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By utilizing the knowledge that a Hamiltonian is a unique functional of its ground-state

density, the following fundamental connections between densities and Hamiltonians are re-

vealed: Given that p, p~, . . . , p„are ground-level densities for interacting or noninteract-

ing Hamiltonians II ], H2, . . . , H~ (M arbitrarily large) with local potentials

v], v~, . . . , vM, but given that we do not know which p belon s with which H, the correct

mapping is possible and is obtained by minimizing dr [u ~( r }p (r )+vz(r )ptt(r )

+ uM(r )p (r )] with respect to optimum permutations of the p's among the v's. A tight

rigorous bound connects a density to its interacting ground-state energy via the one-body

potential of the interacting system and the Kohn-Sham effective one-body potential of the

auxiliary noninteracting system. A modified Kohn-Sham effective potential is defined such

that its sum of lowest orbital energies equals the true interacting ground-state energy.

Moreover, of all those effective potentials which differ by additive constants and which

yield the true interacting ground-state density, this modified effective potential is the most

invariant with respect to changes in the one-body potential of the true Hamiltonian. With

the exception of the occurrence of certain linear dependencies, a density mill not generally

be associated with any ground state wau-e function (is not waue function u representable ) if
that density can be generated by a, special linear combination of three or more densities that

arise from a common set of degenerate ground-state wave functions. Applicability of the

"constrained search" approach to density-functional theory is emphasized for non-v-

representable as well as for v-representable densities. In fact, a particular constrained en-

semble search is revealed which provides a general sufficient condition for non-v represen-

tability by a wave function. The possible appearance of noninteger occupation numbers is

discussed in connection with the existence of non-v representability for some Kohn-Sham

noninteracting systems.

I. INTRODUCTION

The crucial role of the density for elucidation of
the electronic structure of atoms, molecules, and
solids is manifested by the fact that the electronic
Hamiltonian is a unique functional of its ground-
state density (the ground-state electron density
must change when the local one-body potential
changm by more than an additive constant).
Knowledge of the existence of this unique function-
al relationship between density and Hamiltonian, as
first given by Hohenberg and Kohn, has stimulated
intense research in forrnal density- and spin-
density-functional theories.

The local one-body potential portion of the Harn-
iltonian has played an iInportant part in formal ex-
istcncc thcorcms~ thc union between density and lo-

cal potential is indeed a close one. Consequently, it
is natural to ask if it is possible to match Hamil-
tonians to their corresponding ground-state densi-
ties by means of just the local potentials and the
densities. As proved within, the answer is yes when

a multiple choice is presented, and a specific
method shall be provided. (Consult also Ref. 36.)

As we shall observe, rigorous interacting energy
bounds exist in terms of just a ground-state density
and local potentials of both the interacting system
and its corresponding Kohn-Sham noninteracting
system. Moreover, a modified Kohn-Sham effec-
tive potential shall be defined such that its ground-
state energy equals the true interacting ground-state
energy. The Hellmann-Feynman theorem dictates
that this potential must respond in a special way to
processes involving the corresponding interacting
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Hamiltonian.
Are there instances when a well-behaved and

reasonable density belongs to no ground-state wave
function'? The answer to this question is yes, as we
shall see. This is a significant point because it has
generally been assumed, in formal applications of
the variational portion of the Hohenberg-Kohn
theorem, that any "reasonable" density belongs to
some ground-state wave function. Several recent
formulations of density-functional theory, on the
other hand, employ the constrained search ap-
proach ' which does not necessarily require that a
trial density belong to some ground-state wave
function.

II. DENSITY TG HAMILTGNIAN
MAPPING

Consider a set of M Hamiltonians

H),H2, . . . , H)(t (with M arbitrarily large), where

Hk corresponds to X interacting electrons in the lo-
cal multiplicative spin-free potential uk. Specifical-
ly,

Hk T+Vee+——g u, (r;), (1)
i=1

where uk is not necessarily restricted to be a
Coulomb operator, but where T signifies the usual
kinetic energy operator and Vee signifies the usual
electron-electron repulsion operator. Form the fol-
lowing ¹lectron ensemble density Inatrix Dk

' and
its corresponding density pk from the n (k) ground-
state degenerate wave functions %t of Ht, with
ground-state energy Ek ..

Dk (x)x2 ' ' xN
~
x)X2 ' ' xN)

n(k)
= g Ct % t(X(XP ' ' ' XN) qt(X)Xg ' ' ' XN);

1=1

pk(l)=N f DJ (xx2'' xNixx2'''xN)

XdS dx2 ' ' ' dx~ &

with

H)j;( r ]r2 rN )Dk (x (X2 xN I
x )X2 XN)

=Z,D,( '(;;"
where r denotes space coordinate, s denotes spin
coordinate, and x denotes space-spin coordinate.
The ct are restricted by 0&et (1 and gt"' 'ct =1.
For a nondegenerate Ek, n(k) must equal unity.
(Incidentally, integration of pk over all space gives
l(l which is enough to specify the operators T and

Vee. )

By the variational theorem

(H D(N) )+(H D(N) )+.. . +(H D(N) )

&(H,D', '&+(H,D,'"')+" +(H D'"'&,

where the D's on the left-hand side of Eq. (5) are
permutations of the D's on the right-hand side. The
equality clearly holds if and only if a = 1,
P=2, . . . , co=M. Furthermore, the sum of the

(T+ Vee)'s on the left-hand side must equal the
sum of the (T+Vee)'s on the right-hand side,
from which it follows that

f dr [u)(r)p (r)+u2(r)pt)(r)+ . +uM(r)p„(r)]) f dr [u)(r)p)(r)+u2(r)p2(r)

+u~( r )pM( r )],

where the equality applies if and only if t), =l,
P=2, . . . , a) =M. Thus, if we do not know which p
belongs with which H, we would be able to match
the p's to their H's through minimization of

Gi,'2,'. . .",m= r U1 r p r +U2 r pp r

+ +u))t(r)p (r)]

by the optimum ordering of the superscripts in the
functional 61'2P' ' '~.

It should be clear from the above development
that a functional G, to be minimized, exists also for
noninteracting Hamiltomans with multiplicative lo-
cal potentials of the form

N

H.tt=T+ g u.tt(«) (&)
i=1

as well as for interacting Hamiltonians. Finally, for
nonlocal one-body potentials, the densities in 6 are
simply replaced by first-order reduced density ma-

trices. In fact, one is allowed to replace densities by
first-order density matrices even when the one-body

potentials are local. ' (For pertinent discussions of
density-Hamiltonian mappings see the study by Ka-
triel, Appellof, and Davidson. )

III. INTERACTING ENERGY BOUNDS
FROM LOCAL GNE-BODY POTENTIALS

Consider a ground state p of an interacting sys-
tem. Assume further that p belongs simultaneously



to a ground state of some auxiliary noninteracting
system, of the form of Eq. (8), obtained, let us say,
by means of the exact Kohn-Sham formulation.
For these densities are there known equalities which
directly relate the interacting ground state E, to u (r )

of the interacting system and to u, rr( r ) of the auxili-

ary noninteracting system'7 The answer, at least at
present, appears to be no. Towards an affirmative
end, however, we shall now put forth rigorous
bounds that are reasonably tight.

The virial theorem, when applied to the interact-
ing ground state, gives the energy in terms of the
one matrix

E=—(T&+I dr u(r)p(r)

(9)

where q; refers to a Cartesian coordinate and (T& is
the kinetic energy of the interacting system. Like-
wise, apphcation of the virial theorem to the auxili-

ary noninteracting ground state yields

gy. This conclusion also follows if it is assumed
that the noninteracting wave function or ensemble
density matrix is optimum with respect to scaling
within the interacting system.

IV. CHANGES IN EFFECTIVE
POTENTIAI. S FOR INTERACTING

PROCESSES

Once the Kohn-Sham ed~ is known for one situa-
tion it would be nice to be able to immediately put
down v,rf for a new isoelectronic situation corre-
sponding to changes in, let us say, nuclear positions
or nuclear charges. This would, of course, be im-
possible to do exactly, but towards this end a help-
ful relation is now presented which involves a modi-
&ication of u,rr formed by the addition of a constant
to Ueg.

First, let us denote a point along an isoelectronic
path by A,. Accordingly, the interacting Hamiltoni-
an is now written as

N —1

H(A)=T+ g u(r;, A)+ g g p;. . ',

where (T&,ff is the kinetic energy of the nonin-

teracting ground state. Since p(r) is the same for
both the interacting and noninteracting systems, it
follows that'

and the auxiliary Kohn-Sham noninteracting Ham-
iltonian is now expressed by

H, rr(A, ) =T + g u, rr( r;, A, ),

Consequently, addition of Eqs. (9)—(11) provides
the desired bound, namely,

E& ru rpr (12)

v(r)=v(r)+gq; [u(r) ——,v,ff(r)] .

For the special case of an atom, Eq. (13) reduces to

v ff(r ~) =—u(r, A)+ y p(r, g)
~

r r
~

—idr

+u„,[p(r, A, )j,
where U„, is the exchange-correlation potential.
Denote the ground state of H(A, ) by %(A, ) and the
gl'ollnd state of Herr(A, ) by 0 ~rr(A, ). Now add a coli-
stant C(A, ) to H, rf(A, ) and form H, rf(A, ) so that the
lowest eigenvalue of ,H(Err, ) is shifted to become
identical to the corresponding interacting ground-
state energy E(A, ). Specifically,

H, (Afr) =T+g v,rr(r;, A. )+C(A) (18)

In any case, a trapezoid rule approximation, when

applied to the coupling-constant integrationIo ~~'3

between the interacting and noninteracting systems,
suggests that the right-hand side of Eq. (12) is ex-
pected to generally differ from E by roughly the
magnitude of the electron-electron correlation ener-

(19)
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E(A, ) = ()P(A, )
~

H(A, )
~

)P(A, ) )

= (+ ff(~)
~

H ff(A )
~

0 ff(A ) ) (20)

f d ~
(
~ ~ )

Bv ( 1', I0(, )

which means

f d ( ~) av(rA} (21}

(22)

where an infinitesimal change in A, may represent

any arbitrary isoelectronic process (for instance, a
change in any nuclear position or in any nuclear

charge, etc.}. Moreover, Appendix A reveals that in

a certain sense the average value of (BvlM. ) is a
minimum.

Perhaps intensive studies of v(r, A, ) should be ini-

tiated. Perhaps the latter potential, which simply
differs by the additive constant C (A, ) from that part
of the Kohn-Sham potential given by

f p(ri) I ri —r
I

'dri+v [p)

might be sufficiently transferable for small changes
in )), and thus might not have to be recalculated for
every new )L.. In contrast, it is well known that each

part of

p r~ r~ —r ' r~+v„, p

Application of the Hellmann-Feynman theorem
to Eq. (20}gives

M(l)
d ~ Bv(r, A, )

then p shall be said to be "noninteracting wave
function v representable. " Similarly, for an in-

teracting or a noninteracting situation, if p can be
realized by an ensemble composed entirely of a set
of degenerate ground-state wave functions, as in Eq.
(2}, for instance, then p shall be said to be, respec-
tively, "interacting ensemble v representable" or
"noninteracting ensemble v representable. " Clearly,
there follow numerous extensions of the above de-
finitions. Finally, note that according to the present
literature the simple expression v representable
usually signifies "wave function v representable, "
but as a result of the following discussion, a more
elaborate set of definitions is going to be required in

the future. (It is important to mention that it has
now been definitely established that it is safe to as-

sume wave function N representability for an arbi-

trary density. ' This is significant because N
representability is necessary for v representability. )

It has often been explicitly or tacitly assumed in
density-functional theories that reasonable p's are
simultaneously interacting wave function v

representable and noninteracting wave function v

representable. It is the purpose of this section to
prove the existence of reasonable densities which are
not wave function v representable, however uncom-
mon.

Assume that a ground energy level, for a given
interacting or noninteracting H, has a degeneracy of
order q. Form the following ensemble density ma-
trix, of rank q, from the degenerate ground-state
wave functions g;:
D' '(1',2', . . . , N'

i 1,2, . . . , N)

1',2', . . . , N' ~

is not transferable. XQ;(1,2, . . . , N), (23}

V. DENSITIES FOR WHICH THERE ARE
NO GROUND-STATE WAVE FUNCTIONS

The question of whether or not a given p corre-
sponds to some ground-state wave function is an
important one. Accordingly, let us introduce some
terminology: If p belongs to a ground-state wave
function of some interacting H of the form of Eq.
(1), where v is not necessarily restricted to be a
Coulomb operator, then p shall be said to be "in-
teracting wave function v representable. " If p be-

longs to a ground-state wave function of some
noninteracting H,rr of the form of Eq. (8), where

v,~ is also not restricted to be a Coulomb operator,

Xds dxg ' ' ' dx~ (24)

or

(25)

where

pj(r)=N f P;(xxg x~) PJ(xxi x~)

Xd& dxz ' ' ' dx~ . (26)

where 0&d;&1 and gs, d;=1. Consider that
density given by

p(r)=N f D' '(xxi . xz ~xxz xN}
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Q =-g a;li;, (27)

It shaB now be proved that p is not wave function v

representable unless certain linear dependencies

happen to appear.
First of all, since the D' ' of Eq. (23) is expanded

entirely in terms of ground states of the same given
Hamiltonian, Appendix 8 may be invoked and its
theorem immediately dictates that p cannot belong
to a ground state-tuaue function of any Hamiltonian
H' which differs from the given Hamiltonian H by
more than an additive constant in the one-body lo-
cal potential. To rule out wave function v represen-
tability, it remains for us to prove that no ground-
state wave function of the given Hamiltonian yields

p. Accordingly, form the ground-state wave func-
tion Q:

1((n, l, m) =21(r(Ne)P(n, l, m),

n=3;1=0,1,2; m= —I, . . . , +I (31)

where A is a normahzer-antisymmetrizer, g(Ne)
symbolizes the electronic configuration for the
noninteracting ground-state neonlike atom or ion,
and the familiar P(n, i, m) denotes that one-electron
orbital which is occupied by the last electron, where
(n, l, m) denotes the orbital's set of quantum num-
bers. Specifically,

where Z signifies nuclear charge. Assume, for ex-
ample, that the number of electrons N is equal to
11. For this case, let Ig(n, l, m) J denote the set of q
degenerate antisymmetric ground-state Na-like
wave functions which are schematically represented,
in obvious notation, by

y(n, l, m}=R„I(r)rt (e,y), (32)

where, with orthonormal

g,. ~
a;

~

~=1, and let us show that, in general, there

exists no set of a; such that the p(r ) in Eq. (25) may
be simultaneously generated by

p(r)=N f Q(xx2 .x~)*Q(xx2 .xn)

XC& dX2

Set Eq. (25) equal to Eq. (28) and obtain

q q$ $ (5,JdJ. aa, )p;, (r)—=0.
i =1j=1

Except when certain linear dependencies [excluding
those due to p,j{r)=pj,(r)] might happen to exist
among the p,j(r), no solution of Eq. (29) for the a;
is generally possible for q &2, because the number
of independent equations for the a; would exceed
the number of unknowns. Hence, for q &2, wave
function v representability is not expected for those
densities which can be constructed by the linear
combinations given in Eq. (25). [For q =2, and real
1(, and pz, Q=d& g&+id2 p2 would sattsfy Eq.
(29).] The densities in Eq. (25) are, however, clearly
ensemble v representable.

The noninteracting case is particularly important
in Kohn-Sham theory where it has generally been
assumed that well-behaved densities are nonin-
teracting wave function v representable. On the
contrary, we shall now present readily available
counterexamples.

Consider the following noninteracting Coulomb
Hamiltonian:

2 +l
g(3', l', m') ~g(3, l, m) .

i=0m =—l
(33)

Multiplication by N and integration of Eq. (33)
yields

2 n —1 +l
p(r)=2 g g g $(n, l, m)*P(n, l, m)

n =11=0m =—l

2 +l
+-, g g y(3, t, m)'y(3, 1,m). (34)

(An infinite number of nonspherical densities are
also possible. ) The density given by Eq. (34) is
indeed reasonable; it is far from pathological. It is
even always monotonically decreasing from the nu-
cleus, but it is not noninteracting wave function v

representable. Moreover, this means that for the
p(r) given in Eq. (34), there is no one body Hami-/
tonian of the form

h, (rtt) = ——,V' +u,tt{r)

such that the densities of the first 11 eigenstates of
h, tt(r) add to p(r). Or, here one can say that no

ground state single determ-inant giues p(r).

VI. CLOSING REMARKS

where the R„l are Laguerre polynomials and the
F~~ are spherical harmonics. For a good spherica1
density, let D' ' contain equal occupancies, namely,

Heft —T g Zrj (30) For the variational portion of the original
Hohenberg-Kohn formulation, a trial density had to
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be wave function v representable; that is, the trial
density had to belong to some antisymmetric
ground-state wave function. When a wave function
v representable p! is employed, for example, as a tri-
al density for the interacting Hk in Eq. (1), then ac-
cording to Hohenberg and Kohn, there exists a
universal functional F such that

Fk & I drvk(r)pi(r)+F[pt]

F[pt] (% l
T+Vee

l
q!) (37)

F[pl =I [p] (39)

when p is wave function v representable, so that

Q [p] may be viewed as an explicit formal identifica
tion of F[p]. ' Use of Q[p] and related functionals
constitute the constrained search approach to
density-functional theory. In calculations Q[p] is

approximated.
For extensive constrained searches over ensembles

see Ref. 28, for a momentum-space theory consult
Ref. 33, for the recently developed time-dependent
density-functional theory see Ref. 39, and for a very
recent non-Born-Oppenheimer density-functional
theory consult Ref. 40.

For a general sufficient condition of non v

representability by an interacting wave function,
simply extend s the constrained search ' in Eq. (38)

where O'I is a ground-state antisymmetric wave
function of some H! which may differ from Hk
only in the local one-body potential. But, what if
the trial p~ is not wave function v representable, so
that F is undefined. Well, if the trial p! happens to
be ensemble v representable, then Secs. II and V dic-
tate that there is a modification of F[pi] which
may be employed; just replace the q!! in Eq. (37) by
that ensemble density matrix D! ', of the form of
Eq. (2), which yields p! and is composed entirely of
degenerate ground-state wave functions, so that Eq.
(4) is satisfied with respect to some H!. However,
what if the trial p is not even ensemble v represent-
able? Is everything lost? No; on the contrary, just
replace F[p] by Q [p], where'

Q[p]=min(q!&
~

T+ Vee ~%'z) . (38)

(Related functionals ' s are appropriate for one-
matrix formulations. ' ' ' ' ' ) The universal
variational functional Q [p] searches each and every
antisymmetric wave function '0& that generates the
given trial p. The functional Q[p] then delivers
that value of (T+ Vee) which is a minimum. ' It
is obvious that Q [p] requires neither wave function
nor ensemble v representability, only X representa-
bility. Moreover,

to include all those unreduced, X-electron, ensemble

density matrices that give p. If the constrained
minimum in (T+Vee) cannot be attained by any

idempotent unreduced density matrix, then p is not
interacting wave function v representable. For the
noninteracting case, replace ( T + Vee ) by ( T ) .

The development in Sec. V pertaining to nonin-

teracting systems supports the growing feeling that
freedom and necessary adjustments should be given

to Kohn-Sham-like formulations to allow for the
possibilities of noninteger occupation numbers be-

cause not every density can be realized by a single-
determinant ground-state wave function for some
noninteracting system. There is even specula-
tion that there are reasonable densities which can-
not be realized by orbitals which are all eigenfunc-
tions of the same one-body Hamiltonian, with a lo-

cal potential, even if holes are allowed to appear
below the Fermi level. In any case, it has been
shown ' that constrained ensemble searches are
especially applicable for kinetic energy evalua-

tion. '4"
The constrained search approach has recently

been invoked to prove rigorously that each op-
timum single orbital density has to be self-
interaction-free in the exact energy-density func-
tional for the interacting ground state, regardless of
the v representability status of the orbital density.

By "self-interaction-free, " it is meant that the
exchange-correlation self-interaction for the orbital
density exactly cancels its direct electrostatic self-
interaction. Moreover, this implies that the self-
correlation energy of an optimum orbital density
must be zero. [See Eqs. (30) and (31) in Ref. 34].

As stated at the end of Sec. II, Eq. (6) is also
valid if each density is replaced by its corresponding
ground-state one matrix (see the related pertinent
assertion in Ref. 15). Hence, the combination of
Eqs. (6) and (9} allows one to obtain energies from
1 matrices, given-far less information than might
have been suspected would be necessary. Specifical-
ly, given a set of M Hamiltonians and a set of M
ground-state l-matrices, where M is arbitrarily
large, but given that we do not know which 1-
matrix belongs with which Hamiltonian, the
minimization of the appropriate G in Eq. (7}
correctly maps each 1-matrix to its Hamiltonian,
and Eq. (9) then computes each corresponding
ground-state energy.

Note added in proof. I have recently read a
manuscript by E. H. Lieb entitled "Denisty Func-
tionals for Coulomb Systems, " to be published in a
volume edited by H. Feshbach and A. Shimony
(MIT, Cambridge). Although derived independent-
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ly, part of Lieb's analysis of non-u representability
and part of the analysis of non-U representability in
the present article are similar in that both papers
use degeneracies. Note also that Lieb's I'" corre-
sponds to Q [Ref. 21 and Eq. (38) here] and, if
desired, Q is made convex by replacing wave func-
tions with ensembles (Ref. 28} in the constrained
search. Convexity, however, is not necessarily
desirable when one seeks only pure-state solutions.

where

pr, dr,

etc. Equation (A6) reveals the minimum property
of Bu /M, as mentioned in Sec. IV.
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We have the following.
Theorem. '

If p is an ensemble density associated with a de-
generate ground energy level of a Hamiltonian H
with local potential u, then p is not the ground-
pure-state density of any Hamiltonian H' with local
potential u', where u' differs from u by more than
an additive constant.

Proof:
Assume

APPENDIX A IIg) (N) ED (N) (81)

From the definition of u, it follows that
(82)

w(r, A, )= Jp(r2, A, )
~

r —r2~ 'dr2

+uxc[p(r, i, )] .

Insertion of Eq. (Al} into Eq. (22) gives

~&(~) p ~ Bw(r, A, )

(A 1)

(A2)

(A3)

where both E and E' are ground energy levels. Fur-
ther, assume that both the ensemble D' ' and the
pure state 4' yield p. To prove the above theorem,
it suffices to show that this common density as-
sumption leads to the familiar Hohenberg-Kohn-
like contradiction. Accordingly, Eq. (81) implies

(83)

Substitution of Eq. (A3) into Eq. (Al) yields and Eq. (82) implies

(H'D'"') )E' (84)

Now, let us square Eq. (A4) and take expectation
values. We obtain

(A6)

[Observe, by the way, that Eq. (84), as well as (83),
contains a strict inequality because there is a strict
inequality associated with each ground-state wave
function within D' '.] Employ H =H'+(H —H')
in Eq. (83}and H'=H+(H' H) in Eq. (84), then-
add the two resultant equations to obtain the
desired contradiction E'+EgE+E' which com-
pletes the proof.

Note that Eq. (6) can be used for an alternative
direct proof. The left-hand side of Eq. (6) has to be
greater than the right-hand side when the left-hand
side involves any permutation of two densities on
the right-hand side. It follows, then, that a density
can only appear once on each side.
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