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Rydberg states of helium: An optical-potential analysis
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The Feshbach projection-operator technique has been applied to the problem of electro-
static level shifts in lsNL Rydberg states of helium. It is assumed at first that, for suffi-
ciently high L, only long-range terms in the optical potential affect the energy of the outer
electron. These terms up to x ' are carefully derived, used in a first-order perturbation
calculation, and compared with recent accurate experimental results. Second-order effects
due to the leading x potential and some short-range terms are also calculated in a few
cases; these effects are generally not negligible for L (4.

I. INTRODUCTION

A particularly simple type of excited state of a
multielectron atom is the case in which a single
electron moves in the field of a spherically
symmetric core. If, in addition, the electron is far
from the core, then the excited states will be
approximately hydrogenic, and are known as
Rydberg states. The high Rydberg states (NL) of
helium are very tempting for theorist and
experimentalist alike. Many calculations have
treated this type of state in terms of perturbed
hydrogen levels, with polarization of the core
supplying the perturbing potential. ' Recent very
accurate measurements of the fine structure of high
Rydberg levels of helium ' have provided the
motivation for a reexamination of the theory.
Especially interesting is the possibility of detecting
a new effect of retardation recently described by
Spruch and Kelsey.

If the state in question has "sufficiently large"
values of N and L, its overlap with the core will be

negligible. In such a case short-range shielding ef-
fects and exchange can be neglected. The remaining
long-range perturbations can be evaluated analyti-
cally ' and very simple analysis will give the elec-
trostatic fine-structure splittings for comparison
with experiment. ' In this paper, I will use the
Feshbach projection-operator method to obtain
these long-range terms up to the inverse eighth
power and will give criteria for the applicability of
the simple perturbation method.

In Sec. II, I review the formalism and apply it to
the helium system. A sequence of formal expan-
sions for the energy is then described; these include
multipole expansions, perturbation series, and nona-
diabatic corrections that are well defined in this for-

malism, although many of them have been derived
previously. The detailed evaluation of the coeffi-
cient of each term is relegated to the Appendix, but
the results are given here. In Sec. III, I give the re-
sults of the first-order theory, compared with exper-
iment, and I estimate the error in the asymptotic
series that results. In Sec. IV, short-range correc-
tions and second-order effects are discussed for
some cases. Finally, I give a critical discussion of
the method.

II. FORMULATION

The goal of the Feshbach technique for scatter-
ing is to reduce the many-body Schrodinger equa-
tion to an effective one-body equation describing
the motion of the projectile. In the present prob-
lem, we wish instead to reduce the two-particle
equation describing the helium atom to an effective
equation for the outer Rydberg electron alone. I
will assume from the outset that the core electron
(r) and the outer electron (x) are distinguishable
since their wave functions hardly ever overlap.
Then the Hamiltonian of the system is

H =Ho(r )+Hp(x)+ V(x, r ),
where

Ho(r) = 7'„—4/r, —

Ho(x) = —V„' —2/x,

2
V(x, r)=

ix —ri
Here energies are in reduced He Rydberg units

8 =3.289 39108(25)X109 MHz,
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and

K=2m, /(MH, +m, ) =2.7415X10

(x).
As usual, we will define projection operators P

and Q referring to the core electron:

The unperturbed Hamiltonian

Hp =Hp(r) +Hp(x)

includes the effect of shielding, and leads to the un-
perturbed energies

P=
i
ls)&ls i, Q=l P—,

where P2=P and Q =Q. Then the Schrodinger
equation

Ep( lsNL ) =—4— 1

Pf'2
(2) (H —Ep —5)%(x,r)=0

where capital letters refer to the Rydberg electron
I

is rewritten in the optical-potential form

(1s ((H Es —6) ((—s)X(x)+ ((s VQ Qv 1s)X(x)=0 .
Q(E(i —H+ b, )Q

This differs from the corresponding equation in the
scattering case ' only in the appearance of the ener-

gy shift b.; in addition, the function X(x )—:( ls
~

0')
is now normalizable. Equation (4) is seen to be a
nonlinear eigenvalue equation, and 6 is the quantity
of interest. Let us now carry out a sequence of for-
mal expansions.

(i) First, expand the denominator of the optical
potential in powers of b, /Q(H —E(i)Q. After
evaluating the first term we obtain

s

—V' ——+ V(x)+, —6 X++ akU, (x)x=o,x Q2 k=0

where

V(x ):—( ls
~

V
~

ls ) = —2e " —+2
X

Us(x)—= —(1s Vg gv 1s) .1

[Q(H E )Q]k+1

(ii) Next, let us carry out a conventional perturba-
tion expansion, expanding X and 6 in some small
parameter A, which is taken as representing the
strength of the perturbing potential: Uk ~A, Uk and
V~A, V. Then if

I

[Hp(x)+1/N ]Xi =(—Up+A i
—V)Xp,

[Hp(x)+1/N ]X2 = ( —b, , U, +62)Xp

+ ( —Up+ 5i —V)X, ,

(6b)

(6c)

bi ——I dXXoUoXo 1

A2 = J d x Xo U()X,

+b, i J dxX(iUiXp,

(7a)

where the normalization of Xo and its orthogonality
to X& have been invoked. Since Vis an exponential-

ly decreasing, short-range function I have omitted it
from Eq. (7); its effect will be examined in Sec. IV
along with other short-range effects.

(iii) Let us now examine Eq. (7a), the first-order
energy shift, and expand Uo in powers of V as in
Ref. 9. Defining

D=—Q(Eo —Ho)Q

one finds

1 1 1
V

1

Q(E(i —H)Q D D D

plus higher equations. Here Hp(x) = —V„—2/x,
and Eq. (6a) verifies the consistency of the unper-
turbed hydrogenic description. Premultiplication
by Xo and integration over d x gives expressions for
the first two energy shifts:

m=1

X=+XX,
m=0

Eq. (5) becomes

[Hp(x) + 1/N ]Xo——0, (6a)

and
+—QVQ —QVQ —+-1 1 1

D D D

((,( )=(vg —gv)
1

1 1+ V —V —V+ (10)
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" hJ-'—=X
D d —h

1
dj

(12)

(v) Finally, the usual multipole expansion of V is
made, where r &x:

q

I' (x r).

(iv) Next, we make an expansion of Up(x) in
terms of the quantities h and d, where

h =Q[Hp(x)+. 1/X ]Q,
d = —Q[Hp(r)+4]Q .

(The mass-polarization term involving V„V„will
be dropped for the time being, since its coefficient is
very small. It will be discussed later. )

I will not attempt in this paper to establish con-
vergence properties for any of these expansions
beyond observing the results obtained. There are,
however, reasonably convincing plausibility argu-
ments suggesting their usefulness for sufficiently
highly excited states. These depend on the-small-
ness of 6 and V relative to the core excitations and
the smallness of nonadiabatic terms relative to adia-
batic ones. As the controlling parameter I will take
1/x; terms as small as 1/x will be retained. The
optical potential has the form

hJ ' ~ hJ 1 hUo[-]=»V . + . V
j 1 d j j~ d

QVQ ., QVQ .„+.. . QV ls

It will turn out that to order x one need retain only the following:
3 h J —1

rl. (*)= » &Q X . + —Q&Q—+ —QVQ —p&Q —p&») .
d d d d d

(Note that h commutes with Q and d but not with V.) Inserting the explicit form of Q, one obtains

(14)

(15)

(d„)1
n m

+ (Is
/

V
/
n)(n

/

V
/

m)(m
/

V /p)(p /

V /»)
d~d~ d~

(16)

Here d„=4(1/n —1) and

(nXn/=—g fnXnf .
F7+is

(The index n refers to the set of quantum numbers

In, I, mI. ) Equation (16), for j=1, gives just the
familiar adiabatic potential carried out to fourth or-
der in V. A fourth-order term due to wave function
normalization is missing; in this formalism it will

reappear later when I consider b,2 [Eq. (7b)]. The
adiabatic potential is

AD +1 +2 6 3
Up (x }= — — + — —

~ (17)
X4 X6 X7 X8 X8

where eq is the qth multipole polarizability, 5 is the
third-order term ' involving dipole and quadru-
pole terms in V, and e comes from the last term in
(16) involving four dipole factors. (Numerical
values will be given later. )

When j+I in some term of Up(x), "nonadiabat-
ic" effects are produced, ' '" necessarily involving a

I

differential operator in x operating to the right.
First derivatives appear when j=2 and more com-
plicated tensorial forms occur for j & 2. Since, how-

ever, we are interested here only in the expectation
value (7a), where Xp is a normalizable function,
great simplifications are possible. It is important to
note that the rigorous optical potential to be used in
the asymptotic Schrodinger equation is (16} taken
literally, not the form to be described below; the
latter is for use in Eq. (7) only. Let us define

f„(x}:(n
~

V~ ls)-—
and rewrite the first nonadiabatic term of the ener-

gy shift [from (7a) and (16) with j=2] as follows:

dxXpf (x) f (x)Xp,n
(d }2 n

where summation over n@1s is assumed. Com-
muting h to the right and using (6a), we obtain
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Al, j 2= f dxXof~ 2 [h f»]Xo ~" (d, )'

The commutator is

[h,f„]= V —f„2-V—,f„V„-,

(20)

(21)

2 f d x Xpf„*h -(n
I
V, .V, I

ls )Xp .
(d„)'

(27)

Commutation of h to the right gives the expression

and the term in V' vanishes since V satisfies
Laplace's equation for large x. Then

2
~i,j=z=—,dxXof»Vxf» VxXo ) (22)

w

p (ls Ix.r In)(n Ix.r"I ls)
],j=2

(d, )'

X f dxXp, Xp,
1

(28)

where we can take Xp and f„ to be real without loss

of generality. Then

1 2. 2d x V„f„V„Xp -.
2(d„)

(23)

b, i j 2
—— f dxXpV„f

2(d„}

and since

(24}

q

2(q+1)
q&1 X

b I J p g(2q+ 1 )(q+——1)Pq

For each multipole in V there is a corresponding
smallest value of I. for Xp enabling one to integrate

by parts without producing a nonvanishing term at
x —+0.. Thus

Up (x)=-mp

x4
' (29)

(Further terms linear in K and falling like xx, and x also occur, and are small. )

The j=3 term in Eq. (16) gives the following
contribution to the energy:

~& j=3= f dx
I

V f»'V Xo I (30)(d„)'

[Here I have used Eq. (21), and summation over n is
understood. ] The leading (dipole) term of f„(x) is

and only the dipole term in f» contributes because

T„-T„ involves P1 only. The sum over n is done

easily, and the final result is a contribution to the
optical potential proportional, like the dipole polari-
zation potential, to x

q&1

1
dxXp -Xp .

X q+ (25}
f„-(x)=(x "x P )x

X

Added to the potential in Eq. (17) then is the fol-

lowing:

6pl 15p2
Up (x)= +

X
(26)

At this point the mass polarization, dropped

from Eq. (13), makes a contribution. ' (It is possi-

ble to show that, for j=1 it gives negligible short-

range effects only, and vanishes in first order unless

L = 1.} The leading mass-polarization term in b, is

(31)

where

f„—:(n
I

2rY') (r)
I
ls),

and the addition theorem for spherical harmonics
has been used. In Eq. (32) the state n is restricted to
1=1 and azimuthal quantum number m, so one can
write Eq. (30) as

.7'„Xp (33)

The orthonormality of spherical harmonics shows that f» is independent of m. The energy shift must be in-

dependent of the value of M in Xp, so the P component of V„can be omitted in Eq. (33):

2

16~y ' „ 2 ~Xo ~ „ 1 ~I'F (x) ~Xo
dx — F) (x)+-

x ~x x 88 88
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where

J(n I2x. r
I
1$}

Iy:
(d„)'

(35)

integration by parts in the radial variable. If we
write

Since
2

~ym
II'i I'= X

m= —1 m= —1

Eq. (34) can be rewritten as

3

4m
(36)

'2

fdn

Finally,

=L(L+1)f dQXp .

3
———4yf dx

T 2
4 aX,

Bx

ax,
8 gg

[The cross terms in Eq. (34) contain the factor

(37)

)( f dxXp — 6+
1 2

1Vx x

[15 ,L(L+—1—)]

x' Xp .

g BP)g I'P +c.c.= g I
FP

m m

which vanishes due to Eq. (36).] The following
steps then lead to a form that does not involve
derivatives:

'2
exp

3
———4y f dx

6 VXp VXp-
x ae

=16y f dx Xp 6 VXp —
7 Xp

3 8

x Bx

Notice that the "potential" whose expectation value
gives b,

~ 1 s is central but depends on energy
( —I/N ) and angular momentum (L). It is worth
noting that the coefficient of the energy-dependent
term is not the same as the coefficient found by
Seaton and Steenman-Clark' and Drachman for
scattering. ' But recall that the present result is ap-
propriate for energy calculations only, since Eq. (30)
was obtained through an integration by parts.

In fact, the energy-dependent tenn can be com-
pletely eliminated from Eq. (40) by using the fol-
lowing identity':

Bxp

4x8 gg

'2

(38)

1 1

x
11 1

7 +10x

X [(2L+1)'—36] (41)

The first term becomes energy-dependent when Eq.
(6a) is applied. The second term is simplified using

where the bar indicates expectation value with
respect to Xp. Using Eq. (41) one can write

1 9 L(L+1) 16) j—3 ——16@ dxXo 7
——, 1+ &o

5x x'

which is the final form of this energy term. The
transformation from Eq. (40} to Eq. (42) is not just
a convenience; rather, it shows that terms decreas-
ing like Ex,x, and x are, in some sense, of
the same order. As long as I.)3 no singularities
occur in Eq. (42), and it is not consistent to keep
terms of order x without also retaining terms of
order x . I will return to this point in Sec. III.

Next I will investigate the second-order energy (d„)'
(43)

shift, b,2, appearing in Eq. (7b). Using the expan-
sion for Up in Eq. (16) (retaining terms up to j=2)
and the analogous expansion for U& one obtains

U
(1$. I

v
I

n ) ( n
I
v

I
1$ )

(d„)'
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Again commuting h to the right in Uo and noting
from Eq. (6b) that

form of 62 is (to order x )

62= f dxXpUp x1
hX1 ——( —Up+ 61)Xp,

one can write

(6b')

+ dxXp Xo
„uiP1

b2 —f dxXpUp&, X,

+ f dxXp ( —Up+5, )+b.1U1 Xo,x4
(44)

where the definition in Eq. (25) was used, the omit-
ted terms are of shorter range than x, and Uo J
is the adiabatic potential of Eq. (17). From Eq. (43)
the leading term of U& is —p1/x and from Eq.
(17) the leading term of Up is —al/x . The final

The second term in Eq. (45) is recognized as the
wave-function normalization part of the fourth-
order adiabatic term, leading to an additional term
in Eq. (17). The first term in Eq. (45) is the
second-order energy shift due to the adiabatic po-
tential; to order x it depends only on the dipole
polarizability, and will be treated in Sec. IV.

To summarize, the energy shift 6 and the effec-
tive potential U, including all significant terms up
to order x are the following:

f d x % 1vt.M (x ) U(x )% ~LM (x )

(a, +Ep) ( —a,+6p, )
U(x) =- + +x' x'

16y
5

(46)

L(L+1)+ —a3+15P2—e+a1P1—72' 1+
10

x'.

III. APPLICATION TO FINE STRUCTURE
OF RYDBERG STATES

For helium, the constants appearing in Eq. (46)
have, as shown in the Appendix, the following
values:

9 15 525

32 +~ ~ 64 & 3 1024

43 107 319
512 ~ p2 2p48 ' 7 12288

213 4329

512 ~ 32768

This effective potential (Eq. 46) is then

U
9(1+%) 69 3833Ux=-

32x" 256x 7680x

55 923 957 1
[ 32788 + 512P L(L + 1 )] (47)

Ultimately, the usefulness of this formalism de-
pends on the existence of simple, analytical formu-
las for the expectation value of x ' for hydrogenic
atoms. The most complete reference seems to be
that of Bockasten, ' whose results extend to s =8.
But the effectiveness of the method also requires

reasonably rapid decrease of successive terms in U
as well. In Table I I give values of the various con-
tributions of Eq. (47) to the energy shifts of helium

in the 1s XL state, for a number of values of X and
L, using the analytical expressions of Bockasten. '

I have taken the point of view that neither V7 nor
V8 should be considered alone because of the identi-
ty (41). Instead, their sum should be treated as a
single term, and V7+ Vs is shown in Table I. (Here

V, is the expectation value of the term involving
x 'in U.)

If the successive terms V4, V6, (V7+ Vs) actually
represent the first three terms of an asymptotic
series, then one should terminate the expansion at
the smallest term, and the error should be of the or-
der of that term. From Table I it appears that V6 is
the smallest term for L =3, while ( V7+ Vs) is the
smallest I have evaluated for L &3. A reasonable
way to estimate the energy shifts might be to write

h(L =3)=-( V&+ —, V6)+ —,V&,
(4&)

4(L )3)= [V4+ V6+ —,(V7+ Vs)]

+ —,(V7+ Vs) .

This gives a conservative estimate of the accuracy
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V6

TABLE I. Shifts, in MHz, of various levels due to the successive terms in Eq. (47). In each
case, V, is the expectation value of the x ' terms, obtained from the formulas of Ref. 16.

L V4 V7 Vg V7+ Vg

4
5
6
7
8

9
10

—34 426.893
—19741.757
—12 089.5S3

—786S.727
—5379.202
—3830.846
—2820.251

687.154
504.373
341.849
234.679
165.769
120.581
90.084

318.099
253.499
177.902
124.459
88.938
65.192
48.965

—1258.660
—1055.841
—758.491
—S37.603
—387.297
—285.428
—215.200

—940.561
—802.342
—580.589
—413.144
—298.359
—220.236
—166.235

6
7
8

9
10

—4700.418
—3022.388
—2018.075
—1401.852
—1008.593
—747.794

24.018
20.109
15.121
11,225
8.419
6.420

4.447
4.137
3.260
2.485
1.896
1.462

—6.469
—6.520
—5.334
—4.156
—3.215
—2.504

—2.022
—2.383
—2.074
—1.671
—1.319
—1.042

6

8

9
10

—961.669
—667.395
—473.972
—345.824
—258.852

1.828
1.657
1.339
1.053
0.828

0.188
0.192
0.164
0.133
0.107

—0.184
—0.206
—0.185
—0.154
—0.126

0.004
—0.014
—0.021
—0.021
—0.019

7
8

9
10

—256.690
—188.084
—139.860
—106.006

0.223
0.213
0.181
0.149

0.015
0.016
0.014
0.0123

—0.012
—0.014
—0.013
—0.0116

0.003
0.002
0.001
0.0007

of the expansion.
One further correction must be made before these

results can be compared with experimental values.
The first relativistic correction, due to the p term
in the kinetic energy of the outer electron, should be
included; it has the following simple form':

R' 3 1
(49)

4E

Here R'=a R (1 —2E)=1.75092)& 10 MHz, and
a is the fine-structure constant. In Table II the
splitting between energy levels for EN=0 and
&&. =1 is presented. The theory is from Eqs. (48)
and (49) while the experimental results are from
Refs. 4 and 5 as presented in Ref. 5, where all mag-
netic and exchange effects have been removed.

IV. SHORT-RANGE AND
SECOND-ORDER EFFECTS

(i) The first type of short-range correction is due
to the penetration of the Rydberg electron into the

core; it is obtained in first order by restoring V(x)
in Eq. (7a). That is, an additional term in b,

&
ap-

pears:

a» —f dxXoV(x)X, , (50)

where V(x) was defined in Eq. (5). This effect de-

creases approximately as N and very rapidly with
I.. It is shown in Table III for N =7 and 8. It is in-

significant for l. )4.
(ii) A more subtle kind of short-range effect in-

volves the true behavior of the x ' terms I have de-
rived above. Clearly, these must go over to less

singular forms when x~O. Let us first investigate
the short-range behavior of the second-order adia-
batic potential. An exact expression for this poten-
tial exists, ' but it is more useful here to examine
the various multipole contributions one at a time.
The Callaway-Temkin (CT) form" is convenient for
this purpose:
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TABLE II. Comparison with experiment. Theoretical intervals are obtained from Table I,
treated according to Eq. (48), and include the relativistic correction of Eq. (49). All results are

in MHz.

1235

Transition

6F-G

7F-6
8F-G
9F-G

10F-6
1 1F-G

76-H
8G-H
96-H

106-H
11G-H

Theory

8967 +171
5777 +117
3927 +83
2785 +60
2044 +45
1544 +34

1358.90 +1.04
932.66 +0.84
665.77 +0.66
490.95 +0.52
371.97 +0.41

Experiment
(Refs. 4 and 5)

8904.22+0.05

5736.12+0.07
3898.52+0.04
2765.26+0.06
2030.41+0.14
1533.68+0.24

1359.16+0.11
931.34+0.44

Theor. -Expt.

63 +171
41 +117
28 +83
20 +60
14 +45
10 +34

—0.26+ 1.05
1.32+0.95

7H-I
8H-I
9H-I

10H-I
1 1H-I

423.574+0.008
294.351+0.011
211.830+0.011
157.082+0.010
119.496+0.008

402.8 +4.7 20.8 +4.7

00 x(x)16+I dyy2(q+1)e —4y+y
q=| (2q+1)x2(q+1) 0 q q+1

(51)

where the index q refers to the multipole order, and
I have scaled the expression to apply to the He+
core. As shown in Ref. 7, the sum in Eq. (51) can
be carried out explicitly. In Table IV the results of
the Callaway-Temkin potential are compared, for
N =8 and I.=3,4, with the ordinary inverse-power
expressions and the total CT results. I conclude
that, for the L =3 case at least, short-range effects
are not negligible and multipoles with q & 3 contri-
bute significantly when compared with the experi-
mental accuracy.

(iii) The first term in Eq. (45) gives an "effective"
x potential if only the leading term (—a&/x ) is

retained in Uo and X~ satisfies Eq. (6b) approxi-

Multipole q

N=S, L=3
(aq/x2q+2) —( Vq cr) Difference

5377.73
144.15
50.27

5354.92
128.27
14.61
(3.90)

22.81
15.88
35.66

Sum 1 + 2+ 3 5572.15 5497.80 74.35
Total Callaway-Temkin value is 5505.78 MHz.

TABLE IV. Comparison of adiabatic potentials to il-

lustrate the effect of short-range cutoffs and higher mul-

tipoles. Column 2 is the contribution of the first three
long-range terms; column 3 is the Callaway-Temkin re-

sult, from Eq. (51). All entries are analytical and in

MHz.

TABLE III. Energy shifts in MHz due to penetration

of the core, obtained analytically from Eq. (50).

L 4)p (N=S)

N=8, L=4
1401.468 1401.395

9.761 9.720
0.391 0.351

0.073
0.041
0.040

—18.970
—0.054
—7.1X10-'

—13.691
—0.043
—7.1&& 10-'

Sum 1 + 2 + 3 1411.620 1411.466 0.154
Total Callaway-Temkin value is 1411.69 MHz.



1236 RICHARD J. DRACHMAN

mately:

X)(x)=2 2 1

x
h2 (N =8)h2 (%=7)

TABLE V. Second-order energies due to x potential
in MHz. Asterisks indicate analytic results from Eq.
{54);other entries are numerical.

I.

I have solved this equation numerically for %=8
for the resulting second-order energies are given in
Table V. As a check on the numerical work, I also
solved Eq. (52) analytically for the general nodeless
case, where L =X—1. If one lets X~ ——I'Xo, then
the function F(x) satisfies the simple equation1, 1 1F"+2 ———F'=u) —

~
——

~
. (53)

3
4
5

6
7

—11.51
—0.517
—0.043
—4.87' 10-"

—8.01
—0.373
—0.033
—4.14' 10-'
—6.38 y 10-4'

This can be solved easily, since only I" and F" ap-
pear explicitly, and using the first term of Eq. (45)
one obtains

4+) ( 128K —560K +848K —518K+105)

(2X—5)[(2X—1)(X—1)(2E—3)]
(54)

Again it is true that this higher-order effect is signi-
ficant for L =3 at the 10-MHz level and for L =4
at. about Sgo of that level. For L =5 and 6 the ef-
fect is somewhat greater than the V7+V8 long-
range part (Table I).

I

but here the experiment has begun to lose accuracy
seriously. These higher-L states should certainly be
reexamined experimentally, after which it may be
possible to confirm the existence of the Kelsey-
Spruch effect.
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For the intervals 76 —8 and 86 —8 the accura-

cy of the theory is almost good enough to look for
real discrepancies, such as the retardation effects
derived by Kelsey and Spruch. Indeed, the 8—I
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APPENDIX: EVALUATION
OF THE COEFFICIENTS

The various coefficients (a», P», 5, e, y, p) ap-
pearing in Eq. (46) are easy to compute analytically,
using the well-known Dalgarno-Lewis method. In
fact, most have been evaluated previously, usually
for hydrogen rather than He+. In this appendix I
will indicate how to scale the results for any hydro-
genic core, and will apply the method to some sim-
ple cases.

For the adiabatic terms (j= 1) the scaling is ob-
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tained as follows: A wave function for nuclear
charge Z is related to the corresponding function
for hydrogen by

Pz(r)=z Pa(zr) . (Al)

M„(x)—= (n
/x —r[

Ill
X

=2Z fdr ga(zr}
/x —r/

——Pa(zr)p .
X

(A2}
Changing variables to p =Zr one obtains

A matrix element of the potential of the j=1 type
1S

&q,z =&q,a/Z 2(q+1)

&z =&a/Z'

&z =&a/Z'

(AS)

The nonadiabatic terms (j=2) have an additional
factor of h/dn, which does not modify the results
of Eq. (A4) as long as V„ is the only part of h that
survives the commutation operation of Eq. (21); in
that case

in terms of the corresponding term in hydrogen. '

It is only the second-order (k=2) potential which
scales entirely by the substitution x —+Zx, although
this seems to have been assumed for k & 2 in some
earlier work. It is clear, then, that the adiabatic
coefficients scale as follows:

M, (x)=2 f dp 1I(a(p)
/Zx —p /

=Z[M„~(Zx }]a .

zx ~" p

(A3)

V„/d„~V„/(Z d„)=Vz„/d„.

Thus we find that the nonadiabatic coefficients
scale as follows:

Vz'(x}=Z -"V„"(Zx), (A4)

All j=1 terms involve k factors of M in the
numerator and k —1 energy denominators, d„, each
proportional to Z; here k is the order of perturba-
tion theory. It follows that the adiabatic potential
of order k scales like

Pq z ——/3q a /Z ' + ' . (A6)

The energy-dependent (j=3) and mass-polarization
(j=2) contributions also are of second order
(k =2), but they involve the Coulomb part of h,
which, in general, is 2(1—Z)/x. The general form
of the energy-dependent term [Eq. (42)] is

3 16' f d——xXp
Z —1

Z
1 9 L(L+1)

5(Zx) 2(Zx)
Xp, (A7)

which scales like Zx except for the x term. In
the same way, Eq. (29) becomes

(AS)
Kpa(Z —1)

(Zx)
again deviating from the usual scaling for k =2.

If one defines a function G(r) as the solution of
the equation

[Hp(r), G(r)]
~

ls)

whose solution is

G(r)=(r+ , r )r".x . —

Then the polarizability is

a1 a ——g ( ls
~

2r x
~

n )
nels

(A12)

(A13)

=(Q(r) —(ls
i Q(r) i

ls))
~

ls), (A9)

then the sort of matrix element that appears in all
the coefficients in Eq. (46) becomes the following:

X (n
~
(r+ , r )r.x

~

ls ) (A14—)

by virtue of Eq. (A10), and the sum over n can be
carried out:

&n
~

Q(r)
~

ls) = —d„(n
~

G(r)
~

ls) . (A10)

Let me illustrate by first evaluating a1 for Z = 1:

a1 a ——( ls
~

2r(r + , r2)P,
~

ls ) = —, —

In the mass-polarization term for Z = 1

(A15)

( ls
~
2r x

~
n ) (n

~

2r x
~

ls )
a1 a=

rT+1s

and G(r) satisfies the equation

(Al 1) S(ls
~

r.x
~
n)(n

~

r.x
~
ls)Pa:—~

nels (E E1 )2

so Q(r) =r x and the solution to Eq. (A9) is

(A16)
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G(r)= —,r x .

Finally,

(A17) from Eq. (A8) and (29),

Z —1
pz 4 ct1,H (Z 1)+1z . (A19)

( ls
~

2r x
~

n ) (n
~

2r x
~

ls )
(E —&) )

(A18)

identical to a&H by inspection of Eq. (All), and,

The evaluation of 5& appears in Ref. 9. The
fourth-order coefficient, e is evaluated by repeated
application of (A9) and (A10), as follows:

(ls
~

2r x ~n)(n
~

2r x
~

m)(m ~2r x ~p)(p ~2r x
~
ls)

(A20)

First solve Eq. (A12) and insert G(r) from Eq.
(A13) in the first and last matrix elements above,
obtaining

I(» I(2 'r+ 'r)( x. )r'Im) I'
(A21)

+1 Em —Eis

Then expand (x r) = , Po+ —,Pz—and solve two

I

equations like (A9) for the Po and P2 parts of G(r).
Then integrate to obtain the result e~ ———4329/32,
which scales like 1/Z' . The coefficient yH was
evaluated in Ref. 13; since d„appears to the third
power in Eq. (35) several repetitions of the method
are needed.
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