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Thermally activated escape rate in presence of long-time memory
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Kramers's original modeling of the thermally activated escape rate over a barrier is general-
ized for Brownian-motion theory with long-time memory.

The problem of the decay of a metastable state
presents a central role in many areas of science, most
notably in chemical kinetics, electron transport in
semiconductors, and nonlinear optics. Limiting the
discussion to one-dimensional systems, the problem
can essentially be modeled by a "Brownian particle"
moving in a double-well potential g (see Fig. 1).
This model has been popular since Kramers's original
Fokker-Planck approach. ' Since Kramers, a number
of investigators have improved and clarified several
points: We mention the extension to the decay of a
metastable state in driven nonequilibrium systems
with nonuniform diffusion, ' the results for multidi-
mensional systems in the overdamped and under-
damped limit, ' the effects of anharmonicities in the
potential form, " the role of non-Gaussian white
thermal noise (i.e. , a Markov master equation
description for the Brownian motion process), '9 the
effect of a rate enhancement via parametric fluctua-
tions, ' and the influence of quantum tunneling. ""
Common to all those treatments is the assumption of
a clear-cut separation of time scales between particle
and inherent molecular (bath) motion.

In the model that we consider in this paper we
drop this assumption. In other words, the thermal
noise fluctuations are allowed to exhibit an arbitrary
(nonexponential) slowly decaying memory-correlation
function. This situation arises for example in
biophysical transport problems, "catalysis, ' and im-

purity diffusion. " Attempts to solve the problem of
thermally activated escape over a barrier in this diffi-
cult situation have been rare. For the problem of dif-
fusion of an impurity bound in a harmonic lattice, in-
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where the barrier frequency ~' is defined by
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The thermal noise g(t) is a stationary Gaussian ran-
dom force which satisfies the fluctuation-dissipation
theorem of the second kind
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teresting results have been obtained by Rezayi and
Suhl. " Based on their stable states picture, Grote
and Hynes, ' ' have recently discussed the effect of
exponentially decaying memory correlations (for the
quantum analog see Ref. 12). Their result for the
rate, A. , is based on an appealing formula which
expresses the rate in terms of an equilibrium reactive
flux-flux correlation function. ' However, it should
be noted that their result is based on the assumption
that the memory rate kernels decay rapidly compared
to the reaction time scale. ' ' Yet in another attempt
one of us has recently evaluated the rate of escape in
the overdamped limit by fully taking into account the
anharmonicity of the potential but restricting the dis-
cussion to a fast, exponentially decaying memory
function only. '

Clearly, the region around the barrier plays a cru-
cial role in the evaluation of the rate. If we linearize
the motion within this barrier region, we can model
the Brownian motion in coordinate, x, and velocity,
u, phase space by the following generalized Langevin
equation (we use a unit mass for the particle and the
notation y =x xb)—

x& xi

&)-f(x.)

and y(r) is the (unspecified) memory function. Be-
cause of the linear structure in (1), the Gaussian
noise implies that the Brownian motion process,
(y(t), u(t)), with initial values (y, u) at time ts ——0,
is governed by a Gauss process. The rate of change
of the probability p, (y,

ugly,

u) can be obtained in
time-convolutionless form

FIG. 1. Potential field used in text. p, =&(t)p (4a}
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with the master operator

r(t) =—(p,p, ') (4b)

after z)
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Using the fluctuation-dissipation theorem in (3), a
cumbersome but similar calculation of the type per-
formed in Refs. 22 and 23 yields the non-Markov
master equation

with
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The functions y(t) and c» (t) are derived from the
2

time-dependent correlation matrix of fluctuations as

For the solution of the crucial function Fwe try Kra-
mers's ansatz (valid for not extremely small effective
damping y)

F(y, u) =F($) =F(u —cy)

y(t) = a(t)/a—(t)
cu (t) = —b(t)/a(t)

where

a(t) = pr(t) p„(t) —pr(t) p„(t)

b(t) =p, (t)p„(t) p, ('t) p„(—t)
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with c a yet undetermined constant. Therefore, we
obtain with d = (c» —cu2)/cu2 for (8)

—[c(1+d)—y]uFc +c» yFt' =kT(y —dc)Ftc (10)

which determines the constant c via the quadratic re-
lation

c =c»'/[c(1+d) —y]

with

f

pr(t) =1+cu', p„(r) dr (6e)

The correlation p„(t) is given in terms of the inverse
Laplace transform (L ') by

With (10) and (11) and the boundary conditions
F($) 1 as f ~, F(() 0 as $

—~, the solu-
tion F($) is found by integration to be
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and y(z) denotes the Laplace transform of y(r).
The non-Markovian master equation (5), valid only
within the barrier region, cannot describe nonlinear
phenomena such as the relaxation of a sharply local-
ized unstable state around x =xb(y =0). However,
Eq. (5) does allow for the evaluation of the steady
nonequilibrium probability po(y, u), obtained by inject-
ing particles at the locally stable well around xp and
removing them the moment they reach the locally
stable product well around xp. In the limit of small
thermal noise the state xp is a long-lived quasiequili-
brium state. The nonequilibrium probability pp, gen-
erating a nonvanishing diffusion current jp, has thus
the form

po(x, lt ) = F(x,u ) exp ——1 u'/2+ cb(x )
Z kT

(7)

with F(x,u) obeying, F(x,u) =1 around xo and
F(xo,u) =0 at the absorbing boundary around xo.
From (5) we obtain for F(y, u) in the neighborhood
of x = xb the equation (F,' denotes the differentiation

By expanding the potential cb around xo (see Fig. 1)

c»(y(x) =go+ —(x —x,)'+
2

Q)p) 0 (13)

we find for the occupation, n p, of particles at xp

exp( —cbo/'kT ) +
np= exp—
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The rate for thermally activated escape is given by

jo/no, = (is)

where the diffusion current jp is calculated to be

jo= Jt po(y =O, u)u du

t t 1/2
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With c denoting the plus sign solution of the quadrat-
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In conclusion, the rate A. has the structure of Kra-
mers's result, ' but with the bare damping y and bare
barrier frequency co2 substituted in the curly brackets
by the effective parameters y and ~ . In contrast to
the Markov result, ' ' the prefactor in (17) is deter-
mined by a set of four parameters: the bare frequen-
cies co0 and cv and the effective parameters y and m .
These effective parameters, obtained as the limits
(r ~) of the bounded expressions (6a) and (6b),
incorporate the effect of the (long-time) memory
function y(r) induced by the contraction of a —10'4

many-body problem modeling the coupling to the
heat bath. This reduction of the original huge
many-body problem to a two-dimensional non-
Markovian Brownian motion process (5), which in

turn yields the main result (17), presents some con-
siderable progress. With y(r) a nonexponentially de-

caying function, the reduction in (5) amounts to an
equivalent Fokker-Planck dynamics in an infinite-

ic relation (11) (this amounts to a decreasing rate
with increasing effective damping y), we have for the
rate the remarkably simple central result

gART exp
~0 4b 40
2' kT

(18)

The case with an exponentially decaying memory,

y(Irl) =f(v) exp( vIrI)

yields after some elementary algebra

(19)
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where z = n is the single pole in the right half plane
of the corresponding function p„(z). The rate in

(20) coincides in this particular case with the final
result for the rate given in Ref. 17; despite the two

completely different derivations.

dimensional state space.
We note that an explicit analytical evaluation of

the parameters y and ~ is particularly simple for
p„(z) being a meromorphic function: For example,
with Gaussian white noise, (g(r) g(0) ) =2kTyg(r),—2 2we recover Kramers result with

y
= y, ru = cuz. If

y(r) =0, we find from y =0, co = cu' the well-known
absolute rate theory (ART) result of Vineyard"
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