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The ultradense plasma appearing as a result of the radiative collapse and the radiative
cooling of two counterstreaming relativistic electron and positron beams is considered on
the basis of quantum Fermi statistics. There are two different limiting cases (quasiclassi-
cal and ultraquantum) depending on the value of the relativistic factor y. Winterberg’s
estimate for the density, based on Heisenberg’s uncertainty principle, corresponds to the
ultraquantum limit. In the quasiclassical case the compression is limited by the Pauli-
Fermi principle, and the density of the plasma increases more sharply with the current (as
I3 for I << 1,/By and I* for I >> 1,/By, 1,=17 kA being the Alfven current).

In his paper' Winterberg proposed to create a
plasma of ultrahigh density by means of the radia-
tive collapse of two counterstreaming beams of re-
lativistic electrons and positrons. This proposal
can turn out to be essential for the future develop-
ment of physics. Successes of high-current elec-
tronics give hope that the achievement of 10- and
possibly 100-kA current values of positrons in
storage rings is not unfeasible. The realization of
such a project would allow one to obtain ultradense
matter, ultrahigh electric and magnetic fields, and
ultrahigh power bursts of coherent x-ray and y-ray
radiation in the laboratory. For this reason the de-
tailed analysis of the physical nature of the plasma
equilibrium in the collapsed state based on the
theory of equilibrium?? and radiation*> of intense
streams of charged particles, confined by elec-
tromagnetic forces of collective interaction, is of
considerable interest.

Winterberg’s estimate' for the density has been
based on the assumption that all the charges occu-
py the lowest energetic state (the ground state).
The radius of the region occupied by the charges
in the ground state was evaluated with the aid of
Heisenberg’s uncertainty principle. The exact
analysis of the plasma structure for this ultraquan-
tum limit would have required jointly solving
Dirac equations for electron and positron wave

functions with Maxwell equations for the field.

We consider the opposite (quasiclassical) limit,
when the radial motion of charges corresponds to a
large number of occupied energy levels. In this
case the plasma radius in the state of the maximal
compression is determined by the Pauli principle
for electrons and positrons. This plasma structure
is similar to that of a “linear atom”® appearing in
high-current diodes as a result of superpinching.’
The main difference is the presence of positrons in-
stead of ions.

We assume that the kinetic energy of the stream-
ing motion of charges (y— 1)mc? is large com-
pared to the energy dispersion: (y—1)mc?
>> T,Ep. The energy dispersion of charges is de-
fined by the range of occupied energy states (by the
Fermi energy Er in the low-temperature limit
T << Ef or by the temperature T in the case
T >> Er). Under these conditions thermodynamic
equlibrium is achieved separately in each of the
two subsystems (electrons and positrons) much
more quickly than the relaxation of the plasma as
a whole takes place. The collapsed electron-
positron plasma is of physical interest for times
which are large compared to the relaxation times
inside separate subsystems, but small compared to
the time of the electron-positron annihilation.

Over these times electron and positron distribution
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functions in the moving frames of reference K
have the form of equilibrium Fermi functions

fa={1+exp[(E,—T,) /T,]}". (1)

The index @ means e and p for electrons and posi-
trons, respectively; E,, [y, and T, are the total en-
ergy, the chemical potential and the temperature of
the a-type charges. Using the relativistic invari-
ance of distribution functions,® we find £, in the
laboratory frame just by expressing E, in (1)
through the energy E, and the generalized momen-
tum P, with the aid of the Lorentz transformation
formula,

Ey=7Eq—P-Vy,)
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Here €,(p)=(m2c*+p2c?)'/%; Vo, is the velocity of
the frame K against the laboratory frame K; ¢
and A are the potentials of the electromagnetic
field created by electrons and positrons. At the
maximum contraction this field is much greater
than external fields, which may be neglected in the
plasma structure analysis. With the same degree
of accuracy the curvature of the current canal may
also be neglected.

As a result of radiative cooling the temperature
of the charges decreases rapidly and becomes much
lower than the Fermi energy: T, <<Ep. So one is
allowed to substitute T\, =0 in (1), keeping in mind
however that the temperature of charges may still
be high from other points of view. This approxi-
mation has been used by Landau’ in the analysis of
the equilibrium structure of nonrelativistic stars.

Introducing “potentials” U, of forces acting on
the charges of the a type,

Uy=ea(d—VoaA/c)—To/Vq

and choosing additive constants Uy, + U,(0) <0 so
that n,—0 when U,—0, we find after the integra-
tion over the kinetic momentum p=P—e,A/c:
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3
Ya | MaC 2
= F U ) =€, .
2 | 7 (YeUa/Mmqc?), a=ep

(2)

Here F(x)=[(1—x)*—1]*/? for x <0 and F(x)
= 0 for x >0. The charges occupy all the quan-
tum states in the energy range Uy, < E <0, so that

the Fermi energy is equal to | Uy, |. The space
distribution of U, is determined by equations

3
4
ViUy=——
@ 3r

€a

<
#i

X Jepgm pypil —EGEB)F(yBUﬂ/mﬂcz),
g a=e,p
(3)

derived easily from the equations of magneto- and
electrostatics

VA=—4r3e ngBy Vio=—4r3eqn,,
a a

Ba=Voa/c Ya=(1—B2)"'"?

with account of (2).

For counterstreaming electrons and positrons
with equal current values y, =y, =¥, N.=N,=N
the system is symmetric against the exchange e<>p
and the radial distributions of electrons and posi-
trons are just the same: n,=n,=n U,=U,=U.

In this case the set of Eq. (3) degenerates into the
single equation, which can be written in the form

1d, dé_
£ agtag I

with the aid of dimensionless variables
¢=yU/mC27 §=r/r0’ and

rd=3m#/8e*mcy* B .

TABLE I. The function A(¢o) found numerically.

Yo A
0 0
0.2 0.2075
0.4 0.406
0.6 0.597
0.8 0.785
1 0.966
1.2 1.14
1.4 1.32
1.8 1.66
2 1.825
3 2.64
5 4.21
10 8.01
20 15.5
50 37.7
100 74.7
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The boundary conditions are ¢(0)= —d¢,, ¢'(0)=0.

The only dimensionless parameter ¢, (the dimen-
sionless Fermi energy) is connected with the num-
ber of particles per unit length of the current canal
by the normalization relation

N=I/2%V,=2r [ n(rrdr,

which can be written in the form
I=(I,/2By)MyEp/mc?).

Here M¢o)=lim;_, ,d¢/d In§ and
I,=mc3/e=17KA is the Alfven current. In
Table I we present the function A(¢) found nu-
merically.

If both ¥ and B~1 and I ~1I, the degenerate
Fermi gases of the charges are relativistic: ¢o~1,
i.e., Ep~mc?. In the limits of small and large ¢,
the function Al(¢g) is a linear one: A= 1.06¢,,
do<< 1; A=0.74¢,, ¢o>> 1, Hence the Fermi ener-
gy is a linear function of the current

Ep=mc®Bl /1, .

The maximum value of the density near the axis is
proportional to I3/? in the nonrelativistic case

N max =0.25(me /ﬁ)3’)/5/233/2(1/IA )3/2 ,

I<<1,/By

and increases as I° in the ultrarelativistic case

Mmax =0.67(me /B VHBI /1,)} |
I>>1,/By.
)

It can be shown that if the currents of electrons
and positrons are not equal, the maximum value of
the density is determined by the smaller one.

Noticing that in the region B~1and I ~I,/y
the radius r, is of the order of (%#/mc)a~'/%y~!
and that the momentum of the transverse motion
p» ~mc, one can reduce the quasiclassicality condi-
tion rop, >> #i to the form

ayr<<1,

where a=e?/fic = %

Together with the Winterberg’s estimate [Eq.
(18) in Ref. 1], valid for the high-energy region
¥2>>a~!, our formulas (4) and (5), valid for
¥? <<a~!, give the complete picture of the current
dependence of the maximum density of matter
achievable in the process of radiative collapse of a
relativistic electron-positron plasma.
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