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The complete-active-space self-consistent-field (SCF) and externally contracted mul-
tireference configuration-interaction (CI) methods are employed for the calculation of the
electron correlation contribution to the electron affinity of F and ionization potential of Ne.
The calculations are performed in the truncated Gaussian-type orbital (GTO) basis set ap-
proximation. The results of the complete-active-space (CAS) SCF approach are lower by
about 0.6 eV than the experimental values. The most elaborate contracted CI calculations
yield the fluorine atom electron affinity equal to 3.09 eV (expt. 3.400 e¢V) and the neon
atom ionization potential equal to 21.25 eV (expt. 21.63 eV).

I. INTRODUCTION

Considerable progress has been achieved over the
past few years in the development of powerful com-
putational strategies for the calculation of accurate
wave functions for many-electron systems.? The
multiconfiguration (MC) self-consistent field (SCF)
approach® has been generalized to what is known as
the complete-active-space (CAS) SCF method.*~®
With the appropriate choice of the active orbital
space®> the CAS SCF method is able to account for
the most important correlation effects in a given
many-electron system.®~® The remaining correla-
tion contributions can be treated by using the mul-
tireference configuration-interaction methods (MC-
CI).>~' The problem of the rapid increase of the
length of the corresponding CI expansion has re-
cently been given computationally feasible solution
in the form referred to as the externally contracted
configuration-interaction ~ (CCI)  method."*~"’
Currently the MC-CCI scheme based of the CAS
SCF eigenvectors determined in the selected active
orbital space represents one of the most promising
and accurate computational methods for the calcu-
lation of energies and properties of many-electron
systems.

In most cases the quantity of primary interest is
the change in the correlation energy upon physical
or chemical processes rather than its absolute value.
It is generally believed that computing the
coresponding differences should be much easier

26

than obtaining accurate values of the total correla-
tion energy. Both the CAS SCF and the MC-CCI
method appear to be perfectly suited for the calcu-
lation of relative values of the correlation energy.
Atomic electron affinities and ionization potentials
represent the area where the two methods can un-
dergo a severe test. The fluorine atom electron af-
finity and the ionization potential of Ne are very
convenient for this purpose and their calculation
has frequently been utilized to verify different

methods.'®~%" Moreover, highly reliable experi-
mental data are available for both these quanti-
ties.28—30

In contrast to several semiempirical treat-
ments'® 1% the present calculations are performed
with the use of highly sophisticated ab initio
methods and they are carried out for all systems
with the same numerical accuracy. Obviously, the
results obtained in this study must suffer from some
unavoidable approximations. The accuracy of our
results is certainly affected by the use of the trun-
cated Gaussian-type orbital (GTO) expansions for
CAS SCF orbitals. Though the error introduced by
the contraction of external pairs in the MC-CCI
method is rather negligible,'®*! the MC-CCI ener-
gies may suffer from the erratic treatment of un-
linked clusters.!>3%33 All these factors limit the ac-
curacy of the calculated electron affinities and ioni-
zation potentials and shooting right at the corre-
sponding experimental values would mean a rather
unexpected cancellation of different errors.?%2426:27
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Furthermore, we do not aim at either reproducing
or predicting the most accurate values of electron
affinities and ionization potentials. The main pur-
pose of this study is to investigate how much of the
pertinent correlation contribution can be recovered
by using the most elaborate computational methods
applicable for many-electron systems and relatively
standard truncated basis sets. This may give some
idea concerning the expected accuracy of molecular
calculations.

II. CALCULATIONS
A. Basis sets

All calculations reported in this paper have been
performed in the truncated basis set approximation.
The optimized (11s 7p) GTO basis sets for F and Ne
determined by Huzinaga®* have been augmented
with two diffuse s-type functions and two sets of
diffuse p-type Gaussians. Then five sets of d-type
functions have been added leading to the (13s 9p 5d)
GTO basis set which has been contracted to the
(10s9p5d) contracted GTO (CGTO) set. The com-
plete description of the (13s9p5d/10s9p5d)
GTO/CGTO basis sets for all systems investigated
in this paper has been given elsewhere.*®

It follows from the second-order perturbation cal-
culations of Eggarter and Eggarter?® and Jankowski
et al.?’ that the contribution of higher than d-type
orbitals to the electron affinity of F and ionization
potential of Ne can be quite significant. To study
the effect of f-type functions the calculations have
been repeated with the (13s9p5d 1f/10s9p 5d 1f)
GTO/CGTO basis sets and the f-orbital exponent
has been varied and optimized with respect to the
total energy of each system. Though including the
f-type GTO results in the lowering of the total en-
ergy for each system, it has a diverse effect on the
calculated energy differences. The latter have been
found almost independent of the f-orbital exponent
variation.

B. CAS SCF calculations

The basic principles and the strategy of the CAS
SCF method have been described in detail else-
where.*~® The method is based on the partition of
the orbital space into subspaces of inactive, active,
and external orbitals. The occupancy of each inac-
tive orbital is kept frozen though its form is varied.
The group of active orbitals may have nonzero frac-

tional occupancies, while all external orbitals are as-
sumed to be empty. The full CI is performed in the
active orbital space with all “active” electrons dis-
tributed among all active orbitals in all possible
ways. The orbitals entering the full CI wave func-
tion are optimized by using the super-CI ap-
proach.*>3¢

It is convenient to introduce some symbolic nota-
tion which would define the inactive-active space
partition and simultaneously the CAS SCF CI wave
function. In what follows we shall use the symbol
(i1,i5,.../a1,a,,...) where i; denote the inactive or-
bitals and a;, are the symbols for active orbitals. In
the present paper we have tried different partitions
of the space of one-electron functions. Obviously,
the choice of the number of active orbitals is limited
by the size of the full CI problem in the active sub-
space. Hence, only the most occupied active orbi-
tals should be included in the active subspace. It
can be concluded from accurate second-order per-
turbation calculations®®?’ for the systems con-
sidered in the present paper that the correlation
contribution to ls pairs is negligible for both the
electron affinity of the fluorine atom and the ioni-
zation potential of Ne. Thus, in all calculations the
1s orbital has been considered as inactive.

The main part of the CAS SCF calculations car-
ried out within this study refers to the following
partition scheme: (ls/2s2p3s3p). We have also
performed some calculations with the 2s orbital
moved to the inactive subspace and the 3s orbital
removed from the active subspace, i.e., the calcula-
tions which correspond to the (1s2s/2p3p) CAS
SCF wave function with six electrons distributed
among four orbitals. Including the 3d orbital in the
active space results in a considerable increase of the
length of the CAS SCF CI wave function. Hence,
we have decided to take into account the corre-
sponding contributions to the correlation energy a
posteriori within the MC-CCI scheme. The same
applies also to the study of the correlation contribu-
tion due to the presence of the f-type orbital.

The CAS SCF orbitals calculated for the
(1s /2s2p 3s 3p) CAS SCF wave functions have then
been employed in constructing the multireference
wave function for the MC-CCI scheme.

C. MC-CCI calculations.

The externally contracted multireference CI
method has been described in recent papers by one
of the present authors.”~!7 In the MC-CCI ap-
proach the space of one-electron functions is parti-
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tioned into frozen, inactive, active, and external or-
bitals. The first group of orbitals (f,f>,...) is kept
frozen in all configurations. The inactive orbitals
(i) are doubly occupied in all configurations contri-
buting to the reference space, while the active orbi-
tals (a;) are allowed to have fractional occupancies
in this space. Finally all single and double substitu-
tions of active and inactive orbitals are allowed and
the so-called contraction over the external orbital
indices is performed.’>~!7 This procedure signifi-
cantly reduces the dimension of the actual CI prob-
lem with rather negligible loss in the accuracy of
the calculated correlation energies.!>3? According
to the definition of different orbital subspaces the
MC-CCI wave function can be completely defined
by the symbol (f1,f>,.../i1,i2,.../a,a,...) and the
specification of reference configurations. It is also
worth while to mention that the orbitals which have
been considered as active in the CAS SCF approach
may become inactive or frozen in the MC-CCI
scheme. Moreover, the dimension of the external
orbital subspace can be reduced by neglecting some
orbitals, or equivalently, by neglecting the corre-
sponding single and double substitutions. In prac-
tice, the unwanted external orbitals are neglected in
the integral transformation step.

The one-particle functions employed in the
present MC-CCI studies have been obtained from
(1s /25 2p 3s 3p) CAS SCF calculations. Only a few
pilot calculations for Ne and Ne* have been per-
formed by using the (1s2s/2p3p) CAS SCF eigen-
vectors. According to the arguments presented in
Sec. II B the 1s orbital is kept frozen for all systems
studied in this paper. In order to reduce the size of
the final CI problem the 2s orbital has been con-
sidered as being inactive within the MC-CCI ap-
proach. The active space in all cases comprises 2p
and 3p orbitals and the MC-CCI wave function can
be given the symbol (1s /2s /2p 3p). To complete its
definition one needs to specify the set of reference
configurations. For all atomic systems investigated
in this study the reference configurations comprise
the Hartree-Fock- (HF-) type ground state configu-
ration and all configurations obtained from it by
single and double replacements within the active
space.

In order to reduce the dimension of the contract-
ed pair functions some of the external orbitals have
been removed during the transformation of in-
tegrals from the CGTO basis set to the set of one-
particle CAS SCF functions. The neglected CAS
SCF eigenvectors involve primarily the s part of the
d-type GTO’s and the p part of the f-type GTO.
For the (13s9p5d /10s9p5d) CGTO basis set we

have removed four s-type functions and two sets of
p-type orbitals reducing the final basis set dimen-
sion to 57 functions. The dimension of the final
set of one-electron functions for the
(13s9p5d 11 /10s9p 5d 1f) CGTO set has been re-
duced to 63 functions by neglecting five s-type orbi-
tals and three sets of p-type orbitals. In all cases
these are the highest energy CAS SCF eigenvectors.

More details concerning the computational as-
pects of the MC-CCI approach can be found in re-
cent papers by one of the present authors.’>~!7 The
computational scheme is based on the earlier gen-
eral CI approach.’ In the first step the CI wave
function involving single and double substitutions
in the reference configurations and limited to the
active orbital space, is generated. The correspond-
ing CI energy is nearly the same as the CAS SCF
energy obtained for the same active space, since
with the present choice of reference configurations
the difference between the two energies is predom-
inantly due to higher than quadrupole excitations.
For the same reason the unlinked cluster effects in
the reference space CI energy should be negligible.

Finally, of some interest is also the first-order
MC-CCI wave function generated for the given
reference space and the associated second-order
corrected total energy,'>!” which is size con-
sistent.>>37—37

III. RESULTS AND DISCUSSION

The calculated total CAS SCF and MC-CCI en-
ergies of F, F~, Net, and Ne are shown in Table 1.
In the same table also the restricted Hartree-Fock
(RHF) energies and the second-order estimates'>!’
of the MC-CCI energy are presented. The data of
Table I are used mainly for the illustration of the
basis set extension effect.

Extending the (spd) basis set (basis 4) to the
(spdf) set (basis B) by addition of a single set of f-
type GTO’s has obviously a negligible effect on the
RHF energies, since only the p-type component of
the f-type GTO may contribute to the RHF energy.
With the present choice of the active space in the
CAS SCF calculations the same should also apply
to the CAS SCF energy data. Some change in the
(1s/252p3s3p) CAS SCF energies of F(P) and
Net(?P), though relatively small, indicates that the
9p subset is still not saturated enough from the
point of view of the correlation effects.

It has been found that both the RHF and CAS
SCF energies calculated with basis B are almost in-
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TABLE I. Total energies (in a.u.) of F, F~, Ne*, and Ne according to different methods.

Basis Orbital Total energy
Method set? subspaces® F(*P) F~('s) Ne*(2P) Ne(!S)
RHF SCF A (/1s2s2p) —99.40801 —99.45789 —127.81597 —128.54498
B (/1s2s2p) —99.408 03 —99.45790 —127.81599 —128.54500
CAS SCF A (1s2s /2p 3p) —99.46995 —99.565 67 —127.87126 —128.63501
A (15 /252p 3s3p) —99.507 83 —99.61022 —127.90700 —128.67789
B (15 /2s2p3s3p) —99.508 53 —99.61023 —127.90774 —128.67789
Second-order MC-CCI A (1s/2s /2p 3p) —99.627 44 —99.747 14 —128.01439 —128.81222
B (1s/2s /2p 3p) —99.64221 —99.76621 —128.04298 —128.83303
MC-CCI A (1s /25 /2p 3p) —99.603 52 —99.71821 —128.002 16 —128.78625
B (1s /25 /2p 3p) —99.62350 —99.73722 —128.026 63 —128.80744

2A refers to the (13s9p 5d /10s9p 5d) CGTO basis set while B denotes the optimized (13s9p 5d 1/ /10s9p 5d 1) CGTO
bases. For F and F~ the f-orbital exponent is equal to 1.5. For Ne* and Ne its value equals 3.0.

®Partition into inactive-active orbital subspaces for the CAS SCF method and frozen-inactive-active subspaces for the
MC-CCI method. For the RHF SCF method all occupied orbitals are considered as active. See text for details.

dependent of the value of the f-orbital exponent
(ay). The MC-CCI energies are a little more sensi-
tive to its variation and the corresponding data are
shown in Table II. Suprisingly enough the aj
values which minimize the total MC-CCI energy
are nearly the same for the given neutral system and
its ion. Since the energy differences for the atom-
ion pairs are hardly affected by the a, value, we
have not attempted more sophisticated optimization
of the f-orbital exponents for each system. The
values ar=1.5 and ay=3.0 treated as the optimal
ones for the F-F~ and Net-Ne pairs, respectively,
are very close to those corresponding to the MC-
CCI energy minima for these systems. All results
reported in this paper for what is called the optim-
ized basis B refer to those values of the f-orbital ex-
ponent.

The quantity of primary interest is the difference
between the correlation energy for the neutral and

the ionic system. The majority of present results
refers to the L-shell correlation effects and the
correlation energy contributions recovered in dif-
ferent calculations are given in Table III. They are
compared with the L-shell correlation energy data
obtained by other authors. Though the present L-
shell correlation energies are considerably smaller
than the values calculated by other authors, the
correlation contribution to the electron affinity of
F, EA(F) and the ionization potential of Ne IP(Ne)
is fairly close to the results of accurate calculations
reported so far. Of the reference results compiled
in Table III the correlation energy data obtained for
the F-F~ pair by Sasaki and Yoshimine?’ are
presumably the most accurate ones. They have
been obtained by using the CI method with single,
double, triple, and quadrupole excitations, and
a very large basis set of Slater-type orbitals (STO’s)
(10s9p 8d 8f6g 4h 2i).*° Including the higher angu-

TABLE II. Total (1s/2s/2p3p) MC-CCI energies of F, F~, Ne*, and Ne and their
dependence of the f-orbital exponent (ay) for the (13s9p5d 1f/10s9p 5d 1f) CGTO basis

set.

Total energy (in a.u.)
as F(*P) F=('S) Ne*(?P) Ne('S)
0.5 —99.607 42 —99.72179
1.0 —99.61740 —99.731 60 —128.01275 —128.79453
1.5 —99.623 50 —99.73703 —128.01923 —128.802 54
2.0 —99.62342 —99.73653 —128.02363 —128.806 51
2.5 —99.62317 —99.736 06 —128.02594 —128.80701
3.0 —99.62189 —99.734 66 —128.026 63 —128.80744
35 —128.026 18 —128.80676

4.0 —128.02519 —128.80561
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TABLE III. L-shell correlation energies of F, F~, Ne™, and Ne and L-shell correlation contributions to the electron
affinity (EA) of F and ionization potential (IP) of Ne. All energies in a.u.

Correlation energy

Correlation energy

F(*P) F=('s) EA(F) Ne*(?P) Ne('S) IP(NE)
This work?
(1s/2s2p 3s3p) CAS SCF basis 4 —0.0998 —0.1523 0.0525 —0.0910 —0.1329 0.0419
basis B —0.1005 —0.1523 0.0518 —0.0918 —0.1329 0.0411
(1s/2s /2p 3p) second-order
MC-CCI basis A4 —0.2194 —0.2893 0.0699 —0.1984 —0.2672 0.0688
basis B —0.2342 —0.3083 0.0741 —0.2270 —0.2880 0.0610
(1s/2s /2p 3p) MC-CCI basis 4 —0.1955 —0.2603 0.0648 —0.1862 —0.2413 0.0550
basis B —0.2155 —0.2793 0.0638 —0.2106 —0.2624 0.0518
Reference results
Sasaki and Yoshimine® —0.2458 —0.3114 0.0656 0.3052
Weiss® —0.2441 —0.3218 0.0777 —0.2369 —0.2987 0.0618
Moser and Nesbet? —0.2345 —0.2909 0.0564 —0.2332 —0.2851 0.0519

Jankowski et al.®

—0.3357

(0.0820)f —0.3200

2See footnotes a and b to Table L.

°CI results including excitations through quadruples (Ref. 23).

‘Symmetry-adapted atomic Bethe-Goldstone calculations (Ref. 21).

dAtomic Bethe-Goldstone calculations (Ref. 22).
“Second-order correlation energies (Ref. 27).
fEstimated by using the data for F from Ref. 26.

lar momentum functions is obviously important
from the point of view of the total L-shell correla-
tion energy. However, in spite of using a much
smaller GTO basis the L-shell correlation energy
difference calculated in the present paper in the
MC-CCI approximation is very close to the result
reported by Sasaki and Yoshimine.

The results of atomic Bethe-Goldstone calcula-
tions of Weiss?! and Moser and Nesbet?? are also
considered to be of high accuracy, though the com-
puted correlation energies are nonvariational.*!
They also depend on the assumed form of the pair
functions.?!  Nonetheless, the atomic Bethe-
Goldstone approach*! appears to be quite successful
in predicting rather small correlation energy differ-
ences. The empirical estimates of the correlation
contribution to the EA(F) and IP(Ne) values based
on the experimental data?® 3" and the HF calcula-
tions'® are equal to 0.075 a.u. and 0.066 a.u., respec-
tively. Hence, the results obtained by Weiss?®!
within the symmetry-adapted Bethe-Goldstone ap-
proach can be considered as highly successful.
However, they seem to indicate a rather nonsys-
tematic character of the method, for they overesti-
mate the correlation contribution to EA(F) and
simultaneously underestimate the corresponding re-
sult for IP(Ne). Similar observations can be made
with regard to the calculations by Moser and Nes-
bet?? based on spin-orbital pairs.*! The missing part

of the correlation contribution to EA(F) is much
larger than than for IP(Ne). On the contrary, the
present MC-CCI values are systematically lower
than the empirical estimates by about 0.01 a.u. in
both cases. Also the CAS SCF results exhibit a
very systematic behavior, though in this case the
missing part of correlation effects is as much as
about 0.02 a.u.

It is interesting to follow the changes in the
correlation contribution to EA and IP due to differ-
ences in the amount of correlation effects accounted
for by a given method. For the CAS SCF approach
with the active space involving only 2p and 3p orbi-
tals the correlation contributions to EA (F) and IP
(Ne) amount to 0.0458 and 0.0347 a.u., respectively,
and they are by about 0.03 a.u. lower than the cor-
responding empirical estimates. On increasing the
active space to (2s2p 3s 3p) the error in the correla-
tion contribution is uniformly reduced by about
0.01 a.u. Additionally, the MC-CCI approach
based on the (1s /25 2p 3s 3p) CAS SCF eigenvectors
corrects the calculated correlation contributions by
ca. 0.01 a.u. The difference between the basis 4 and
basis B results is very small. However, including a
single set of f-type GTO’s worsens the final results
a little. This is presumably due to the effects of the
p part of the f-type GTO set on the correlation en-
ergy of F and Ne%t. Increasing the basis set size
and including the higher angular momentum func-
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tions should in fact lower the energy of F~ and Ne
a little more than those of F and Ne*. The effect
of higher than d-type orbitals on the second-order
correlation contribution to IP(Ne) can be estimated
from the results of Eggarter and Eggarter’® and
amounts to about 0.009 a.u. Hence, quite a part of
the missing correlation contribution to EA(F) and
IP(Ne) calculated within the MC-CCI scheme is due
to the incompleteness of the GTO-CGTO basis sets
employed in the present study.

Another source of the small inaccuracy of our re-
sults can be related to the limitations of the MC-
CCI approach. One of the major deficiencies of
this method is that it does not account appropriate-

ly for the unlinked cluster effects. Though they
should be rather small for large enough active
spaces, their contribution can be still important
when computing the correlation energy differences.
Some part of the unlinked cluster contribution is
neglected in the second-order MC-CCI approach
and this could be the reason that our second-order
estimates of the MC-CCI energy give quite remark-
able results for the correlation contribution to both
EA(F) and IP(Ne). However, the second-order
MC-CCI approach should be considered with some
care, for it may exhibit a rather nonsystematic
behavior. Its performance is based on subtle cancel-
lation effects between the higher-order linked and

TABLE IV. Comparison of different results for the electron affinity of F and ionization

potential of Ne (in eV).?

EA(F) IP(Ne)
This work®
(1s2s/2p3p) CAS SCF basis 4 2.60 20.78
(1s/2s2p 3s3p) CAS SCF basis 4 2.79 20.98
basis B 2.77 20.96
(1s /2s /2p 3p) second-order MC-CCI basis 4 3.26 21.71
basis B 3.37 21.50
(1s/2s /2p 3p) MC-CCI basis 4 3.12 21.34
basis B 3.09 21.25
Reference ab initio results
Weiss® 3.47 21.52
Moser and Nesbet? 3.37
Moser and Nesbet® 2.90 21.25
Sasaki and Yoshimine 3.12
Staemmler and Jungen® 3.62,3.70 21.52,21.60
Eggarter and Eggarter® 21.59
Jankowski et al.! 3.53
Semiempirical estimates’
Clementi and McLean* 3.37
Osiiz and Sinanogly' 3.23
Schaefer et al.™ 345
Sasaki and Yoshimine! 3.40,3.48
Experimental 3.400" 21.63°

2] a.u.=27.21¢V.

"Based on the data of Table I.
‘Reference 21.

dReference 42.

‘Reference 22.

fReference 23.

8Reference 24.

hCalculated from the second-order correlation energy data (Ref. 26).

iCalculated from the second-order energy data (Ref. 27).

iResults obtained by combining different, ab initio results and empirical estimates of the

correlation contribution.
kReference 18.
'Reference 19.
mReference 20.
"References 28 and 29.
°Reference 30.
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unlinked contributions.?>3%3839

Our final results for EA(F) and IP(Ne) obtained
according to different approximations are shown in
Table IV. They are compared with ab initio calcu-
lations of other authors, with semiempirical esti-
mates based partly on the calculated values and
with the experimental data. The present results fol-
low from highly systematic ab initio calculations.
The methods employed in this study have a very
wide range of applicability in atomic and molecular
calculations and the results obtained in this paper
set up to some extent the corresponding accuracy
limits. With truncated basis sets of moderate size
which are used in molecular ab initio studies one
can hardly expect to have a better accuracy for the
calculated energy differences than that for the
present values of the electron affinity and ionization
potential. The performance of the CAS SCF
method is fairly good provided the active orbital
space is large enough to account for the most im-
portant correlation effects. According to the
present results half of the missing portion of the
correlation effects is then accounted for by the
MC-CCI method based on the CAS SCF eigenvec-
tors. The final results, however, are still by about
0.3 eV lower than the corresponding experimental
data. This error is presumably the right estimate of
the accuracy which can be achieved in similar
molecular calculations.

It follows from the data of Table IV that several
methods which appear to be less sophisticated than
those employed in the present investigations have
yielded much better results for both EA(F) and
IP(Ne). However, in most cases these methods do
not exhibit the same accuracy with respect to the
two electronic processes. Nonetheless, the methods
which are primarily based on the ordinary second-
order correlation energy data are quite successful.
This is presumably due to some interplay between
the higher-order linked and unlinked contributions

to the correlation energy whose mutual cancelation
can be to some extent expected. Hence, correcting
the MC-CCI correlation energies for the erratic
treatment of unlinked clusters may lead to some im-
provement of the final results. However, this im-
provement is of the order of magnitude of the basis
set trunctions effects and in principle both these
factor should be carefully considered. The higher-
order excitations that are not accounted for within
the MC-CCI approach based on the CAS SCF solu-
tion seem to be of little importance.

Another factor which makes some contribution
to the difference between the present results and the
experimental data is the limitation of the active or-
bital subspace to s- and p-type shells. This excludes
certain classes of excitations which may significant-
ly contribute to the missing part of the correlation
energy differences.*> However, increasing the di-
mension of the active space makes the correspond-
ing calculations rather difficult, if not impossible, at
the molecular level.

Finally, let us mention that much higher accura-
cy can be expected for atomic and molecular prop-
erties which are expressible in terms of the energy
derivatives.* The correlation contribution involves
then differences of the correlation energy differ-
ences. It follows from our recent studies of molecu-
lar polarizabilities”® that the electron correlation ef-
fects recovered within the CAS SCF scheme can be
sufficient for calculating highly accurate property
values. Since in most cases the main attention is
paid to the accurate prediction of electric and mag-
netic properties of many-electron systems, the inac-
curacy problems encountered in the present study
should be less important. However, predicting the
energies of electronic processes in many-electron
systems with uniformly better accuracy than that
achieved in the present paper represents a rather
difficult task.

*Permanent address: Institute of Organic Chemistry,
Polish Academy of Sciences, Kasprzaka 44, PL-01-224
Warsaw 42, Poland.
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