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We show that the time-averaged density matrix which involves the solution of any Liouville
equation with a specified initial condition is also the steady-state solution of an appropriately
constructed Bloch equation taken in the weak-damping limit. This leads to new explicit expres-
sions for the time-averaged density matrix which, unlike expressions in general use, give a com-
pletely analytic relation between the time average and the initial condition and contain no nu-
merically determined eigenvector components. We apply this approach to driven multilevel sys-
tems to find new expressions for the time-averaged level populations in a three-level system. A
strong initial-condition dependence is exhibited even for an equally spaced resonantly driven
system. Analytic forms specifically showing a Stark-shifted multiphoton resonance and the as-

sociated line shape are also derived.

Time-averaged quantum-mechanical density ma-
trices have appeared recently in many diverse applica-
tions in the literature including the investigation of
driven systems,! tracking the flow of probability in
intramolecular dynamics,? and most recently as a
basis-independent measure of chaos.> Perhaps of
even greater significance is the early work in statisti-
cal mechanics which considered time averages as a
possible logical precursor for ensemble averages.*
Despite the growing significance attached to this
quantity, it seems not to have been recognized that,
for any time-independent Hamiltonian H, the time-
averaged density matrix can be written down explicit-
ly in any basis set as a rational analytic function of
the Hamiltonian expressed in that basis set.

The time-averaged density matrix p can be defined

by
T

- im L
p=lim T Jo p(t)ar , (D
dp _ i = —0)=o*

2 —-h_[p,H] Lp, p(t=0)=p" . 2)

Evaluating p presents no problem in the energy basis
since the diagonal elements are constant and each
off-diagonal element connecting nondegenerate ener-
gy states E, and E, is a single term oscillating with
the energy difference frequency (E,— E,)/k. With
any other set of states, the time dependence of p(?)
appears expanded out as a sum of both oscillating
and constant terms whose coefficients depend on the
eigenvector components of H. The usual expres-
sions! 2 for time-averaged populations result when
this expansion for p(t) is substituted into Eq. (1),
thereby averaging the oscillating terms to zero.

While this approach has been found convenient for
many recent applications,! 2 it has a serious disadvan-
tage from the point of view of analysis. The eigen-
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vector components which occur in it must be deter-
mined numerically for most systems of interest. As
we will show, such a procedure is unnecessary and
possibly undesirable since it could obscure important
analytic properties.

To derive expressions for p which avoid the nu-
merical eigenvalue problem, we begin by pointing out
that p can be expressed in a form that is slightly dif-
ferent from the original definition in Eq. (1),

5=fli_r.13°%f0 e p(t) dt . 3)

It is easily verified that applying this new definition
to p(1) expressed as the usual sum of undamped os-
cillating terms gives the same result as Eq. (1). What
is especially interesting about the new form for p is
that the function of 7, whose limit is taken in Eq.
(3), is just 1/7 multiplied by the Laplace transform of
p (1/7 being the transform variable). Since H, and
therefore L, is independent of time, we can find this
transform by applying the Laplace transform opera-
tion £ directly to both sides of Eq. (2). If we let
p(7) be the finite — 7 generalization of p, we find
immediately that

L—l]5(1)+lp*=0 . 4)
T T

The initial condition p* enters the problem in the
usual way through the relationship £ (dp/dt)
=(1/7)£(p) —p*.> We can formally solve Eq. (4)
for p(7) to obtain

p(r)=0/1)(1/r—L)'p* . (5)
Defining a time-averaged evolution operator T by
p=Tp" , (6)
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we find

T'= lim (/n)(/r—L)7" . @)

This shows right away that the time averages are, as
claimed, rational, analytic functions of the Hamiltoni-
an.

The step of taking p(7) for finite 7 and then taking
the limit 7 — oo is essential. If we started out with
1/7=0 in Eq. (4), we would have simply

Lp=0, (8)

an equation that could have been deduced directly by
time averaging both sides of Eq. (2). Clearly, howev-
er, L always has more than one eigenvector with
eigenvalue zero. Consequently, the solution of Eq.
(7) is not unique and only by first finding p(7) and
then taking the limit can the proper correspondence
between p and the initial condition p* be established.

The general analytic solution for p in Eq. (5) is of
limited interest from a computational point of view
since for an N x N Hamiltonian it requires inversion
of an N?x N? matrix in order to determine p for ar-
bitrary initial conditions. Even as an analytic tool,
Eq. (5) does not automatically lead to explicit expres-
sions whose physical content is obvious. Instead of
working with Eq. (5) directly, we can go back a step
and take advantage of the analytic possibilities in Eq.
(4) in a way that turns out to be simpler. This ap-
proach leads us to consider the following Bloch or
linear Boltzmann equation

d 1

“L Lo+ (K*-1p , ©
dt T

which we have previously used® to describe the
dynamics of a system with Hamiltonian H randomly
perturbed by collisions at a frequency 1/7. In this
equation, K* is a collision superoperator®’ which we
will discuss below. Now comparing Eq. (9) with Eq.
(4), we see that if we substitute p* for K*p in Eq.
(9), Eq. (4) is just the steady-state equation for Eq.
(9). Thus the steady state of this Bloch equation is
the p(7) needed to solve Eq. (4) and we can take its
7 — oo limit to find the infinite time average. Using
pss to denote the steady-state solution of Eq. (9), we
can summarize the foregoing discussion in the fol-
lowing equation:

r“_l:llpsssz‘Eﬁ . (10

We note that since the collision operator K* makes
the state after a collision (i.e., K*p=p*) independent
of the state p before the collision, it may be thought
of as a generalization of previously discussed ‘‘strong
collision”’? operators.

The reason that identifying the time-averaged
quantity p with the low-pressure (1/7 —0) limit of
pss LEq. (10)] leads to a useful reformulation of the

time-averaging problem is that the Bloch equation
can often be reduced to a much simpler set of equa-
tions.” % To bring the present strong collision result
into the same physical language as the earlier work,%’
we note that a strong collision operator K*, where
the associated postcollision density matrix p* is diago-
nal, is formally equivalent to the following definition
of K as a superoperator®’ on p,

Kyx=P;— 1801 , (11)

provided we choose P;.—,;, the probability that a sys-
tem in state / before a collision will be in state j after
the collision, so that P;_,;=p}; independent of the in-
itial state /. Previous work has shown that for arbi-
trary time-independent Hamiltonians'® and arbitrary
collision operators’ the solutions of the Bloch equa-
tion [Eq. (9)] can be found by first eliminating the
off-diagonal density-matrix elements to obtain a gen-
eralized master equation (GME)’
P

dpy

a5

Wi (\) + Pk

—_ Pk J

Wi (\) +

ij . (12)

r
The parameter A (corresponding to a Bloch equation
eigenvalue) is either set to zero, and the steady-state
solution found by solving Eq. (12) for its steady
state, or determined self-consistently to find solutions
proportional to exp(At) for A 0. The N X N prob-
lem involved in solving the GME for its single
steady-state eigenvector represents a substantial ad-
vantage over the direct inversion of (1/7— L) in Eq.
(5) or the matrix diagonalization in the usual ap-
proach, provided the transition coefficients W;(\)
can be found without too much work. When H is tri-
diagonal, we have found both algebraic’ and di-
agramatic® techniques that permit a systematic deter-
mination of W with a minimum amount of work.
Since the coupling in systems of physical interest is
often restricted in some way (for example, exchange
of quanta may be restricted in intramolecular vibra-
tional coupling!"'?), useful generalizations of these
techniques may well be possible.

While Eq. (10) involving the strong collision model
is sufficient for calculating time averages, it is in-
teresting to note that there is a connection between
the time-averaged evolution operator T and the Bloch
equation steady state for other collision models. If K
is any collision operator defined by Eq. (11), then a
more general kind of argument can be made!’ reex-
pressing Eq. (9) as an integral equation to show that

pss(1—00) =TKpg(7r—0) . (13)

Equation (10) is obviously a special case of this rela-
tionship, where K pgs=p*.



26

Now we consider a specific problem for which our
approach leads to new analytic expressions. We take
a three-level atom with driving terms proportional to
a field 4 sinxz. Making the rotating wave approxima-
tion leads to a time-independent effective Hamiltoni-
an'* with terms proportional to ag A4 /2% and a4 /2%
coupling adjacent pairs of atomic energy levels. The
]
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quantities of physical interest are the time-averaged
populations of these energy levels even though, be-
cause of the coupling terms, these are not energy
eigenstates of the effective Hamiltonian. Now, apply-
ing the GME, we obtain with very little effort,’ the
following expressions for the radiative-induced transi-
tion coefficients W;(x=0) in Eq. (12):

261 || 1 1 1
Wo = W10=D—_: ?+A%2 ?'*‘A(Z)Z +B?_Bg+2,3% ?_AIZAM +B%(A%2+A01A12+A01A02+Aleoz) s
Wi =W _2'3% 1 2 1 2 4 4 2 1 2
n=Wy=— 7+A01 :{*‘Aoz +B3—B1 +283 j“Aonz +B1(AG +Ag A+ A0 Ao +ApAY) |
2 202
Wo=Wy= Blez [%“AOIAU_AOIAOZ_AUAOZ+B%+B% , (14)
where
1 1 1 1
D= LZ*'A(ZN %*‘Ai"z = +Afh +23%%+A01 = —ApAp|+283|= +AbL||= —Ande
T T T T T T T
1 ) 1
+B1 %‘*‘A%l +83 ?“’A%z]*'zﬁfﬁ% ?+A01A12 , Bi=aiiA/2m .

The A’s are detunings from resonance given in terms
of the atomic energies E; by

Aj=(k—j)x—(Ex—E)/k .

Since the development leading to Eq. (12) has re-
duced the problem of finding p for arbitrary initial
conditions to finding the steady-state solution of Eq.
(12) with P;—;’s chosen to be a strong collision
model, the expressions in Eq. (14) provide all that is
needed to determine p for any initial conditions and
for any choice of the coupling or detuning parame-
ters. If we have equally spaced energy levels driven
on resonance (all A’s=0), finding the appropriate
pss's for Eq. (12) and taking the limit 7 — oo leads to
the following remarkably simple results:

T00,11=T11.00=%B%/(ﬁ%+ﬁ%) ,
T11,22=T22,11=—;/3%/(ﬁ%+;3f) ,

Too,22=T2,00= %Bfﬁg/(ﬁ% +8D? .

(15)

These expressions show that the averaged popula-
tions in different levels are unequal and generally
strongly dependent on initial conditions. This depen-
dence is of fundamental interest in connection with
time averages in general because of their connection
with the equilibrium problem* in statistical mechan-
ics. The time-averaged solutions in driven systems
have generally been considered in the context of sin-

i
gle and multiphoton resonances.! For the case
of a multiphoton resonance (Ag = — A3,

[Agi| >> B1, B2), our expression for the critical
0 — 2 population transfer reduces to

28183/ Al
4B1RY A% + (A0 — (B —B3)/An ]2

1

’

Tyo=

with Tg,00=1— T,00- The condition for optimum
transfer of population (T3, 00= —;) occurs, as should

be expected, at the Stark-shifted frequency
(B}—B3)/Ao; and has a ““power-broadening” width
proportional to the effective two-level Rabi frequency
BiBo/ Ap1.

Our approach to time averages has permitted us to
write out analytic forms for time-averaged level pop-
ulations without ever having to consider the eigen-
values or eigenvectors of the Hamiltonian. A sys-
tematic investigation of time averages may even shed
new light on the logical foundations of statistical
mechanics and it is hoped that the approach outlined
will be useful for this purpose.
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