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A technique for modifying the laser power spectrum by use of an acousto-optic modula-

tor is described. The theory of the power spectrum resulting from frequency modulation by

Gaussian noise is reviewed, and several examples of broadened laser power spectra are

presented.

I. INTRODUCTION

We have developed a method of controlled modi-
fication of the bandwidth and band shape of a cw
laser power spectrum by superimposing frequency
fluctuations onto a laser beam. This broadening
process is completely external to the cavity, so the
method is applicable to laser beams with no modifi-
cations to the laser itself. This is the first develop-
ment of a device for extending bandwidth and
modifying band shape of an external narrowband
laser beam in a statistically defined way. In princi-
ple, it provides a means for obtaining arbitrarily
wide band, yet single-mode laser beams.

Bandwidth and band-shape control of the laser
power spectrum are attractive for several reasons.
Our direct interest in developing this technology is
for the study of the influence of laser frequency
fluctuations on a strong transition in a two-level
atom. This problem has received considerable at-
tention from theorists (see Refs. 1 and 2, for exam-

ple, and references contained therein), but very little
experimental study has been undertaken. With the
technique described in this report, we can vary both
the magnitude of the frequency fluctuations, and
the rapidity with which they occur, thus providing
a versatile method of studying such a nonlinear
atomic system.

Other potential applications of this method can
be found in the study of laser-atom interactions
which do not involve the hyperfine structure of the
atom, and in the efficient excitation of inhomogene-
ously broadened transitions. Using this technique,
the laser spectrum can be made broader than the
hyperfine splitting, eliminating its effects. In the
second case, excitation of an entire sample of atoms
or molecules can be attained using this technique
when the transition is inhomogeneously broadened.
Thus, instead of saturating the transition for only
one subgroup, the laser spectrum may be broadened

to be in resonance with all the atoms or molecules
in the sample.

The basic functions necessary for superimposing
frequency fluctuations on the laser are provided by
a noise module, a voltage controlled oscillator
(VCO) and an acousto-optic modulator (AOM).
The VCO transforms the voltage fluctuations from
the noise module into frequency fluctuations, yield-

ing a constant-amplitude, varying-frequency rf sig-
nal, as shown in Fig. 1. This rf is added to the laser
frequency by means of the AOM, resulting in a
broadened laser power spectrum. The shape of the
rf power spectrum is strongly dependent on the
power spectrum of the white noise with which the
VCO is frequency modulated.

In this report we describe the techniques used for
superimposing frequency fluctuations onto the laser
beam, discuss the theory of frequency modulation
using Gaussian noise, and present the rf and laser
power spectra obtained by this method.

Time

FIG. 1. Examples of the constant amplitude, fluctuat-
ing frequency rf signal, corresponding to a root-mean-
square deviation frequency of about 40 MHz. The ap-
parent amplitude modulation is due to the limited fre-
quency response of the oscilloscope. The horizontal scale
is 2.5 nsec/div.
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II. THE SYSTEM
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FIG. 2. Block diagram of the electronics and detection

scheme. The components which we used are as follows:
noise module —Micronetics Model 100 MSD-2LEE
(modified); noise amplifer —Avantek Model AV-8; volt-

age controlled oscillator —Avantek Model VTO-8360;
mixer —Vari-L Model DBM1200; local oscillator-
Avantek Model VTO-8240; RF amplifier —Amplifier
Research Model 4W 1000; acousto-optic modulator-
Isomet Model 1250-C. Listing of the products is for in-

formation transfer purposes and should not be construed
as an endorsement by the authors.

The system used is shown in the block diagram
(Fig. 2). The noise module has a flat power spec-
trum (+2 dB) from -1 kHz to -400MHz, with
the voltage following a Gaussian probability distri-
bution. The ratio of upper- to lower- frequency cut-
offs should be greater than 1000 for a well-defined
laser bandshape. The output power level is —47
dBm/10 kHz, corresponding to a rms voltage of
about 200 mV into a 50-0 load. The white noise
power spectrum cutoff frequency is controlled using
a seven- or eight-pole low-pass filter, and the ampli-
tude is controlled by attenuators and/or an amplif-
ier. The 30-dB gain of this white noise amplifier is
flat to +1 dB over the frequency range 2 kHz —400
MHz, and the output power at 1-dB gain compres-
sion is +28 dBm, 25 dB in excess of the maximum

power we ever use to modulate the voltage-
controlled oscillator. This high power capability
ensures that voltage will not be clipped for excur-
sions less than 18 times the rms voltage.

The voltage controlled oscillator was selected
partly for its low input capacitance (-45 pf). The
50-0 impedance of the prototype system and this
input capacitance of the VCO define an RC cutoff
frequency of the noise power spectrum at about 100
MHz. In addition, the frequency versus input volt-
age tuning curve must be linear to within a few per-
cent over the range of input voltage fluctuations,
and the slope of this tuning curve must be large
(-100 MHz/V). The output of this oscillator is

constant in amplitude, but varying in frequency
around 3.3 GHz. The resulting power spectrum
will be described in Sec. III.

The 3.3-GHz output of the VCO beats against
the 3.5-6Hz local oscillator in a doubly balanced
mixer, and the difference frequency signal is ampli-
fied to about 1 %. This provides the rf signal re-
quired by the acousto-optic modulator that super-
imposes the rf power spectrum onto the laser beam.
An essential property of the modulator is its fast
response time (-10nsec).

III. POWER SPECTRUM OF FREQUENCY
MODULATION USING GAUSSIAN NOISE

An understanding of the rf power spectrum ob-
tained by frequency modulation using Gaussian
noise is essential to a full appreciation of the possi-
bilities for superimposing controlled frequency fluc-
tuations on a laser beaxn. This problem was first
worked out by Middleton, ' and applied to a rec-
tangular noise power spectrum by Stewart. The
following discussion presents the theory and solu-
tions for the current application.

The output signal of the oscillator is of the form

VF(t) =Aoexp[i [toat+P(t)]], (1)

where P(t) =2m DV(t') dt' is a Gaussian process
0

since V(t') is a Gaussian process. D is the slope of
the tuning curve of the oscillator, and ~0 is the cen-
tral frequency of oscillation. The product DV
describes the rms deviation frequency. In order to
determine the power spectrum, we must first con-
sider the autocorrelation function; we make no dis-
tinction between the autocorrelation function and
the autocovariance function since VF(t) is an ergod-
ic process (the time averages and ensemble averages
are equal). The autocorrelation function is

T/2
RF(r)= —, Re lim —I VF(t)VF(t+r)dt

T —T/2

= —,( VF(t) VF(t +r) )

Ao
Reexp( —i&07)(exp[i[/(t) —I()(t+r)]] )2

(2)
2

Ao 1

cos(c001 )exp j ——,( [f(t) P(t +1 ) ]')j—
(3)

This last step follows from the Gaussian moment
theorem, and the procedure is outlined in Appen-
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dix A.
We are now in a position to apply the Wiener-

Khintchine Theorem, which relates the power

spectrum W(f), and the autocorrelation function

R (t},by the Fourier Transform integral:

W(f) =4J R (t)coscot dt
0

R(c)=f W(f)coscotdf .

This results in a power spectrum of the form

WF(f) ~AO f dr[cos(c00 —s)'/+cos{cop+co)r]

Xexpj ——,
'
([({(t)—P(r+r)]')] .

The rapidly varying cos(no+co)7 term can be ig-

nored when up+a &&cop—co. Under this condition,

the shape and width of the rf power spectrum is in-

dependent of the central frequency cop. This means

that our power spectrum is not changed by shifting

mp from 3.3 GHz to 200 MHz, since we restrict the
width to values much less than 200 MHz.

The argument of the exponential function must

now be determined for our specific application,
namely when P is the time integral of a noisy volt-

age. Since V(t) is a stationary process, the follow-

ing relation can be shown:

( [P(r) P—(r +r) ]')

=(2~D)'( f V(t)« —f V(r)dt )
=(2nD)~( f V(r)dr )
=(2~D)'f

' f '(V(t))V(tp)) dt, dt~

= 2(2~ D)'f (r t)R~—(c)dr, (4)

where Ry(t) is the autocorrelation function of the

noise. The final step above is explained in Appen-

dix B.
Applying the Weiner-Khintchine Theorem to the

noise power spectrum, we find the rf power spec-

trum to be

WF(f) =Ao f drcos(co —c00)rexp (2') —f Wy(f'} f (r t)cosco't d—tdf'

or, reversing the order of integration in the exponential and evaluating the time integral:

2 2

Ap sinco'7/2
W„(~~)= f drcos{Acor) exp —2(2nD) f W,(co'), dco'

2n p N

where hce=co —c00, and W(co) = W(f)/2n have been used.

We wish now to consider the case of a rectangular input noise power spectrum with a cutoff at frequency B,
described by

~&{)—,0&co&2mB.( v')

0, a) p 2mB

The rf power spectrum for this rectangular noise power spectrum is of the form

2 2 2
'. '2

2s.D (V )r ~s' sinx
WF(hco)= f drcos{bcur}exp dX

2n B o x

When the ratio of the deviation to cutoff frequen-
cies DV, /B is large, the exponential is significant
for only small x(=co'7/2), and we can expand
[(sinx)/x]~ and integrate

'2
SinX

dX 7TB7,
X

where we have kept only the first term.
The rf power spectrum for large DV, /B is

therefore given by

WF(bco)= f drcos(Ecole)exp( 2n D ( V )2)—
2m'

~p' l —(ga)
2 (g~'D'( V') )'" st'( V')

(7)

The FWHM for this distribution is found by set-
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ting the exponential equal to one half, from which

we obtain

b FwHM
——2(2 ln2)' DV, -2.35DV (8)

This rf power spectrum is Gaussian and indepen-

dent of the cutoff frequency. The FWHM varies as
the noise voltage amplitude. This result is not

surprising for in this regime the frequency changes

slowly, and the spectrum is the same as the distribu-

tion of frequencies. The total power is found by in-

tegrating over all frequencies, and is simply Ao/2,
the time-averaged square of the output voltage of
the oscillator.

Equation (6) can also be evaluated when the ratio
of deviation frequency to cutoff frequency,

DV, /B, is small. In this case, we can approxi-
mate the integral

'2
e'BT sin g

dx
x

FIG. 3. The observed rf power spectrum, plotted (a)

on a logarithmic scale and (b) on a square root scale, re-

sulting from frequency modulation using the noise power

spectrum shown in (c), characterized by B =90 MHz and

DV, =27 MHz. The dots are results given by numeri-

cal integration using Eq. (6).

by its asymptotic value of ~/2. Then we get

A o gD 2 ( V& ) /B
2rr (rr D ( V )/B) +(Aro)'

We again evaluate the FWHM by setting

(rr D (V )!B)
(rr D (V )/B) +(pro)

resulting in

AFWHM=rrD ( V ) /B .

(9)

(10)

Ao +D2( V2)&
lVF(bco) = f dr cos(b,ror)exp

2m' B

power spectrum, shown in Fig. 3(c), is 90 MHz, and

the deviation frequency DV, is 27 MHz. Also
shown is the power spectrum as computed by nu-

rnerical integration using Eq. (6). The power spec-
trum has Lorentzian character close to the center,
but falls off rapidly like a Gaussian in the wings. A
definite shoulder is seen separating these two re-

gimes, corresponding to the cutoff frequency B, of
the noise spectrum.

A log-log plot of rf bandwidth versus deviation

frequency is shown in Fig. 4 for deviation frequen-

cies in the range 10—40 MHz. For a cutoff fre-

quency of 10 MHz, this plot is seen to have a slope
of 1, as expected from Eq. (8) for the FWHM of a

The power spectrum in this regime is Lorentzian,
and the bandwidth varies as the noise power spec-
tral density rather than the noise amplitude. The
total power is again found to be Az/2. Because of
the high cutoff frequency B, the frequency output
of the oscillator fluctuates very rapidly, decreasing
the correlation time of the fluctuations. This leads
to an exponential autocorrelation function, and
therefore to a Lorentzian power spectrum.

It is important to note that theoretically this pro-
cess does not involve any amplitude modulation,
and that this ideal situation is very nearly achieved
with the electronic components used.

M
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IV. DISCUSSION

A typical rf power spectrum is shown in Figs.
3(a) and 3(b). The cutoff frequency B of the noise

FIG. 4. Log—log plot of rf bandwidth versus the rms
deviation frequency. The three lines, A, B, and C, corre-
spond to Gaussian noise cutoff frequencies B =10, 27,
and 90 MHz, respectively.
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Gaussian power spectrum. For B =28 MHz and
8 =90 MHz, the slope increases to 1.26 and 1.66,
respectively. This again shows that, for deviation
frequencies of interest to us, 8 must be greater than
90 MHz in order to attain a truly Lorentzian power
spectrum, for which the slope will be 2 [see Eq.
(io)].

Figure 5 shows the laser power spectrum result-

ing from superimposing the rf power spectrum of
Fig. 3 onto a He-Ne laser beam by means of the
acousto-optic modulator. The He-Ne laser beam is
focused to a beam waist radius of -45 pm, result-

ing in a response time of -10 nsec. The acousto-
optic modulator was positioned so as to exhibit a
wide (-100 MHz full width) nearly flat dependence
of efficiency on frequency. This fat response is
crucial for the realization of a well-behaved and
useful bandwidth and band-shape control process.
The laser power spectrum of Fig. 5 is cut off at
about 50 MHz from the central frequency due to
the limited frequency response of the acousto-optic
modulator defining an upper limit to the useful
laser bandwidth obtainable with this device and also
to the modulation frequency. The laser power spec-
trum is determined by beating the broadened modu-
lated laser beam with the unmodulated beam on an

avalanche photodiode which has a gain-bandwidth

product of 80 GHz. The spectrum, as measured by

this method, is almost independent of the linewidth

of the laser itself and reflects the true line shape

only when the unmodified laser line shape is much

narrower than the rf power spectrum. (The laser

which we used was determined to have a sub-MHz

line width on a millisecond timescale. ) The ampli-

tude modulation of the laser beam is measured to be

less than 1%.
Figure 6 shows several examples of laser power

spectra: with constant 8, varying DV „and vice
versa. The change from Gaussian to Lorentzian
line shape is evident. Note also the small depen-

dence on 8 for the two nearly Gaussian lines in Fig.
6(c).

Finally, it should be noted that the theoretical
works of Ref. 1 use a model of the laser field for
which the correlation function of the laser frequen-

cy is described by an exponentially decreasing func-
tion of time, in contrast to the sin(t)/t function pro-
duced here. Our system can be modified to the
theoretical model by replacing our noise power
spectrum, which has a sharp cutoff at angular fre-
quency 2m8 with a Lorentzian noise power spec-
trum {as produced, for example, by passing white
noise through a low-pass RC filter).

lOO MHz

(bj
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IodB

LASER
IO 118
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FIG. 5. The rf and laser power spectra for B =90
MHz and DV, =27 MHz. The wings of this especially
wide rf spectrum are not reproduced in the laser spec-
trum because of the limited frequency bandwidth of the
acousto-optic modulator. (a) and (b) are logarithmic and
square root plots, respectively.

40 MHz

FIG. 6. Examples of laser power spectra (logarithmic
plot) (a) B =90 MHz, DV, =7.9, 18, 32, and 74 MHz
(narrowest to widest). (b) DV, =7.9 MHz, B =90, 27,
and 10 MHz (narrowest to widest). (c) DV, =18 MHz;
B =90, 27, and 10 MHz (narrowest to widest).
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V. CONCLUSION

We have succeeded in superimposing frequency
fluctuations onto a laser beam in order to modify
the bandwidth and band shape. Future improve-
ments include methods of increasing the frequency
response of the modulator, and of increasing the
rate at which the frequency fluctuates. Modulation
schemes employing electro-optic devices are also be-

ing considered.
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APPENDIX A

FIG. 7. Geometrical figure showing limits of integra-
tion over the differential element dt', leading to Eq. (Bl).

APPENDIX B

n=0 n!

The Gaussian moment theorem states that the odd
moments of a Gaussian process vanish, and that the
even moments are related to the second-order mo-
ment by the relation &A "}=[(2n!/2"n!]&A }".
This leads to

& exp [i[/(t) —P(t +r)] ] }
(i)'"&[P(t)—P(t +r)]'")

( —l)" „&[(({}(t)—P(t+r)] ] }"

n=0 (2n)!

Rearranging, and contracting the series back into an
exponential, we obtain the desired result, which is
used in Eq. (3)

&exp[i [4(t) P(t +r)]]}-
[——, & (((}(t)—P(t +r)]') ]"

n=0 n!

=expt ——, &[P(t) P(t+ )] —}r] .

We outline here the evaluation of the term

&exp(i[/(t) —P(t+r]]), leading to Eq. (3). The
procedure involves the series expansion of the ex-
ponential

&exp[i[/(t) —P(t+r)]] }
& t~[4(t) —4(t+r)]1 "&

We explain the last step in the derivation of Eq.
(4), the evaluation of &[P(t)—P(t+r)] ). Since
V(t) is a stationary process, the autocorrelation
function Ry(t, , tq }= & V(tj}V(t2)) depends only

upon the difference t
&

—t2, and is denoted
Ry(t& —t2). The double integral of a function
which depends only on the difference between the
two variables can be reduced to a single integral
with the help of Fig. 7. We want to integrate
Ry(t~ —t2} over the area shown, where Ry(t, —t2)
is constant over the diagonal strip. The strip is of
length

v 2(r t, ) =2(r/v 2—t'),—

and of width dt', where t'=(t~ t2)/v 2 and —where
t' is the new integration variable which varies from

r/V 2 to —r/v 2 in a direction normal to the diag-
onal strip. Therefore

7 Tf f Ry(t2 t, )dt,dt~—
=2f dt'Ry(v2t')2

0 2

where the factor 2 outside the integral is due to the
integral extending over only one-half the area. Sub-
stituting v 2t'~t, we fmd that the integral is sim-

ply

f f &V(t~)V(t2)}dt~dt2

=2f dt Ry(t)(r —t) . (Bl)
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