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The wave equations for photons and electrons are presented. The wave functions must
include positrons as particles as well as electrons and photons. These differential equations
are shown to be equivalent to the unrenormalized perturbation series generated by Feyn-
man rules. The procedure for replacing the bare mass and charge by the experimental
values (renormalization) is illustrated for the case of the dressed electron. The introduction

of atomic nuclei is discussed.

I. INTRODUCTION

Considerable progress has been made in recent
years with the aid of computers in developing nu-
merical techniques for computing the properties of
atoms, molecules, and more complicated systems
using the nonrelativistic wave equations. Require-
ments of more accuracy and the need to include
photons have, however, created problems to be
solved in the domain of relativistic quantum elec-
trodynamics. Since, however, quantum electro-
dynamics is presented in terms of quantum-field
operators and Green’s functions instead of wave
functions, techniques cannot readily be transferred.
There is no identification of photon-electron wave
functions satisfying local differential equations in
the published literature. To the contrary, it is often
stated that there is no wave function for the photon.

Landau and Pierls' attempted to find these wave
functions and the equations they satisfy. Unfor-
tunately, the equations satisfied by their wave func-
tions were differential integral in form. They were
of such complexity that few if any applications
have been made of them. Their difficulties can be
traced to the unfortunate choice of the electromag-
netic fields in the form of E+iB as the classical
limit of the photon wave function.

The Green’s-function formulations? of quantum
electrodynamics suggest strongly that wave func-
tions exist. In particular, Feynman? has developed
a set of rules for drawing diagrams and interpreting
them for the purpose of constructing the perturba-
tion expansions of the Green’s functions. We shall
use these rules to verify that we have found the
correct equations for the wave functions for pho-
tons and electrons.
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In order to identify the photon wave function, a
thought experiment capable of measuring photon
coordinates has been studied.® This analysis indi-
cates that the classical analog of the photon wave
function is the electromagnetic four-vector potential
A*. Tt is this identification that has allowed us to
write relatively simple differential equations sat-
isfied by the photon-electron wave functions.

The wave functions are in Fock space, that is,
they can be thought of as an infinite column matrix
consisting of all numbers of electrons, positrons,
and photons consistent with the total charge and
quantum numbers of the system. For example, the
Fock-space wave function for the dressed electron
consists of a one-electron wave function, a one-
electron —one-photon function, a one-
electron —one-pair function, a one-electron—two-
photon function, etc.

These wave functions satisfy an infinite set of
differential equations that link them together. We
shall begin in Sec. II by writing a few of these equa-
tions and then presenting sets of rules based on dia-
grams that describe the construction of any member
of the infinite hierarchy.

To verify that these differential equations are
correct, we shall in Sec. III show how to write the
integral equations corresponding to these differen-
tial equations. Iterating these integral equations
leads to the rules for writing the perturbation series.
We shall note that these rules are equivalent to
those of Feynman.?

In order to identify the expressions for the renor-
malized mass and charge, we shall, in Sec. V, con-
sider the two lowest-order wave functions in the
dressed-electron Fock-space wave function. Finally,
in Sec. VI, we shall have a few words to write on
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the addition of atomic nuclei to the equations for
photons and electrons.

II. DIFFERENTIAL EQUATION
HIERARCHY

The Fock-space wave functions for photons and
electrons include, in addition, a third set of coordi-
nates for the positrons. We can write a component
of the infinite column matrix wave function in con-
figuration space in the form

g’[ln,“zu...( 1,’2," . .N,; 1:’2‘;”. ..Na”;T”',E”’,- . .Nﬂl) .
(2.1)

This is the wave function for N’ electrons, N ' pho-
tons, and N'” positrons. It has arguments that in-
clude the space-time coordinates of point 1’ for an
electron, point 2’ for an electron, etc., point 1" for a
photon, 2" for a photon, etc., and point 1"’ for a
positron, 2’ for a positron, etc. Photon coordinates
are identified by a subscript “a”, positron coordi-
nates by a bar overhead, and electron coordinates
have no additional identifying marks. The photon
polarizations are indicated by the superscripts u,
W, etc. There is a set of electron-spin quantum
numbers corresponding to each electron space-time
point and a set of positron-spin quantum numbers
for each positron point. These quantum numbers
label the four elements of a Dirac wave function in
the case of a single electron or positron wave func-
tion. We shall think of the wave function in (2.1) as
being the matrix that would be constructed by tak-
ing the direct products of Dirac column matrices
corresponding to the electron points and the Dirac
row matrices for the position points. Thus each ele-
ment of the matrix in (2.1) can be labeled with sub-
scripts made up of the spin quantum numbers for
the electrons and positrons. Of course (2.1) is more
general than a direct product of one-electron and
positron wave matrices.

The one-particle wave functions are coupled to
two-particle functions by the three equations,

(iBp—mW(1') = —ey 7(1;,1') , (2.2)

YA =i )= — (T, 1,7)y,
(2.3)
and
By PP =5e Te[p(1",T"E)yk],  (2.4)
where

T 1 . . ~
f(l”,l"i)=7 lim [ lim (1",2")
Yé’-—)?;' xg —)x(l)”—

0
x2

+ lim  ¢(1”,2")],
xg”_’x‘l)"— ]

x(z]n <x(l)n

o > xO"

(2.5)

and we are using units where #i=c=1. The sym-
bols m and e represent the bare electron mass and
charge. The limiting processes in the last two equa-
tions are necessary to avoid singularities and are
equivalent to the replacement of the field-operator
combination YA*¥ by the commutator [¥,4#¥] in
quantum-field developments.*

We see that a two-particle wave function acts as a
source for each one-particle function. Thus, for ex-
ample, an electron wave function is generated by an
electron-photon wave function when the electron
and photon coordinates are placed at the same
space-time point.

Higher-order equations can be written by taking a
kind of direct product of Egs. (2.2)—(2.4) except
that additional terms may have to be added to the
right-hand side. From Eq. (2.2), we can see that the
equation with two differential electron operators on
the left is given by

(iay—m )(i82'~m )l_/{( 1',2’)
=eZy, Y, " (,2,15,2,) . (2.6)

“Multiplying” Egs. (2.2) and (2.4) and adding a
term gives

i@y —m )3y AP M1, 15) = —ie8(1', 1"y (1" — ey, Trp [ (1, 17,1, T "H)p#] 2.7)

The trace Tr;~ is applied only to the spin quantum numbers 1” and 1.
Finally, an example of an equation with three differential operators can be derived by “multiplying” equa-

tions (2.2), (2.3), and (2.4) and adding terms to obtain
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(iR —m )3T, 10T ) —iB g —m)
=ie Tr{ (1", T"*)y*1(id; —m)8(1',1"")

+eZ"1"1"'8(1',1,")8( 1”,1,")+iezz—,lg7l(1’, l‘lz’Tn)Zps(lu,lln)
_ieZZ"Tr[g-q(lu, léll’Tlli)Z“]a(11,111;)+ie21ﬂ£17(1n, 1‘;",T”,)')_/178(11,1”)

ey, Trp[p ™M, 17, 1, 1, T

Just as Eq. (2.3) can be derived from Eq. (2.2) by
taking its adjoint, so can higher-order equations be
generated by taking the adjoints of all the Fermions
in an equation.

The differential equations that we have written as
well as any other equation in the hierarchy can be
constructed with the aid of two sets of rules. We
shall first list the rules for drawing the diagrams
corresponding to an arbitrary member of the hierar-
chy and then write the rules for converting these di-
agrams into algebraic expressions. The diagrams
corresponding to the equation where the differential
operators are applied to a wave function containing
N electron coordinates, N’ photon coordinates, and
N adjoint electron coordinates are drawn as fol-
lows.

A. Rules for differential equation diagrams
We have the following.

(1) Each diagram has a row of N' 4+ N” + N’
points.

(2) The points are numbered from the left as 1’,

2, up to N’ (electron points) then continuing, 1",

2", up to N” with a subscript a on each (photon"

points), and finally followed by 1", 2", up to N'”
with bars over the numbers (positron points). ‘

(3) All possible distinct diagrams are drawn so
that their points are unconnected or are connected
in one or more of the following ways: (a) A solid
line above or below the row may connect a point la-
beled with a triple-primed, barred integer to one
with a single-prime label. (b) A dashed line may
pass above the row to connect two points numbered
with double-primed integers with subscripts a. (c)
A dashed line passing under the row may connect a
triple-primed, barred point to a point labeled by a
double-primed integer with a subscript a. (d) A

solid line below the row may connect a single-

primed labeled point to a point with a double-
primed label with subscript a. (¢) Not more than
one line may be attached to a point by the above
rules except that a triple-primed, barred point may
have one solid and one dashed line below the row

,T’”)Z,]"’]Z'rllm X (2.8)

(and no others) attached to it. It is convenient to
add an arrowhead to each solid line pointing toward
the single-primed point to which it is connected.

B. Translation of differential equation diagrams

We have the following.

1. The left-hand side of the equation

(@) A wave function y* appears on the left-
hand side of the equation. Its arguments are those
represented by the points in the diagrams and they
appear in the same order as the points. The points
without subscripts or bars represent electron space-
time coordinates and column matrix element in-
dices. The points with subscripts a represent pho-
ton space-time coordinates and polarization indices.
The points numbered with integers with bars over
them imply positron space-time coordinates and
row matrix indices.

(b) To each electron coordinate and matrix index
set is applied an operation (id—m) from the left.
To each photon coordinate set is applied the opera-
tor a,,a'l. Finally, to each positron coordina(t_e and
matrix index set is applied an operator ( —id —m)
from the right. ‘

2. The overall sign of a term on the right

Each diagram corresponds to a term on the right
side of the equation. The sign of the term is given
by a factor (—1)?, where p is the number of fermion
points that would be crossed in the following rear-
rangement. Move each point, connected to a second
point to its right by a solid line, to the adjacent po-
sition on the second point’s left.

3. The contribution of a set of connected points
to a term on the right

(a) Each connected set of points contributes a fac-
tor to the term represented by the diagram and may
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insert coordinates into wave functions in the term.
Coordinates of points, joined by a line above the
row of points and of three points connected togeth-
er by lines below the row, do not appear as argu-
ments in wave functions. On the other hand, the
space-time coordinates of an isolated diagram point
appear twice in the wave functions together with
the corresponding polarization and matrix indices
for (1) a photon and an electron if the point label is
once primed but unbarred and unsubscripted, (2) an
electron and a positron for a point whose label is
double primed and “a” subscripted, and (3) a posi-
tron and a photon if the point label is triple primed
and barred. If a connected set consists of two
points joined by a line below the row, only the
space-time coordinates represented by one of them
will appear (once) in the wave functions. This sin-
gle set of coordinates is associated with (1) electron
matrix row indices for a pair of connected unbarred
points, (2) a photon polarization index for a pair of
unsubscripted points, and (3) positron matrix row
indices for a barred point connected to a subscripted
point. The order of the coordinates appearing in
the wave functions is the same as that of the dia-
gram points with the understanding that a pair of
connected points is assigned the position of the
right-hand point.

(b) A point with a double-primed label with sub-
script @ with no connections to it requires that the
positron coordinates represented by it be inserted
into the wave function to the left of the electron
coordinates. It further requires that the wave func-
tions in the term represented by the diagram appear
in two averaged sets, one set evaluated so that the
electron coordinates represented by the point ap-
proach the positron coordinates from later times,
the other from earlier times. The limit must be tak-
en so that the times of the two coordinate sets must
approach each other before the spatial coordinates.
Thus, if the diagram has n, isolated, subscripted
points, 2" wave functions appear in the term and it
is multiplied by 2.

(c) A factor —ey* is introduced for each set of
connected points. If the point set has contributed
electron coordinates to the wave functions on the
right side of the equation, the associated matrix in-
dices are matrix multiplied with the right matrix in-
dices of y#. If the point set has contributed photon
coordinates to these wave functions, the associated
polarization index is scalar-product summed with
the index of y#. If the point set has contributed
positron coordinates to the wave functions, the as-
sociated matrix indices are matrix multiplied with

TABLE 1. Algebraic expressions on the right are
represented by the diagram elements on the left. These
expressions appear on the right-hand side of an equation.
The plus and minus superscripts indicate limits from the
positive and negative time sides.

o' _ey \’/"7( de )
Ee{Tr]--[\f( Ty H)
+Tep [y "_‘“)2’“'"]}
_e:{,'r]( m m )7

Yo x| =zl

'3 —ied (R Y )
O N e A
W e s )
L85 erfiagmsie,m
% i(i?fi«‘m)S(j',k"')

T i3,d"8(j" k") gHrH¥

the left matrix indices of y*. Those indices of y¥,
not summed out in the above steps, are identified
with those corresponding to this point set intro-
duced into the wave function on the left-hand side
of the equation.

(d) A line joining two points requires a factor i
times a delta function whose arguments are the
space-time coordinates represented by the two
points. A dashed line implies, in addition, a factor
g v Whose polarization indices are the same as those
associated with the two connected points. The delta
function for a dashed line passing above the row
has one of its coordinate sets operated upon by
3,0". A solid line above the row requires the appli-
cation of the operator (i@ —m) to its electron coordi-
nates.

The contribution of connected point sets to terms
on the right-hand side of the differential equation
are listed in Table I. The diagrams for Egs. (2.7)
and (2.8) are presented in Figs. 1 and 2.

Of course the solutions to these differential equa-
tions are not determined until we specify the boun-
dary conditions. Since the equations are of the first
order in fermion coordinates, the electron and ad-
joint electrons need only to be specified over half

FIG. 1. Diagrams corresponding to Eq. (2.7).



FIG. 2. Diagrams corresponding to Eq. (2.8).

the boundary. The photon differential operator is,
however, of second order so that photon wave func-
tions must be given over the entire boundary, or
each function and its derivative must be given over
half of it. It is often convenient to take a hyper-
cylindrical boundary with a flat constant time top
and bottom extending to infinity in the spatial
directions. Then the timelike cylindrical sides are
at spatial infinity. If we use wave packets, the wave
functions vanish on the timelike boundary.

In most physics problems, the boundary values
are expressed in terms of wave functions on a con-
stant time surface extending to spatial infinity.
These wave functions must have the symmetries
prescribed by the Pauli principle, namely, they must
be antisymmetric for fermion exchange and sym-
metric for bosons (photons in this case). In addi-
tion, these boundary wave functions must be made
up of eigenfunctions of the total Hamiltonian be-
longing to positive energies if the surface composes
the initial time boundary. This assures that positive
energies propagate forward in time. If these initial
condition wave functions involve isolated packets
for individual particles, then the electron packets
are made up of positive-energy eigenfunctions of
the Dirac equation while the positron packets con-
sist of adjoints of the negative-energy eigenfunc-
tions. The packets and their time derivatives must
be prescribed for photons. Again they must consist
of positive-energy plane waves.

III. INTEGRAL EQUATIONS

The integral equations corresponding to the dif-
ferential equations in the last section are easily writ-

Y1,2)=P PK(1', 1) K(2',2)dor(1,2)
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ten in terms of the Green’s functions that satisfy

8,,265’]""(2,1)=ig’”'8(2,1) R (3.1)

(idy—m)K(2,1)=i8(2,1) , 3.2)
and

K2,1)( =i —m)=i8(2,1) . (3.3)

With these Green’s functions, Egs. (2.2) —(2.4) may
readily be converted into the integral equations

Y1) =PK(1', Ddar(1)
+ie [ K1, 1)y 97(1,1,)d%, ,
(3.4)

YT =—Pp(MdeK(1,1")
+ie [ (1, Ty K(1,1")d %,
(3.5)

and
Yr(1) =PI, 1)d B 9¥(1,)
—ie [ JH(1",1)
XTr (1,15 )y ld*, . (3.6)

The surface integral is over the surface on which
the boundary values for the differential equations
were given. Applications of the differential opera-
tors to these integral equations reduces them back
to the differential equations (2.2) —(2.4).

Higher-order integral equations can be written by
taking a kind of “direct product” of Egs.
(3.4)—(3.6) with an additional volume integral term
on the right generated from each of the extra terms
that were added to the corresponding differential
equation beyond those generated by direct products.
In the case of the equation for ¥(1’,2’), there are no
such extra terms so that “multiplying” Eq. (3.4) by
self gives

+ie [ K1, 1y, K(2',2)doy™(1,,1,2)d%,

+ied [K(1,1doK(2,2)y, $™(1,2,2,)d*,

+(e? [ [ K, 1y, K(2',2)y, 9"™(1,,1,2,2,)d . 3.7)
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o+ |

FIG. 3. Diagrams corresponding to Eq. (3.4).

N+ ]

FIG. 4. Diagrams corresponding to Eq. (3.5).

However, the differential equation where y#(1’,1;) appears on the left [Eq. (2.7)], has a corresponding integral
equation that can be generated by “multiplying” Eqs. (3.4) and (3.6) together and then adding the extra terms

to obtain

Pr(, 1) =P PE (1, Dderd £(17,2)dG9%(1,2,)

+ie [ g51_<(1’,1)Z,,J‘.‘V(1”,2)d‘&2g”v(1,,,1,2a)d“xl
—ie@ [ K(1',1)den (1", ) Tes[(1,2,2)p31d x

tie [ K, DPTEQ DD,

—(ie)?* [ fK(1',1)Z”I(‘V(1",2)Tr2[_zg"(10,1,2,51)Z§]d4x1d4x2.

The term containing (1) corresponds to first term
in Eq. (2.7). It is the “extra” term that does not
arise from the “multiplication” of the two lower-
order integral equations. Of course, the higher-
order integral equations can be checked by applying
the proper derivative operator to recapture the dif-
ferential equations.

We can easily draw diagrams to represent the in-
tegral equations. For example, Fig. 3 corresponds
to Eq. (3.4). The solid lines with arrows indicate
the electron propagators K(1’,1), and the open cir-
cle stands for iey, just as in Feynman diagrams.
The point on the boundary tells us that we must in-
sert its coordinates into a wave function following a
surface element matrix dg and then integrate its
space-time coordinates over the boundary. If the
circle represented a vertex in a Feynman diagram,
an electron line and a photon line would be attached
to it in addition to the outgoing electron line. Thus
it is not surprising that the circle requires us to in-
sert electron and photon coordinates representing
the same space-time points into the wave function

7’
4
’
’
/
-0 -=6 -

FIG. 5. Diagrams corresponding to Eq. (3.6).

(3.8)

I

following the ¥, in the last term in Eq. (3.4) and to
integrate the circle space-time coordinates over the
volume. In a similar way, we can draw the dia-
grams in Figs 4 and 5 and interpret them to give
Eqgs. (3.5) and (3.6).

In the same way, we can construct Figs. 6 and 7
to represent Egs. (3.7) and (3.8). If we compare
Figs. 1 and 7, we see that we may think of the
points in the interior of the integral equations as be-
ing the same as those for the differential equation.
The second diagram in Fig. 1 leads to the first,
second, third, and fifth diagrams of Fig. 7 by at-
taching a solid line to the electron point and a
dashed line to the photon point. The other ends of
the lines are attached in all possible combinations to
interior circles on surface points. The fourth dia-
gram in Fig. 7 is the extra one that does not result
from multiplying Figs. 3 and 5 together. The line

o2 Y P

= PN T

FIG. 6. Diagrams corresponding to Eq. (3.7).
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FIG. 7. Diagrams corresponding to Eq. (3.8).

joining the points in the first term in Fig. 1 has had
a circle inserted in it to form the fourth term in Fig.
7. Again a dashed segment must be connected to
the photon point.

The diagrams for the integral equation for
¥(1',1"") are shown in Fig. 8. We note there that
the second diagram is, except for the boundary, ex-
actly the same as the next to the last diagram in
Table I for differential equations. Thus those lines
arcing above the points are carried over directly
from the differential equation diagrams to the in-
tegral equation diagrams. The next-to-the-last dia-
gram in Table I represents a factor K(j',k"") for in-
tegral equations while the last diagram represents a
factor J#¥(j",k"). As a consequence of this,
¥(1,1”) includes a term K(1',1”) which is indepen-
dent of the boundary conditions. Similarly
P#(1”,2") includes a term J #¥(1”,2").

IV. PERTURBATION EXPANSION

The integral equations in the last section can be
iterated to generate a series for any given wave
function. This series will involve powers of e. For
example, if we want the series for ¥(1'), we can start
with Eq. (3.4). Equation (3.8) provides an expres-
sion for ¥"(1,1,). Substituting this expression into
Eq. (3.4) provides an integral equation for 1(1') with
six terms on the right-hand side with powers of e up

FIG. 8. Diagrams for the integral equation for

_"é( II,TIII )'

FIG. 9. Diagrams for (1”) after one iteration. Lines
represent propagators while internal points below the top
row represent vertices that supply a factor iey".

to e®. Although they involve ¥(1’) for which we are
solving, they also require a knowledge of
$™1,1,,2)), Y(1,1,17), and $7(1',2,15,1") over
the volume. These last three wave functions appear,
however, in terms multiplied by e?and 3. If we in-
clude only powers up through that of e, we need
know only ¥(1') and ¥(1’,1;) on the surface to ob-
tain an approximation to ¥(1’).

We can continue to iterate the hierarchy of in-
tegral equations to generate higher and higher-order

FIG. 10. Some of the diagrams that result from three
iterations for ¥(1"”’). Only terminal diagrams are shown.
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terms depending only upon wave functions given at
the boundary. The resulting series will be the (un-
renormalized) one that can be written with the aid
of Feynman diagrams.? The expressions we get for
the series for ¥(1’) are rather complicated, but we
can use the diagrams for integral equations to
represent them more simply. The first iteration
that we have just described to compute (1) can be
diagrammed by replacing the second diagram in
Fig. 3 by diagrams constructed by attaching points
1" and 1" in Fig. 7 to the circle in Fig. 3. The result
is shown in Fig. 9. We see, as already noted, that
the first two terms require a knowledge of #(1’) and
¥(1,2,) only on the boundary. A factor e appears
for each internal point or circle so that the third
and fifth diagrams represent terms of order e* and
the last of order e°.

To continue this diagram iteration for #(1'),
we must construct the diagrams for ¥(1',15,2;),
¥(1',2',1"), and ¥"(1’,2',1.,1"") and then connect
them in the appropriate fashion to circles in Fig. 9.
A large number of diagrams result and some of
them that have no circles are illustrated in Fig. 10.
We see examples of Feynman electron self-energy
diagrams in the fifth and seventh terms and a vacu-
um polarization diagram in the last term. It is use-
ful to note that these diagrams are drawn so that
the points on the first row represent the arguments
of the wave function for which the series is generat-
ed while each succeeding row represents an itera-
tion.

From the way in which we have generated these
diagrams, it is clear that all of those that Feynman
would write will appear and that those with no cir-
cles may be converted into algebraic expressions
with the aid of the following rules.

C. Rules for interpreting
perturbation diagrams

We have the following.

(1) The points in the top row represent space-time
coordinates and spin and polarization indices in the
order in which they are to be written in the wave
function represented by the perturbation series. A
point with a dashed line attached represents photon
coordinates and a point with a solid line attached
represents electron coordinates if the arrow head
points toward the point or positron coordinates if

the arrow head points away. _
(2) The points on the surface represent the follow-

ing contributions to the term represented by the dia-
gram. (a) A point numbered j with a solid line leav-
ing it introduces a surface integral ng g; ahead of a

wave function including the argument j and
electron-spin column matrix indices multiplied with
the right-hand matrix indices of dg;. (b) A point
numbered j with a dashed line attached introduces a
surface integral over the coordinates j, Sﬁ dd;,
where

and these coordinates and the photon polarization
index are inserted in a wave function lying to the
right. (c) A point numbered j with a solid line
entering it introduces a surface integral — g5 dg; to
the right of a wave function containing j as an ar-
gument and positron-spin row matrix indices multi-
plied with the left-hand matrix indices of dg;. The
order in which these coordinates appear in the wave
function for the term is the same as the order of
their corresponding points from left to right.

(3) The term represented by a diagram must be
multiplied by (—1)?, where p is the number of times
the solid lines in the diagram cross each other plus
the total number of fermion points lying between
pairs of solid lines above the row plus the number
of pairs of such points where the arrowhead points
from left to right.

As we have already noted, the wave functions
specified on the boundary must be antisymmetric to
fermion coordinate exchange and symmetric to all
other exchanges. The last rule provides for the Pau-
li principle. These rules are equivalent to those in
standard texts for unrenormalized Feynman dia-
grams. The procedures for rearranging these series
to convert the bare mass m and the bare charge e
into their dressed (or renormalized) counterparts are
well known and need not be considered here. We
shall, instead, in the next section consider how to
make this renormalization when the differential
equation hierarchy is used.

V. RENORMALIZED MASS AND CHARGE

The quantities m and e that appear in the previ-
ous sections are the bare mass and charge and, of
course, are unknown. To see how the renormalized
(experimental) values can be introduced into the
equations, we shall consider next the solutions of
the differential equations for the dressed photon
and electron.

To find the Fock-space wave function for an iso-
lated photon, we can start with Eq. (2.4). Although
we cannot determine ¥(1”,1”%) without solving the
other equations in the hierarchy, we can determine
its form from its properties under the transforma-
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tions of the Lorentz group. In particular, if we seek
the total momentum solution with four-momentum
q, then

YT =L, (e, (5.1)
where
X=Xm—Xyp . 5.2)

Substituting this into Eq. (2.4) gives

3, pH(1)=Che " TT1" (5.3)
where

CF=7e Tr{[£,(0+)+£,(07)yH] . (5.4)
Equation (5.3) is solved by

YH(1L)=Che T F (5.5)
provided that

qnq"=CH. (5.6)

We know from experiment that
CHt=0, (5.7)

that is, the experimental mass of the photon van-
ishes. Thus the one-photon component of the pho-
ton Fock-space wave function satisfies

3y dTpH(12)=0 . (5.8)

We shall consider next the solution of the dif-
ferential equations for the dressed electron. We will
start with the lowest member of the hierarchy in-
volved in this problem, namely, Eq. (2.2). To solve
this equation, we must first determine ¥#(1’,1;).
This requires us to attack Eq. (2.7) which, in turn,
introduces a more complicated wave function. To
solve the entire problem, we must employ an infin-
ite hierarchy of equations. However, as we shall
see, the form of the solution of Eq. (2.2) can be
determined with the aid of the transformation prop-
erties of the wave functions under the homogeneous
Lorentz group.

Since the hierarchy of the differential equations
is covariant for transformations of the Poincaré
group, the electron as well as each of the other com-
ponents of the Fock-space wave function can be re-
quired to transform like a momentum eigenstate
(total spin one-half) solution of the noninteracting
Dirac equation. Thus, if we make the trans-
formation

X1 X=X =X —X1, %1 (5.9)

then
PH 1) =fHE)e TP (5.10)

Since ¢# transforms like the direct product of a
photon four-vector representation vector and an
electron-spin one-half vector, it can be written in
terms of a spin one-half wave function plus a spin
three-halves wave function. As we have noted
above, it is the spin one-half component that we
need for the dressed electron Fock-space wave func-
tion. A straightforward application of Clebsch-
Gordan coefficients allows us to write for the re-
quired spin one-half component,

ﬂy(lt’ 1‘;1)=%Z#£e-—lp Xl’g(p2,17,x—’x—2) ,
(5.11)

where u is the Dirac bispinor that combines with
the exponential to form a solution of the Dirac
equation with no interactions.

Substituting this wave function into Eq. (2.2) now
gives

(idy—m)P(1)=eg(p,0,00ue "~ ".  (5.12)

It is immediately clear that this equation is solved
by

ipexy

Y1) =ue (5.13)
provided

pupt=m; (5.14)
where

m,=m +8m (5.15)
and

dm=eg(p%,0,0) . (5.16)
This means that (1) satisfies

(idy—m —dm)P(1')=0 . (5.17)

Of course, m, is the renormalized mass and, from
the above equations,

PHI 1) =y Pue T om /e . (5.18)

Thus 8m can be determined once 1#(1’,1;) is known
from a solution of the entire hierarchy.

We must next solve Eq. (2.7) in order to learn
something more about the dressed electron com-
ponent ¥¥(1',1;). Since we do not know the bare
mass m from experiment, we introduce m on both
sides and use Eq. (5.15) to obtain
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(ial’ —m, )anl"a?”fﬂ( v, 1:
—8m3, APYH(1,17) .

We have already noted in Eq. (5.11) the form of
P*(1',1;). In addition we observe that, in order for
the photon to leave the electron by a large distance,
it must behave like a dressed photon and satisfy Eq.
(5.8). Thus the last term in Eq. (5.19) must vanish
except when the photon is near to the electron in
space and time. This suggests that we should use
Eq. (5.11) and make the approximation

AP H(1,15) = 581, 1)y P 1)
X fgd"'x.

From arguments similar to those used in deriving
Eq. (5.11), we can write the electron-photon-pair
wave function in such a form that

(5.20)

Yo Lo g1, 17,1, T E b | =F M plue " " .
(5.21)

We can say something about the range of F¥ as a
|

write

(18— m, gy B 1 )= — 81, 1) ey —ie? [

According to Eq. (5.11), the left-hand side of the
last equation would have Dirac matrices of the
form y* and, because of 3y, ¥y *y* multiplying ¥(1).
The same must be true for the term involving F* on
the right. Thus we can write

Fr=SyPTr(y*F*) + "G, . (5.24)

The second term gives rise to a magnetic dipole that
produces a component of y#(1',1;) that falls off
more rapidly than the first term with larger separa-
tions between points 1’ and 1”. Thus, asymptotical-
ly, Eq. (5.23) goes over to

(iy—m, 3y BT 1, 1) ~ —i8(1',1")e,y (1)

(5.25)
where the renormalized charge is given by
e,=e — %ezi f Tr(y*F*)d*x
—+idm [gd*x . (5.26)

Thus we see that Eq. (2.7) reduces asymptotically to
the equation for an electron surrounded by the ex-

A. A. BROYLES

—ied(1',1”)yP(1") — ye y, Trp[¢7(1, 17,1, T %)y k]

(5.19)

T
function of x if we note that the wave function on
the left side is the amplitude for finding a positron-
electron pair at 1" when the electron is at 1’. Since
an energy of at least 2m,c? is required to create the
pair, this amplitude must decrease exponentially be-
cause the pair tunnels into the 2m,c? barrier as it
departs from the electron. Thus FA(X,5) has a
range the order of a Compton wavelength in |X|.
In the time direction, the excess energy of the
2m,c? substituted into the energy-time uncertainty
relation suggests that the pair cannot exist for |x°|
much greater than a Compton wavelength. From
these considerations, we conclude that, for values of
| x #| much greater than a Compton wavelength
Fr=~ [ Frd*x8(%) . (5.22)
When this approximation is substituted into the
previous equation and this, in turn, into Eq. (5.19)
together with Eq. (5.20), we can use Eq. (5.12) and

Fratx —fismyt [ gdtc |ur) (5.23)

[
pected photon field that is coupled by a renormal-
ized charge e,.

The above equations identify the experimental
mass and charge of the electron. In order to solve
other differential equations, it is necessary to isolate
the expressions for these quantities and then to sub-
stitute the experimental numbers.

VI. INTRODUCING NUCLEAR FIELDS

In order to describe atoms, molecules, and more
complicated forms of matter with the mathematics
of quantum electrodynamics, we must introduce
coordinates for nuclei. We can treat these nuclei as
space-time points in the same sense as we have elec-
trons provided we can ignore other than elec-
tromagnetic interactions and the fact that the elec-
tric charge is distributed over a volume with dimen-
sions the order of 10~ '3 cm.

For spin one-half nuclei such as the proton, the
elements introduced into the diagrams are the same
as for the electron with the understanding that no
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lines are drawn connecting different kinds of fer-
mions. The interpretation of the diagrams requires
that the electron masses and charges appearing in
Table I and in derivative operators must be replaced
by the corresponding quantities belonging to the nu-
clei.

For nuclei of different spins than one-half, the
heavy nuclear mass probably will make it profitable
to use nonrelativistic forms of derivative operators
and of interactions with photons. Corrections can
be made for relativistic effects for these nuclei.

VII. DISCUSSION

The infinite hierarchy of differential equations
presented in Sec. II involves three kinds of particles,
electrons, positrons, and photons. By specifying
that only positive-energy wave functions appear on
the boundary, we have assured that there are non-
negative-energy states into which any of the three
particles may drop. There is neither the negative-
energy sea required to be filled by Dirac nor the for-
ward propagation in time required by Feynman.’
However, if the boundary conditions are prescribed
only on the early-time boundary, the integral equa-
tion formulation will require Feynman propagators.

Although we have identified the renormalized
mass and charge in Egs. (5.7), (5.8), and (5.15), we
have not proved that the differences between the
bare and renormalized quantities are finite. This is
a question about which many experts disagree.
There have been papers® by Gell-Mann and Low,
Wiley, Baker, and Johnson, and others that suggest
that these quantities may be finite. Whether they
are finite or not, the expressions in the equations
can be replaced by the experimental mass and
charge to allow the solution of practical problems.

We have seen that the Fock-space wave function
for a dressed electron has an infinite number of ele-
ments. The same is true of a “dressed” photon.
The bare vacuum state has no wave functions since
no particles are present. The “physical” vacuum,
however, again consists of a Fock-space wave func-
tion with an infinite number of components. These
components allow for the presence of virtual
positron-electron pairs and photons.

In every practical problem solved with the aid of
these differential equations, it will be necessary to
truncate the hierarchy by using some approxima-
tion. It may be helpful at times to make use of the
Hartree-Fock and other approximations in current
use in the treatment of atoms, molecules, and other
many-body systems.
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