to be derived below will be valid, to the stated
accuracy, for scattering by a target which is both
polarizable and charged.

In evaluating the radial integral in Eq. (3.2) we
I

Now for a=+(p +p') this integral is nonsingular in
the limit p —p'~0 and therefore, according to the
scheme outlined above, it is to be neglected; we re-
tain only those terms corresponding to a=+(p —p')
and Reb& —1. In this approximation, then, the
matrix element of interest may be expressed as

f u'+-', (r)A ru'-+'(r)d r
P P

=M(p', p)+M( —p, —p') (3.9)

with

make the usual assumption that the energy of the
incident electron contains a small positive ima-

ginary part which is allowed to vanish at the end of
the calculation. The domain of integration should
be taken to be the region outside a large sphere.
Since, in the integrals encountered here, the addi-
tional contribution coming from the interior of the
sphere is finite even in the limit E —E-,~O and

P P

since we do not retain terms of this order in our ap-
proximation, we may simply continue the radial in-

tegration down to the origin. The integrals can be
evaluated using the relation

lim f e "+"'"rbdr =(ia) ' I'(1+b) .
a~0+

(3.8)

r

M(p', p)= —f (2p'r) ' g (21'+1)i +'ul'+"(p', r)P~( p' r)—
I'=0

XA r (2pr) ' g (21+1)i +'SI(p)uI'+'(p, r)PI(r p) d r .
1=0

(3.10)

The product of radial wave functions appearing here may be replaced, to the required accuracy, by

u~+' (p', r)uI'+'(p, r)-e"~ r 'i' '(2pr) '"(2p'r)'" [1 (2ipr) '(l +1—+in)(l —in)

+ (2ip'r) '(1'+ 1 in ')(l'+—in ')],
where n'=(gm/p'). We now write

M(P P ) ™0(PP)+M —1(P P )

(3.11)

where MO is obtained by keeping only the first term in square brackets on the right-hand side of Eq. (3.11);
M 1 represents the correction arising from the second and third terms. The evaluation of MO is straightfor-
ward. The angular integrations are performed by writing

1/2

A r= r[( —A„+iA„)YI&(r)+(A +iAr)Y~ ~(r)] .
3

(3.12)

(The transversality condition A, =0 has been used here. ) The addition formula

I
P~(r p)= g YI~(r)Ylm(p)

21 +1 (3.13)
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and the expansion '

Y(„(r)Y(~(r ) = g, (I'0
I
00) ( l'm +v

I

vm ) Yt +„(r")3(2l+1)
4~(2l'+ 1)

(3.14)

are then employed, along with the orthonormality property of the spherical harmonics. The result is

Mo(p', p)=(2m)( 2—ip') A p'(p —p') +"" " 'e'" " ' / (2p) '"(2p')'" I [2—i(n —n')]t(pp', p),
(3.15)

where, in introducing the physical field-free t-matrix element we have made use of Eqs. (2.20) and (3.7).
The evaluation of the correction term M ](p,p) may be simplified by recognizing that to the required ac-

curacy the distinction between p and p' may be ignored in the second and third terms in the square brackets in

Eq. (3.11). The sum of those terms may then be rewritten as

(2ipr) '[l'(l'+ 1)—l (l + I)+2in] .

The contribution to the matrix element arising from the term proportional to 2in can be evaluated, following

the procedure outlined above for M(), as [ in(p——p')/p]MO(p', p). The remaining contribution to M, in-

volves the angular integration (with v=+1)

[l'(1'+1)—l(1+1)]I dQ„-Yp" (r)Y(„(r)Y( (r)= I dII&Y( (r)[L,Y(„(r)]Y( (r) . (3.16)

Here L is the square of the angular momentum operator. If we write L =L+L +L, —L, and make use of
some well-known properties of the operators L+ and L„ the commutator may be evaluated as

[L,Y(„]=2Y(„+[2—v(v —1)]' Y,„,L++[2—v(v+1)]' Y(„+(L +2vY, „L, . (3.17)

The contribution to the matrix element arising from the first term on the right-hand side of Eq. (3.17) is readi-

ly determined tobe —[(p —p')/p]M()(p', p). Collecting contributions to M(p', p) obtained thus far we have

M()(p', p)[1—(p —p')/p in(p p')/—p]=—2m( 2ipp') —'(p p') B(—p', p)A p't(pp', p),
where we have defined

(3.18)

i(n —n')
1

B(p',p)=e I» —»'I»/z IP P I—
2p

[I+i (n n')y] —. (3.19)

In arriving at this form for B we have used the relations

e(» —»'l»/2(p p )
((»»') —

~
» —»') n/2

I I

j(» » )—'

and

I [2 i(n —n—')]=[1 i (n n')][1+i—(n ——n')y],

where y=0.577 215 7 - . . is the Euler-Mascheroni constant. %'e have also replaced

[1—i (n —n')][1 in (p —p'—)/p] by unity, ignoring corrections of second order.
To obtain the remaining contribution to M ](p', p) we must take into account the last three terms on the

right-hand side of Eq. (3 ~ 17). The calculation, which is straightforward, will not be reproduced in detail here.

The only point which deserves emphasis is that use of the relations

[1(1 + I)™(m+ I )]' Yt~+((p ') =L+ Yt~ (p ')

and

mYI~(p ')=L,' Yl~(p ')

allows one to express the result in terms of the angular momentum operator L'= —ip')( V-, which acts on
P

the polar angles defining the unit vector p '. When this contribution to M(p, p) is added to that shown on
the right-hand side of Eq. (3.18) we obtain
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M(p', p)=2m( 2—ipp') '(p —p') B(p',p}IA.p't(pp ', p)+(p —p')[p 'X(AX p')] V „,t(p', p) j . (3.20)

According to Eqs. (3.2) and (3.9) we have

M(p', p) = — (E—- E-—, )[M(p', p)+M{—p, —p')] .
lC

(3.21)

%hen combined with Eqs. (3.19) and (3.20) we obtain a generalization, taking into account the presence of the

Coulomb tail, of the version of the soft-photon approximation derived by Feshbach and Yennie. ~i Equivalent-

ly, we may rewrite the expression in curly brackets in Eq. (3.20) as A p't (pz, p), with

p„'=p'+m(E- E-„,)A—/A p'.

Note that under the interchange p'~ —p we have pz~ —pz with

pg ——p —m(E- —E-, )A/A p .
P P

The free-free matrix element then takes the form

(3.22)

(3.23)

(E-, —E-„) '[B{p'p)A p't(P~ 5)—BV»p')A Pt(P' p~)]. {3.24)

Here we have made use of the relation t ( —pz, —p') =t {p', pz ) and have replaced a factor (p +p') /4'' by

unity, ignoring an error of order (Ep Ep ) Since, to the accuracy of the present calculation, we have pz ——p
and pq p', the t-matrix elements appearing in Eq. (3.24) are on the energy shell.

Let us consider, as a special case, the problem of scattering by a short-range potential. The soft-photon ap-

proximation is obtained from the general form (3.24) by setting n =n'=0 so that the function 8 is replaced by

unity, and the Feshbach-Yennie version is regained. Low's original version of the soft-photon approxima-

tion is obtained as follows. The amplitude t(q', q) is expressed as a function of the scalar variables
E=qi/2m and b2=(q' —q), i e., t(q', q)~t[q /2m, (q' —q) ]. Thus, in Eq. (3.24), wehave

t(p', p„)~t[E-„„b&&+2(p'—p) Am {E- E-„,)/A p—] .

This latter form is now replaced by its Taylor-series expansion about the average energy variable

E=(E-+E-.)/2 and the momentum-transfer-squared variable 60——(p' —p) . Dropping correction terms of1 P
second and higher order in E- —E-, we have

P P

1 Bt, A Bt
t {p', pz ) =t (E- E—-—, ) +2(—p' —p } m (E- E-,)—

BE A.
(3.25a)

P

where t and its derivatives are evaluated at E=E and 6 =bo. Similarly, we have

1 Bt, A Bt
t(pz, p)~t+ —(E-—E-, ) +2(p' —p) m(E- —E . )

P P BE A. P P
P

(3.25b)

Setting B(p',p) =B(p,p') = 1 in Eq. (3.24) we obtain Low's formula,

Bt
m(p', p)= — (E-„—E-, ) 'A (p' —p)~+(P'+P) 2«-, — -, )

BE
(3.26)

If the scattering energy is close to a resonance value the t matrix will be a rapidly varying function of the ener-

gy. The Taylor-series expansion will then be inappropriate and the Feshbach- Yennie version should be used.
Returning now to the inore general case we note that it is a simple matter to obtain from Eq. (3.24), with B

given by Eq. (3.19), a generalization of Low s version of the soft-photon approximation. The field-free
scattering is assumed to be nonresonant, and includes the effect of the Coulomb tail. A convenient expansion
parameter is

P(p', p) =(p —p')/p . (3.27)
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It may be seen that the omission of higher-order terms in the asymptotic expansion (3.6) introduces errors of
order PlnP. For consistency we omit terms of this order in the expansion and obtain the approximation

M(p', p) = — (E„E—, ) 'A [B(p',p) p' B(—p,p') p]t+(p'+ p) —,(E- E-—, )
mc

(3.28)

Here B may be replaced, to the required accuracy, by the expansion

B(p',p)=1 —inPln( —,
[ P (

) —(nn/2) [P( in—P(1+y) —n P ln ( —,
( P[ )+O{P InP) . (3.29)

As a check on this result we have examined the low-frequency limit of Sommerfeld's exact expression for
the bremsstrahlung matrix element for scattering by a pure Coulomb potential. With terms of order P lnP ig-
nored we find that the result is precisely the form (3.28), with the t matrix of course being that appropriate to
scattering in the potential g Ir. From Eqs. (3.28) and (3.29) we see that the matrix element contains terms of
order P ', lnP, P, and Pin P, where P is a measure of the energy transferred to the field. The logarithmic
terms, not present in Low s original version of the soft-photon approximation, appear as a consequence of the
long-range Coulomb interaction.

When the expression (3.28) for the bremsstrahlung matrix element is combined with Eq. (2.28), the latter
simplified by neglect of recoil corrections of order p/mc, we obtain a low-frequency approximation for the S-
matrix element of the form

ao eS-,-—=— dr exp(i /fi) [4-(r)—4-,(r)+ (E-, E- )r] —— A(r).(E- E-,)—
iA P P P P mg P P

X [B{p',p)p' —B(p p')p]t+(p'+p) —,(E-, E-, ,)— (3.30)

We recall that t and its derivative are evaluated at
energy E=(E-+E-.) /2 and momentum-

P~ P

transfer-squared 5o——( p' —p ) . The t matrix which

appears here is on the energy shell. The origin of
this useful and interesting property is easily traced
in the present derivation. The matrix element has
been evaluated by replacing the wave functions by
their asymptotic forms (a replacement which is
valid for sufficiently small values of the energy

I

transferred to the field) and only on-shell scattering
parameters appear in these asymptotic wave func-
tions.
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