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We derive a general formula for a modified effective-range function (MERF), EI (k ),
for all partial waves, I =0, 1,. . . . This is a generalization of the effective-range function
associated with a short-range potential, K~{k )=k '+'cot51{k). Here k is the energy
variable and 5I{k) the phase shift. The MERF EI (k ) can be associated with a potential
V(r) that allows a decomposition into a long-range and a short-range component. It is a
complex real-meromorphic function of k in the complex k plane in a domain containing
the origin. This (large) domain is deterlnined by the short-range part of the potential.
We give a simple formula for EI (k ), valid for all 1=0,1,. . . . It can be used if the
long-range part of the potential is analytic at r =0. For l =0 we have the simple expres-
sion

Eo (k )=
~
fo(k)

~

ik[cot5O (k) i]+—f(')( kO)/f 0( k).

Here fo(k) and fo(k, r) are the Jost function and Jost solution, respectively, associated
with the long-range part of the potential, and 50 (k) is the difference between the s-wave

phase shiA associated with the total potential and that of the long-range potential. The
prime in fo(k, O) denotes differentiation with respect to r. The extension to the case of
the Coulomb potential which violates the condition of analyticity at r =0 is briefly dis-
cussed.

I. INTRODUCTION

Effective-range theory has been very successful
in the analysis and interpretation of low-energy
two-body scattering data. The basic idea of this
theory in the early days of quantum scattering
theory was that at low energy the (rotationally in-
variant} interaction and the s-wave phase shift 5
caused by the interaction can be parametrized, in
good approximation, by two parameters, called the
scattering length a and the effective range ro.

In this section we shall restrict ourselves to s
waves, i.e., angular-momentum quantum number
I =0. Throughout in this paper we shall use units
such that A=1=2m, where m is the reduced mass,
and we denote the energy variable by k . Then we
can write the effective-range (ER) expansion as

kcot5(k)= —a '+ —,rok +. . . . ,

where the ellipses represent higher-order terms in
k, which may be neglected when the scattering
energy is sufficiently small. The so-called shape-
independent approximation is obtained by retaining

(i) V(r)~0 for r~ ao,'

(ii) Vis integrable on (s, t) for all positive s and
t; and

(iii) near the origin V satisfies

V(r)=O(r ~), r~0, P&2.

Furthermore, we assume that a proper Jost solu-
tion f(k, r) can be associated with V (see the dis-
cussion in the second paragraph of Sec. III). In
this paper we shall call V a short-range potential if

f ~

V(r) ~e""dr(oo,

from some p & 0, R & 0. When the integral in Eq.
(1.2) equals ac for all p & 0 and R &0, we shall call

(1.2)

only the first two terms of the series on the right-
hand side (rhs) of Eq. (1.1). A simple derivation of
Eq. (1.1) was given by Blatt and Jackson' and
Bethe in 1949.

The validity of Eq. (1.1) depends on the asymp-
totic behavior of the potential. We restrict our-
selves to local rotationally invariant potentials V
with the following properties:
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V a long-range potential.
There are many systems in physics where the in-

teraction can be decomposed in a natural way into
long- and short-range parts. The interaction be-
tween two charged hadrons consisting of a Cou-
lomb and a nuclear part exemplifies such a two-
range potential. Since the ER expansion (1.1) is
not valid for such a potential one is interested in
finding suitable modifications. The theory of
modified ER expansions was initiated by Breit and
co-workers for the Coulomb plus nuclear poten-
tial. Subsequently many investigators' ' have
studied modifications of Eq. (1.1), not only for the
Coulomb plus nuclear potential, but also for other
two-range potentials.

In atomic and molecular physics long-range po-
tentials of the type

tential

V(r) = V, (r)+ V, (r),
where

V, (r)=Ze /r =2ky/r (1.6)

(1.7)

is the pure Coulomb potential, y is Sommerfeld's
parameter, and V, is a short-range potential. For
such a potential it has become customary to modi-
fy the left-hand side (lhs) of Eq. (1.1) in such a
manner that the rhs again is an expansion in
powers of k . In the case of a repulsiue Coulomb
potential the following modification of Eq. (1.1)
has been found:

2kyg (y)+ Cok cot5'(k) =—1/a'+ , r'k2+—

V(r)=cr, r &R &0, (1.3)
Here k is assumed to be positive,

where a is a positive integer, play an important
role. For such potentials the ER expansion (1.1)

breaks down. The term at which it breaks down
depends on a (and on 1). Modified ER expansions
for such potentials, especially for a=4 and 6, have
been studied extensively by Spruch and co-workers
in a series of papers, " and by others. Shakesha-
ft' has investigated the r potential. The case of
real a & 3 has been studied extensively by Levy and
Keller. O' Malley et al. have exploited the fact
that the exact solution of the radial Schrodinger
equation with the r potential can be expressed in
terms of modified Mathieu functions. (In this con-
nection see also Refs. 19 and 26.) Afterwards
Hinckelmann and Spruch" showed that these
(complicated) functions need not be introduced into
the analysis if one is interested in first-order effmts
(in the potential strength) only. These authors
give, for linear combinations of the r and the
r potentials, expansions that can be expressed as

Co =2m y(e r 1)—
and g(y) are pure Coulomb quantities,

g (y) = lny+R—eg(iy)

00= —lny —C+y' g
) n(n +y) '

k &0, y&0, (1&)

5'(k) =5"(k)—o(k), (1.9)

where

where g(z) = I"(z)/I'(z) is the digamma function
and C=0.5772 is Euler's constant. In Eq. (1.7),
5'(k) is defined by

k ' tango(k) = c
~ +czk +cik ink

+c4k 2+csk 3+c6k 4 ink

+ 0 ~ ~ (1.4)

where qo is the s-wave phase shift. The explicitly
calculated coefficients c; are not relevant for the
discussion here. The most interesting point in Eq.
(1.4) is the occurrence of ink which shows that
k cotgo(k) is not an analytic function of k at k =0.
Note also the occurrence of odd powers of k.

It is instructive for the discussion in this paper
to consider also in some detail the two-range po-

o(k) =~gr(1+i y)

is the pure Coulomb phase shift and 5"(k) is the
total phase shift caused by V [Eq. (1.5)].

It is relatively easy to modify Eq. (1.7) such that
it is also valid for an attractive Coulomb potential.
More complicated is the relaxation of the condition
k & 0. %e are interested especially in Taylor-series
expansions. Although other expansions such as
those given by Eq. (1.4) can be quite useful, a Tay-
lor series has many advantages. Indeed, by analyt-
ic continuation into the complex k plane we then
get a function which is analytic in a certain do-
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main of the k plane, which contains the origin [cf.
Eq. (1.4) where analytic continuation does not lead
to a function analytic at k =0].

Since the function on the lhs of Eq. (1.7) is of
great importance, we shaH call its analytic con-
tinuation the Coulomb-MERF and denote it by
K'(k ). The analytic continuation of g(y) leads to
a function that is often denoted by h (y). Its gen-
eralization, valid for Coulomb repulsion and ottrac
tion, is denoted by H(y), cf. 'Ref. 21,

H(y) =P(iy)+ —,(iy) ' —ln[iysgn(Z)],

(1.10)

where sgn is the signum function, sgn(Z) =1 for
Z &0 and sgn(Z) =—1 for Z &0. The Coulomb-
MERF then is

K'(k2)=2kyH(y)+Cok[cot5'(k) —i] .

Let p be the radius of convergence of the Taylor
expansion (in powers of k) in Eq. (1.7), then K' is
analytic in

~
k

~
&p. An interesting problem con-

cerns the relation between p and the short-range
potential V, . For some special forms for V, (r) this
problem has been solved by Cornille and Martin, '

Lambert, ' Hamilton et al. , and others. In Ref.
21 the Coulomb-MERF for Coulomb plus (nonlo-
cal) separable potentials with rational form factors
has been studied.

We would like to make the following two re-
marks about the analyticity of E'.

(i) Since E' is real when k is real (the coeffi-
cients —1/a', , r', . . . ,—arereal), it is a real-
analytic function.

(ii) E' can have poles near k =0, whose position
depends on the coupling constant of the short-
range potential V„but not on the form of the
function V, (r}

Therefore we prefer to call K' a real meromorphic-
function (meromorphic means analytic except for
poles). It is instructive to consider an example.

Let V, be the Yukawa potential

V, (r}=Ar 'exp( ijr), —
with A, real and p & 0. Then EC' has branch points

1 1
at k = —,ip and k =——,ip. The position of these
branch-point singularities is independent of the

II. DEFINITION OF NERF

The purpose of this paper is to construct a gen-
eral formula for the MERF which is valid for any
two-range potential

V(r) = VL (r)+ V, (r), (2.1)

and for all l =0, 1,2, . . . . Here VL, is a long-range
potentio/ whose range is (much) larger than the
range of V, . It may or may not satisfy the short-
range condition given by Eq. (1.2). It is instructive
to consider an example. Let

coupling constant A, . In addition EC' can have one
or more poles near k =0, whose position depends
upon A, . For a certain value of A, the Coulomb-
modified scattering length a' can be zero so that
E' has a pole at the origin. In this example K' is
real meromorphic in the domain

~

k
~

& —,p.
We note that Oppenheim Berger et al. ' and

Gppenheim Berger and Spruch' have studied
modified effective-range theory (MERT) for long-
range-plus-short-range potentials. These authors
have already pointed out the possibility of con-
structing a function that has the same structure as
the MERF, Kt (k ). Our expression for E~ (k }
[see Eqs. (4.10) and (4.11)] is given in a simple and
more explicit form, in terms of the Jost solutions.

The organization of this paper is as follows. In
Sec. II we give the definition of the MERF in
terms of integrals involving so-called regular and
irregular solutions of Schrodinger's equation.
These solutions are required to be entire real-
analytic functions of k . Regular solutions having
this property are easily determined, in contrast to
irregular solutions with this property. In Sec. III
we reduce the formula for the MERF by using the
Jost solution associated with the long-range part of
the potential, VL. In Sec. IV we determine the
proper irregular solution X~(k, r) associated with
VL, such that the MERF is a generalization of the
ordinary ER function

K(k )=k ' +'c ot 5((k) .

Our main result consists of Eqs. (4.10) and (4.11)
which give a simple formula for the MERF. This
formula is applicable if VL, (r) is analytic at r =0.
In Sec. V we briefly discuss the extension to the
case of the Coulomb potential which violates this
condition of analyticity. Preliminary and related
results on MERF have been reported in Ref. 27.
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VI(r)=hie "", V, (r)=A2e

0&p «& ~ (2.2)

Then k cot50(k) is real meromorphic in the region

~

k
~

& —,p. This follows from analyticity proper-

ties of the Jost function, cf. Refs. 28 —31. We
want to construct a MERF that is real mero-
morphic in the much larger region

~

k
~

& —,v.
This large region is associated with the short-range
part of the potential. (Note that the splitting into
Vl and V, is not unique, since the small-r behavior
of the potentials is irrelevant. The range of a po-
tential is connected with the region in which the
Jost function is analytic. )

The NERF should be a generalization of the
Coulomb-MERF. A fortiori, it should be a gen-
eralization of the (ordinary) ER function

K&(kz)=k +'cot5i(k), 1=0,1,2, . . . . (23)

In analogy with and as a generalization of the
work on the Coulomb-MERF by Cornille and Mar-
tin' and by Lambert, ' we define the following
MERF EI .

The definition of Ki in the form given by Eq.
(2.4) serves to deduce the domain in which Et is
real meromorphic. This can be performed by
means of estimates in the same way as Cornille
and Martin have done in the Coulomb case. '

However, Eq. (2.4) gives no explicit information
about the behavior of the (modified) phase shift, at
zero energy. We shall reduce the rhs of Eq. (2.4)
to a simpler, more explicit form that has an ap-
parent resemblance with the well-known
Coulomb-MERF.

III. REDUCTION OF THE MERF FORMULA

In this section we shall reduce Eq. (2.4), obtain-
ing thereby a simpler expression for the MERF
KI . For convenience we shall assume in this sec-
tion that k is real positive.

Let f~(k, r) be the Jost solution for VL, and

frt(k, r) the Jost solution for V= VI + V, . If

f ( VL, (r) (
dr & ao

(cf. Ref. 3), these Jost solutions have a simple
asymptotic behavior, as follows from

Kt (k )= —(W+Ii)/I2,
where 8' is the Wronskian

IV = IV(Xi,gt) = Xi(k, r) Pt(k, r)

Pi(k, r) — Xt(—k, r),
r

(2.4) lim e ' "fi(k, r) =1,r~ oo

lime ' "frt(k, r) = I .
r —+oo

However, if

f i
VL(r) i

dr =ac,

(3.1)

and

Ii
——f Xt(k, r) V, (r)grt(k, r)dr,

I2 f gt(k, r) V, (——r)grt(k, r)dr .

the Jost solutions have a different and more com-
plicated asymptotic behavior. In this case a modi- .

fied version of Eq. (3.1) holds. For example, for
the Coulomb-Jost solution one has

The functions Pi and Pvt are the so-called regular
solutions of Schrodinger s equation with VL and V,

respectively, determined by

limr ' 'Pt(k, r) =1,
r—+0

limr 'Prt(k, r) =1 .
r~p

X~ is an irregular solution of Schrodinger s equa-
tion with the long-range potential Vl . In Sec. IV
we shall give the precise definition of Xi.

The functions Pt, Pvt, and Xi are (required to be)
entire analytic functions of k, and they are real
when k is real. As a consequence, EI is real
meromorphic at k =0.

lim exp[ ikr+iy!n(2kr—)]fi(k, r)=1, (3.2)r~ oo

ft(k) = lim[1!/(21)!]( 2ikr) ft(k, r) . —
r~P (3.3)

as is well known. For other potentials tending
(more) slowly to zero for r~ oo, modifications of
Eq. (3.1) have been given in the literature, see, e.g.,
Matveev and Skriganov, and Reed and Simon.
We shall not discuss these modifications here, but
we simply assume that proper Jost solutions associ-
ated with VL and Vexist.

Following Newton (Ref. 30, Chap. 12), we define
the Jost function for Vl by
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The Jost function for V, fr»(k), is similarly defined

by replacing on the rhs of Eq. (3.3), fh(k, r) by
frh(k, r)

We define a double-factorial function by putting,
for all integers ih,

(2 —1)!!= ' '2"I'( +-) .

Then we have for I EM, 1=0,1,. . . ,

(21 +1)!!=1.3.5. . .(21 +1) .

We introduce an auxiliary solution»»3», defined by

ph(k, r) =(21+1)!!(—ik) fi(k, r)/fi(k) . (3A)

It is not difficult to show that (note k & 0)

Ph(k, r)=k '
I
fi(k)

I
ImP»(k, r) . (3.7)

Xi(k, r) = Reph(k, r) —Ah(k)ph(k, r) . (3.8)

Here Ah is a real function of k (note k & 0) which
still has to be determined. One easily verifies

(3.9)

Any irregular solution for VL can be expressed as a
linear combination of the regular solution ph and
the Jost solution. For the irregular solution XI we
choose the fo11owing combination:

From Eq. (3.3) we have

(3.5)

W(X», gh) = (21 + 1)C» = [(2l +1)!!] (3.10)

where

Ch
——(2l —1)!!(2l+ 1)!!. (3.6)

Note that the function Ah plays no role in these ex-
pressions.

In order to reduce Eq. (2.4) we use

frh(k) =fi(k)+( —'k) [(2I +1)!!] f fi(k, r) V, (r)prh(k, r)dr . (3.11)

This important, nontrivial relation can be derived with the help of the two-potential formalism, as has been
proved in Ref. 35. (It holds also for nonlocal V„provided the long-range potential Vz is local. )

Substitution of Eq. (3A) into Eq. (3.11) gives

frh(k)/fi(k) = 1+[(2& + 1)!!] f ph(k, r) V, (r)p rh(k, r)dr .

By inserting Eqs. (3.7), (3.8), and (3.10) into Eq. (2.4), and using Eq. (3.12) we easily obtain

(3.12)

K (k )=A (k) k+'
I
fi(k) I—Re rh(k)/ i(k)

1m[fr»(k)/fh(k)]
(3.13)

Let the phase shifts rh and 5» be defined by

fi(k)=exp[ —i1/(k)]
I fi(k) I,

f (k)=expI —h[rh(k)+sh (k)]) Ifrh(k) I
.

Then we have

frh«)/fh«)+c. c =[exp[ —i&i «)]+exp[i&» «)]I I fr»(k)/fi(k)
I

where c.c. stands for complex conjugate By using .this expression we obtain from Eq. (3.13),

Ki (k )=Ah(k)+
I fi(k) I

k h+'cot5» (k) .

(3.14)

(3.15)

In the next section we shall study the irregular solution Xh, and express Ah in terms of the Jost solution asso-
ciated with the long-range potential VL.
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IV. UNIQUE IRREGULAR SOLUTION XI
AND A SIMPLE FORMULA FOR THE MERF D +'=hm

r 0 dr
I

' 2l+1

(4 4)

In this section we shall determine the function

Xt and derive a simple expression for Ai, and there-

by for the MERF Xi, cf. Eqs. (3.8) and (3.1S).
We assume that the large-range part of the po-

tential, VL, is analytic at r =0. Examples are
given by

and

Xt(k, r) = der +cir +. . .+czar

+c2i+ir +'+0(r + ), r +0— (4.1)

where the (unknown) coefficients c„are functions
of k. Similarly,

pi(k, r}=r'+'+0(r'+2), r~O . (4 2)

Since the class of irregular solutions consists of
linear combinations of Xi and Pi, it follows from
Eqs. (4.1) and (4.2) that the coefficients dt and

col+~ determine Xl completely. %e have chosen dl
already, which leaves the freedom to determine

cqt+ i. We use this freedom to ensure that the fol-
lowing two requirements are met:

(i) For vanishing VL the ER function is re-

trieved, i.e., when

VL, (r)=e "" (JM&0).

Then any irregular solution associated with VL can
be expanded in a Laurent series at r =—0. In view
of Eq. (3.9) we have for Xt,

It is interesting to note that for l =0 we obtain
from Eqs. (4.1)—(4.3) the familiar boundary condi-
tions

D +'r P (k, r)=(21+1)!,

hence, by using Eqs. (3.8) and (4.3b),

Al(k) =D '+'r RePi(k, r)/(21 +1)!, k &0 .

(4.5)

(4.6)

The condition k &0 can easily be relaxed. Defin-

mg

MI(k) =D '+'r'Pt(k, r)/(21+ 1)!,
we have

At(k)=ReMt(k), k &0.

(4.7)

(4.8)

Furthermore, from Eqs. (3.7) and (4.S) we obtain

Xo(k, O) = 1, Xo(k, O) =0,
$0(k, O) =0, po(k, O) =1 .

The function XI is completely determined by the
boundary conditions Eqs. (3.6) and (4.3):

di =(21 + 1)!!(21—1)!!

and c2l+&
——0. Since the variable k plays no role in

these boundary conditions, our requirement (ii) is
also fulfilled: According to a theorem by Poincare,
a solution of Schrodinger s equation that is deter-
mined by k-independent boundary conditions is an
entire analytic function of k (cf. De Alfaro and
Regge, Ref. 29, p. 9).

The derivation of a simple expression for Ai is
now easy. From Eq. (4.2) we have

Vt, ~O, K (k )—+k +c to5 ( t)k;
ImMI(k) =k '+'

~
fi(k) ~, k &0 . (4.9)

(ii) Xt(k, r} is an entire analytic function of k .

One easily verifies that r Xi(k, r) is an analytic
function of r when VI =0. So in this case the
coefficient c21+i in Eq. (4.1) vanishes. Therefore
we impose this condition on Xl,

By combining Eqs. (3.15) and (4.7)—(4.9) we final-
ly obtain

Et (k )=Mt(k)+
~
f((k)

~

k +'[cot5t (k) i], —

(4.10)

c2l+1 ——0 . (4.3a)

It is more convenient to use the equivalent condi-
tion

D '+'r'X (k,r)=0, (4.3b)

where we have introduced the operation D, defined

by

Mt(k) =( ——,ik)'(1!) 'D '+'r'f ( trk) f/( t)k.

(4.11)

These equations (4.10) and (4.11), valid for complex
k, give the desired formula for the MERF. It is
interesting to note the similarity with the formula
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Mp(k)=fp(k, O)/fp(k, O) . (4.12)

From these expressions we can easily verify that
the ordinary ER function Ep(k ) =k cot5p(k) is re-

trieved when VL ——0. Indeed, in this case we have

fp(k, r)=e' ", hence fp(k)=fp(k;0)=1, and

fp(k, O) =ik =Mp(k).

V. 0j:SCUSSION

The principal result of this paper consists of a
simple formula for the MERF Ei, l =0, 1,. . . ,
which we associate with a two-range potential V
consisting of a long- and a short-range component
V= VL, + V, . This formula is given by Eqs. (4.10)
and (4.11),

for the s-wave Coulomb-MERF, Ep(k ), given by
Eq. (1.11). [For Kf(k ), l =0, 1,2, . . ., a similar ex-

pression holds; see Ref. 21.]
For l =0 Eqs. (4.9)—(4.11) reduce to

lniMp(k)=k lfp(k)
l

' k &0

Kp (k ) =Mp(k)+
~
fp(k)

~
k[cot5p (k) —i],

lim Xp(k, r) —Bp(k, r) =0,2

r—+0 dr
L

where

(5 2)

It is worthwhile to observe that both terms on
the rhs of Eq. (4.10) separately may be strongly
varying functions near k =0, but that their sum

Ei is smooth (meromorphic) near k =0.
The function Mi is well defined when the long-

range part of the potential, VI, is analytic at r =0.
However, the definition of Mi given by Eq. (5.1)
has to be modified when VL has a first-order pole
at r =0 (e.g., when VI is the Coulomb, Hulthen, or
Yukawa potential. ) In this paper we shall not give
all the details of this modification. Instead we

briefly discuss the Coulomb case and refer to Ref.
27 for more details.

First we consider the l =0 case. The irregular
solution Xp(k, r) of Schrodinger s equation with the
Coulomb potential, V, (r) =2ky/r, contains a loga-
rithmic term lnr which means that the boundary
condition given by Eq. (4.3b) (for l =0) cannot be

imposed. In this case we determine Xp(k, r) by the
modified boundary condition

KI (k )=Mi(k)
Bp(k, r) =2ky[ln

~
2kyr

~
+2C] (5.3)

+
~
fi(k)

~

k '+'[cot 5i(k) i], —

Mi(k) = ( ——ik)I(l!)
. 21+1

(5.1)

and C is Euler's constant as before. Note that Bp
is k independent since ky is constant. With this
boundary condition (5.2) we get the following ex-
pressions for the modified functions Ap and Mp.

y lim
r —+0 dr

r'fi(k r)/fI(k) . Ap(k) =2kyReH(y), k &0

M(k) =2kyH(y),
(5.4)

Here fi(k, r) is the Jost solution and fi(k) the Jost
function associated with VL, . This is an impor-
tant result in the following sense.

The MERF KI is a real-meromorphic function
of k in a (relatively) large region containing the
origin k =0, determined by the short-range com-
ponent V, of the two-range potential. In contrast,
the ordinary ER function

Ei(k )=k '+'c to5( i)k

is real meromorphic in a sma/I region determined
by the long-range component Vz. When VL(r)
behaves asymptotically as a power of r, Ki(k ) is
even not analytic at k =0.

where H(y) is given by Eq. (1.10). Consequently
we retrieve for Ep just the well-known expression
given by Eq. (1.11) for the Coulomb-MERF Ep.

For l & 0 one can define functions Bi(k,r) to
determine Xi(k, r) by imposing boundary conditions
similar to Eq. (5.2). These functions do depend on
k . However, they are real polynomials in k and
their r dependence is simple,

Bi(k )=P'"(k )1 +P' '(k )

The polynomials I'I'" and I'~ ' may be chosen such
that the well-known expression for the Coulomb-
modified effective-range function E~'(k ) is re-

trieved.
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