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Extended variational method in statistical mechanics

C. Tsallis and L. R. da Silva'
Centro Brasileiro de Pesquisas Fisicas/CNPq, Auenida Wenceslau Braz 71, 22290-Rio de Janeiro, Brazil

(Received 23 June 1981)

Through cumulant expansions of the free energy and the susceptibility, a new varia-

tional procedure is proposed with the purpose of improving the standard variational
method in equilibrium statistical mechanics. The procedure is tested for two types of
classical anharmonic single oscillators, namely, those whose elastic potential is proportion-
al to x " (n =1,2, . . .) and those of the type ax +bx, whose exact free energy, specific
heat, and susceptibility are herein established. Although convergence problems (similar to
those appearing in the asymptotic series) exist (at least for the free energy) in the limit of
high perturbative orders, great improvement (typically of the order of 40) with respect to
the standard variational method is obtained in all the physically meaningfulwituations,
and a quite satisfactory description is provided (with a "single shot") for both limits
T~O and T~ oo simultaneously.

I. INTRODUCTION

The variational method (VM) in equilibrium sta-
tistical mechanics {for general purposes see Refs.
1 —8) enables the approximative calculation of the
thermal behavior of various quantities (free and
internal energies, specific heat, susceptibility, equa-
tions of states among others) for a great variety of
systems. For example, problems like superconduc-
tivity, "isolated ' ' or coupled' anharmonic
oscillators (eventually within the context of struc-
tural phase transitions), pure ' ' ' and
random magnetism, as well as nuclear reactions,
have been treated within this framework.

The VM has the advantage of leading, for all
temperatures, to results which are qualitatively
correct isome notorious counterexamples do exist
however; for example, the use of a noninteracting
spins trial Hamiltonian, i.e., the mean-field approx-
imation (MFA), to treat the one-dimensional Ising
ferromagnet leads to a nonvanishing critical tem-
perature, which is definitively wrong), but has the
disadvantage of being a "single-shot" procedure, in
the sense that the improvement of its results re-
quires, for a given problem, a new choice for the
trial Hamiltonian (noted A 0) i.e., the complete re-
formulation of the treatment. Other "single-shot"
procedures (usually better than the MFA, in, let us

say, magnetism) do exist in the literature, for ex-

ample, Onsager's reaction-field approximation
(RFA) which, contrarily to the MFA, satisfies

the fluctuation-dissipation theorem but does not
minimize a certain free energy. The RFA unfor-
tunately is, like the VM, not exempt from notori-
ously wrong results (it leads, for example, to a van-

ishing critical temperature for the two-dimensional
Ising ferromagnet).

Contrary to the VM, the formulation of the per-
turbation techniques (for instance, the low- and
high-temperature series) usually allows for succes-
sive approximations to the exact result, but pre-
sents the disadvantage of describing only one re-

gion of the domain of variation of the external
parameters of the problems (in the example we
have just quoted, T~O or T~ac but not both, as
well as intermediate temperatures). The idea of
formulating procedures which ally the advantage
of the VM (full description) with that of the per-
turbative techniques (possibility of successive ap-
proximations) is no doubt a quite tempting one.
The Zubarev's Green function techniques consti-
tute, of course, a successful attempt in this sense,
but we are presently interested in those whose for-
mal structure is close to the VM; within this line
an interesting self-consistent procedure was intro-
duced ' a few years ago to treat random magne-
tism. In the present work we introduce, through
cumulant expansions (see, for example, Refs. 31
and 32) and, in principle, for all kinds of systems
(whose Hamiltonian will be noted ~, another type
of self-consistent procedure which extends the VM
and which will therefore be referred hereafter as to
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the extended variational method (EVM). In order
to verify its performances, we test it for classical
anharmonic single oscillators (which are exactly
solved herein): although the procedure is, as we
shall see, not exempt from defects (coming essen-

tially from the possible inexistence, in general, of a
condition playing, for the EVM, a role similar to
the one played by the Bogolyubov (or Bogolyubov-
Peierls) inequality for the VM), it provides algo-
rithms which very sensibly improve (typically 40
times better) those associated with the VM.

II. EXTENDED VARIATIONAL METHOD

1 —P,woFo= ——ln Tre (2')

m
( p)i —i

F=Fp+ g jt Kj (3)

where Kj is the jth-order cumulant associated with

In order to illustrate this point let us

first introduce the moments {pj ] through

where P—:1/ks T and ( .
&p denotes the canoni-

cal thermal mean value associated with the distri-
bution law Pp ~ exP( —PA p). Through formal ex-

pansion, F can be rewritten as follows:

A. Free energy

Let us here assume for simplicity that the real

and trial Hamiltonians A and A 0 commute (i.e.,
either classical systems or quantum systems with

[4, A p] =0). The free energy associated with

Hamiltonian P is given by

F= ——ln Tre
1

or identically by

—p(w —wo)F =Fp — ln(e &p

with

(2)

p. =((A —4 p)~&p, j=1,2. . .

and the centered moments I pj ] through

P'—:&[(A —~o)—&A —~o&o] &o

The first four cumulants are given by

j =1,2, . . .

K1 =P1
2 I

K2 P2 P1 P2 r

3 IK3=p3 —3p2 p1+2p1=p3

a4 iJ4 4p, ~i——+12@—p pi —oui —3p2+p4,

and in general

(4)

j
a =j!g ( —1)" '(n —1)!g

fn, I i=1

(p;/i 1)

n)..I
(6)

where n =g~ in; and {n; j refers to all sets of in-

tegers that satisfy g~ ii n; =j. Notice that for
j)4 it will, in general, be aj.+pj. A recursive re-
lation can be established among the cumulants,
namely,

j—1

KJ =PJ —g j —1
Pj iKi ~

This relation (which can, in fact, be recovered as a
particular case, namely, g(z)=z ', of the relation
appearing in the footnote of page 409 of Ref. 34]
is very convenient for operational purposes as it
straightforwardly provides the expansion indicated
in Eq. (6) for the jth order cumulant once the
preceding ones are known (we have used it in Sec.
III to obtain the results associated with values of j
up to 28).

Let us now introduce, by truncating expansion

I

(3), the lth-order free energy

F~'i=Fo+ g ~, , i =!,2, . . . .j'
We remark that F"'—:Fp+ (4 —4 p&p is precisely
the standard VM free energy which satisfies
F"')F (Bogolyubov inequality). It is clear that
one should appreciate that

lim F' '(4 0,'T)=F(T)
1~m

(9)

no matter the choice of the functional form of 4 0,
but there is no reason for being so in general. Fur-
thermore, for a given trial Hamiltonian 4 o depen-
dent on the paraineters {8 ], there is no general
reason for relation (9) to be true, no matter the
choice of the parameters {B J. However, if we
take into account that F does not depend on {8 f,
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a natural choice for I B ] is to look for those
values which satisfy

BF'"(
I ]; T)

7 7' (10) (12)

momenta). We are interested in the incan value as-
sociated to 4, namely,

Trye-~
Tre-I'

thus extending the standard VM minimization
equation. If we call I

B' '
] the parameters satisfy-

ing Eq. (10), then F'"( [ B'"{T) ];T) will be the
present lth-order approximation for the free energy
F(T). Let us anticipate that severe problems will

appear concerning Eq. (9); let us however stress
that the violation of Eq. (9) does not necessarily

imply the violation of

Let us consider the Harniltonian

8"=A +A/

and its partition function

Z'= Tre

It is straightforward to prove (in analogy to the
fluctuation-dissipation theorem) that

(13)

(14)

d"F' '(I B'"(T) ];T) d'"F(T)
lim
l~oo dT dT

i =1,2, . . . (11)

and we can therefore have an unsatisfactory con-
vergence for the free energy simultaneously with a
satisfactory convergence for, let us say, the specific
heat (see Sec. III).

(15)({()= ——lim
al~'

A, ~p BA,

If we now expand ( —P ' lnz') following Eq. (3)
and then truncate, we obtain possible successive
approximations, noted (P)+, of the mean value

(P). In analogy with Eq. (9) and by introducing
the solutions of Eq. (10), one should appreciate
that

B. General static mean values
lim (P)' '([B'"(T)} T)=(P)(T) .
l~ oo

(16)

We shall now restrict the discussion to classical
systeins. Let P( [ x ], t p ] ) be a function of the
dynamical variables of the system ( [ x } and f p (,
respectively, denote the generalized coordinates and

The procedure we have just outlined provides, for
the first three orders of approximation, the follow-

ing expressions:

(17a)

(17b)

(17c)

&y)"'= &y). ,

(0&"'=&4 &.—p[({('(~—~.) )o—&y)o(~—~.)o],

&y &"'=&/ &o
—P[(y(~—~o) &o

—&y&o(~—~o&o]
2

+ [(P(A —A p) )p —(P )p({P —P p) )p+2(tI) )p(Pl p
—4 p)p —2($(A —A p) )p(A —A p)p]

2

We shall use these expressions in Secs. III and IV
to calculate the isothermal susceptibility ( ~ (x )).
The approximation (P)"' corresponds to the stan-
dard VM. We shall next test the EVM on classical
anharmonic single oscillators associated with pure
(Sec. III) or mixed (Sec. IV) elastic potentials.

I

where, for simplicity, odd powers have been avoid-
ed in order to eliminate thermal slipping of the
center of oscillation (as a matter of fact, no partic-
ular difficulty appears if a potential b

~

x
~

with
positive real e is considered). The semiclassical
partition function is given by

III. FIRST APPLICATION:
PURE ELASTIC POTENTIAL

A. Free energy

Z= „' f" dp—I"dxe-'~

+8m'mks T 2n +1r
h 2n

1/2n
g T
b

(19)

Let us consider the following Hamiltonian

2

+bx2", b )0; n =1,2, . . .
2@i

(18)

where h is Planck's constant and the standard
gamma function has been introduced. The associ-
ated free energy is given by
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F= —kgTlnz . (20)

Let us now introduce the following trial Hamil-

tonian:

(I) 1 1
ap ————~—

2$ ~

1
l

(25a)

2

+Bx, B &0; s =1,2, . . . .2'
The associated free energy is given by

Fp ———kg T lnZp,

where

(21)
a; = . +1 a;, 0&i(1(f) nl (I —1)

s (I —i)

( 1 )I 1 Nl/s

bxI! . kgT

(25b)

(25c)

Qgemka T
z, = r

' 1/2s
gT
B

where ki(bx ") is the Ith-order cumulant associated
with bx " (instead of A —P p). To be more expli-

cit, iri(bx ") is given by Eq. (6), where

Through use of relation {8)we obtain the following

Ith order approximative free energy:
+ (bxZn) (bi 2ni)

I (I)

F'"=Fp+kaTQ
p Q

where

k T BQ—:
b AT

and, for I=1,2, . . . ,

(23)

(24)

For example

(1)a1

2ni +1
2$

=bl
r(1/2$)

r

2n +1
2$

r(1/2$)

kgT
(26)

(27a)

(2)a 2

2n +1
2$

r(1/2s)

2

4n +1
2$

r{1/2s)
(27b)

and

(3)a3
3I

6n +1
2$

r(1/2$)
—3

r(1/2s) r(1/2$)

T

4n+1 r 2n+12$2$ 2n +1
2$

r(1/2$)

'I 3

(27c)

Let us now introduce an adimensional free energy f'" through

F' ' —F
(28)

The use of Eqs. (19), (20), and (23) immediately leads to

f' '(n s ii)=ln I
2n +1

2n

2s+1
2$

a (I)

i=p u

lnu
1f Q —+ (X)

2n

ai /u if Q~O(I) I

(29')

(29")
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Through these reduced variables, the whole discus-
sion of the thermal behavior of F' ' consists now of
verifying how close to zero f'" is for the single
chosen value of u. In the limit u ~0o, f'1'(u) is a
monotonically increasing function of u [see Eq.
(29')], whereas in the limit u ~0 it depends on the

sign of a( ' [see Eq. (29 )], i.e., on (n, s, I): if n & s
then at '

& 0, I = 1,2, . . . , therefore f' ' monotoni-

cally decreases (increases) for increasing u and odd
(even) values of I; for n &s the behavior is less reg-
ular. If we extremize f' ' we obtain

io'-

]0-z

]02
(

~ ~ j'
I=IQ

[0'
I

uu)

u'" —ya, ("iu' '=0-, I =1,2, . . .
2n

(30)
10-2

whose roots will be noted u'" (only real positive
roots are physically acceptable). For n =s and all
values of l, Eq. (30) admits the solution u'"=1,
which leads, through Eq. (29), to f'"(u' ') =0 as

expected.
In order to study the possible convergence prop-

erties, we have computationally discussed the cases
n =1,2. . ., 50, s =1,2, . . ., 50, and j=1,2, . . ., 28
(after this limit some computational complexities

appear, and, in any case, 28 is large enough to
have a good idea of the general behavior). For
n & s (n &s) the roots u'" (whenever they exist)
present a tendency to grow (decrease) with increas-
ing I. For all the cases we have studied we ob-
served that: (a) I =1,3 lead to an unique root of
Eq. (30) which corresponds to a minimum of
f'" (u); (b) I =2 provides no roots for Eq. (30); (c)
I =4 provides roots for Eq. (30) in a very small
number of cases; (d) l =5 provides a solution of
Eq. (30) which corresponds to a minimum of
f(t)(u) (if s=n & 2 other two real positive roots ex-
ist which practically collapse with that of the
minimum); (e) for I & 6 a more and more complex
structure appears for f'"(u). The whole study ex-
hibits that, for arbitrary pairs (np), f' ' (u' ') unfor-
tunately does not converge, for increasing l, to-
wards the exact solution (namely, zero): it is first
approached and then abandoned (thus presenting a
certain similarity with asymptotic series). As an il-
lustration we present in Fig. 1 and Table I, for
n =2s =2, the evolution, in the plane f'" (u (t)).

u ' ", of the minimum of f(" (u ) (the minimum '

corresponding to the highest root of Eq. (30) if
there are more than one]. In order to see the influ-
ence of (n, s) we have introduced an improuement
factor (for the free energy) through the definition

-l0"

FIG. 1. The pure potential case n =2s =2: locus of
the minima of the 1th-order adimensional free energy
f("(u) as a function of the adimensional variational
parameter u (when more than one minimum exists we

have considered the one associated to the higher value
of u); the exact answer is f =0.

B. Specific heat

Let us now discuss the specific heat
C= —T(d F/dT ) associated to the Hamiltonian
(18). From Eqs. (19) and (20) we obtain'

kgC=
2

n =1,2, . . . (32)

This expression generalizes the classical equiparti-
tion principle (n =1 and n ~ ao, respectively,
correspond to a harmonic oscillator and a particle
in a box). If we take into account that f'" (u) is a
pure number, then Eq. (28) immediately leads to
d F' '/dT =d F/dT hence

The results are presented in Table II [similar re-

sults have been obtained by comparing, let us say,

f' '( u ' ') and f' '( u ' ')]. We remark that unless

we consider completely unphysical regions (n =50
and s=l) the result provided by f( ' is better than
that provided by f"', typically for n =2 and s = 1

we obtain p~' '-41.

(1,3) J (1)(u (1))rj (3)(u (3)) (31) (33)
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TABLE I. See caption of Fig. 1 (we recall that
I =2,4 provide no minimum).

f(l)(g Il})

X1000

I (3/2 ) q (1/
I (1/2n) b'/n

n =1,2, . . . .
(35)

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

6.719

13.74
19.52
26.22
33.85

42.43
51.95
62.41
73.82
86.18
99.48

113.8
128.9
145.1

162.2
180.2
199.2
219.2
240. 1

262.0
284.8
308.5
333.2
358.9
385.4

47.2

1.15

—1.35
—1.61
—1.78
—1.90
—1.98
—2.045
—2.092
—2.129
—2.158
—2.183
—2.197
—2.216
—2.226
—2.241
—2.249
—2.256
—2.265
—2.271
—2.273
—2.278
—2.283
—2.287
—2.291
—2.293

The first-order approximation associated with
the trial Hamiltonian (21) is, through use of P=x2
in Eq. (17a), given by

1/s

q I (3/2s) B

k T I (1/2s)
(36)

If we now use Eqs. (27a) and (30) for l =1 we ob-

tain

2n +1
2s

u'"=2n
I (1/2s)

hence [through Eq. (24)]

nI +
2$

I (1/2s)k T

s/n

kBT .

(1)XT— r(1/2 )

2n +1
2s

' 1/n
I (3/2s) q2

I (1/2s) b'/n

Substituting this expression into Eq. (36) we obtain
finally

To all orders and through any trial Hamiltonian of
the type (21), the present formalism provides the
exact answer for the specific heat.

/(I T)(]/n) —1 n s 1 2

C. Susceptibility

If the oscillator carries an electric charge q, its
isothermal susceptibility for vanishing external
field is given, through the fluctuation-dissipation
theorem, by

thus obtaining the exact thermal dependence but a
wrong numerical factor [except the cases (n =1;
Vs) and, of course, n =s where the full exact
answer is obtained]. Equations (35) and (37) enable

the calculation (see Table III) of the factor

(38)

Xr —— ~ (x'&
B

which, for the Hamiltonian (18), leads to'

(34)

We verify that q~" & 1 ( & 1) if s & n (s & n).
We recall that no second-order approximation

exists as Eq. (30) admits no positive real roots for
l =2. By following, for l =3, the same procedure
we have just outlined for I = 1, we obtain



EXTENDED VARIATIONAL METHOD IN STATISTICAL. . . 1101

TABLE II. Selected results obtained for the pure potential classical single oscillator (x'"
treated with x ). The top and intermediate numbers, respectively, are the minimized first-
and third-order adimensional free energies f"' (u"') and f' ' (u"') (the exact result is f=0);
the bottom number is the corresponding irnprouetnent factor pf'"=f"'(u"')If' '(u'") (notice
that in almost all the present cases

~
y,f"'

~
& l; (—) means that the computer indications

were not clear enough.

10 20 50

0.047
0.001

40.917

0.239
0.133
1.799

0.462
0.438
1.054

0.031
—0.003
—9.504

0.047
0.008
6.004

0.135
0.088
1.537

0.253
0.249
1.017

0.097
—0.041
—2.376

0.028
0.0006

46.867

0.012
0.001
8.819

0.044
0.024
1.821

0.1080
0.1083
0.997

10
0.132

—0.055
—2.392

0.055
0.004

15.292

0.008
0.0004

22.864

0.006
0.0008
7.852

0.030
0.022
1 ~ 372

20
0.152

—0.044
—3.443

0.073
0.008
8.850

0.020
0.002
8.338

0.004
0.0002

18.539

0.005
0.001
3.963

50
0.166

—0.029
—5.671

0.087
0.014
6.405

0.031
0.006
4.981

0.012
0.002
6.021

0.003
0.0003

11.185

(3) 2s +3s + 1 I (3/2s) 1

2$ I (] /2$) (g( )) /

2n +1
n +s+1 I (3/2s)

I (1/2s) I (1/2s)
'2

2n +3
2$

I (1/2s)
1

(~(3))( +1)/

I (3/2s)+ I-(1/2$)

2n +1
2$

r(1/2$) I (1/2s) I (1/2s)

2n +1 2n +3
2$ 2$

4n +3
2$

2I (1/2s)

4n +1
( 3/2$) 2s

2I (1/2s) I (1/2s)
1 q2 ' (1/n) —1

(~( ))( + )/ b1/
k T (39)

where u's' is the (physically meaningful) root of Eq. (30) with I =3; we obtain once more the exact thermal
dependence but a (slightly) wrong numerical factor [except the cases (n = 1;Vs) and, of course, n =s where
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TABLE III. Selected results obtained for the pure potential classical single oscillator (x'"
treated with x ). The top and intermediate numbers, respectively, are the reduced vanishing

field isothermal susceptibilities qz" and qr
' defined through Eqs. (38) and (40) (the exact re-

sult is qr ——1); the bottom number is the improuement factor pz' ' =—(1—qz ')l(1 —qz ') (notice

that in all the present cases
~

tur' '
~

& I); (—) means that the computer indications were not

clear enough.

10 20 50

0.854
0.996

38.940

0.510
0.728
1.800

0.305
0.390
1.139

0.798
0.972
7.151

0.625
0.799
1.865

0.473
0.570
1.226

1.078
0.998

—51.747

0.910
0.992

11.857

0.818
0.927
2.489

0.701
0.773
1.314

10
1.095
0.997

—33.773

1.055
1.001

37.247

0.947
0.995

10.880

0.879
0.938
1.960

20
1.101
0.997

—32.872

1.073
1.005

15.484

1.034
1.001

27.811

0.962
0.993
5.646

50
1.102
0.997

—30.484

1.079
1.007

11.249

1.046
1.004

10.531

1.021
1.001

16.953

the full exact answer is obtained]. Equations (35) and (39) enable the calculation (see Table III) of the factor

qg '—=X'T'/XT . (40)

We verify that q&
' & 1 if s & n. In order to measure how many times X'T' is better than X'z' we have also in-

dicated in Table III the improuement factor

(3) (3)
&T—&T 1 —qx

(41)

We notice that in all the cases the third-order approximation is better than the first-order one; typically for
n =2 and s =1 we obtain p&' '-39.

IV. SECOND APPLICATION: MIXED ELASTIC POTENTIAL

A. Free energy

As a second test of the EVM let us consider the Hamiltonian

2

+bx +cx, b, c )0.
2lTl

(42)
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Its associated free energy is given by
' 1/2

~bmkg TF= —k~Tln
2ch 2

2
kgT

F(c =0)+ 4 c if T~O,
b

4(b 2/8ckg T) (43)

(43')

2K m

bh
F(c =0)=—kgTln

I(-, )
F(b =0)+, b if T~go,

~ j

where K„(Z) is the standard Bessel function and where

1/2

k~T

(43")

and

F(b =0)= —k&Tln —,1
1

4

1/2 1/4
2~mk~ T kq T

h C

1/2 ' ' 1/4
2mmkg T kg T

=—k~ T ln 1.8128
h

Let us now introduce the following trial Hamiltonian

A 0= +Bx B)0
2m

whose associated free energy is given by
1/2

27r m
Fo ———kg T ln

2 kgT
Bh

(44)

(45)

The use of Eq. (8) for I =1 leads to
2B, k&TF"'=F,+

2B
(46)

whose minimum is located at

B"'=—,[b+(b +12ckttT)' ] . (47)

The substitution of this equation into Eq. (46) leads, in the limit T~p, to the exact answer [Eq. (43 q and,
in the limit T~ oo, to

1/2 ' 1/4
e' m' 2m.mk&T k& T bF ——kg T ln 1/4 c 2~3

1/2
k~T

' 1/2 1/4
2n.mk~ T kg T b=—kg T ln 1.7293

h
+

1/2
k~T

(48)
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F =Fp+ b —8
8

The thermal dependences are the exact ones; the pure number inside the logarithm is 4.6% wrong; the pure
number in front of the term V T is 14.6% wrong [I'( —,)/I'( —,)=0.3380 and I/(2v 3=0.2887].

Let us now consider the third-order approximation. The use of Eq. (8) for I =3 leads to

k~T 3 k~T 12c (k~T) k&T

b —B+
'2

9 kgT kgT
4 B 4

1 b —8 99 3(AT)
kgT+ c

4
(49)

whose minimum is located at 8 =8' ', where

{8' ') —3b(8' ') +(3b —18ck&T)(B' ') +(36bck~T —b )(8' ') +(120c kz T —18b ck&T)(B' ')

—120c bkz T 8' ' —297c kz T =0. (50)

This equation leads, for T~O, to

(3) ckgT8 -b+a
b

where a satisfies

(51)

B. Specific heat

By derivating Eq. (43) twice, we obtain the
specific heat C= —Td F/dT associated with the
Hamiltonian (42):

a —18a +120a—297=0,

hence
' 1/3

=6 +337+9a=6+
2

=6.71902 .

1/3
v'337 —9

2

(52)

(52')

3 1 E3/4( 1 /t)t E3/4( 1 /t)C=k
4 t2 2E1/4(1/t) t2K21/4(1/t)

where

8ckg Tt:—
b

(55)

(56)

Equation (51) substituted into Eq. (49) leads to the
exact answer [Eq. (43')]. In the limit T~ Oo, Eq.
(50) provides

and where standard recursive relations for the
Bessel functions have been used. As far as we
know expression (55) has never been registered in
the literature. It leads to

B-+acks T,
which, substituted into Eq. (49), leads to

(53) C-kg(1 ——„t) if t +0

and to

(ss')

' 1/2 1/4
2m.mk~ T kg T

F' '- —kgTln 1.8107
Ii c

C-k — I (3 )

v 21 (1/4) ~t

' 1/2
kgT

+0.3367b
c

(54)

3 1=kg —,+0.2390 jf r (ss")

The lth-order approximative specific heat is
given by

which once more contains the exact thermal depen-
dences but (slightly) wrong numerical factors: The
pure number inside the logarithm is 0.1% wrong
and the one in front of v T is 0.4% wrong; we see
that the third-order perturbation is about 40 times
better than the first-order one.

(l) d2F(l)( T 8(l)( T) )
dT2 (s7)

Straightforward calculations lead, in the limit
T~O, to the exact asymptotic behavior [Eq. (55')]
for both C'" and C' ' and, in the limit T~ Oo, to
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the following results:

3 1 1
C -ka —+

=kg —+0.2041
3 1

(58)

and

XT — 1 ——t if t~0,3

2b

2~2r(3/4) q
r(1/4) bv t

2

0.9560 if t~ &g&

b t

(60')

(60")

and

C' '-ka —,~0.2381
t

(59)

The pure factors in front of t ' are, respectively,
14.6% and 0.4% wrong [see Eq. (55 )j. The com-

plete thermal dependences of C, C'", and C' ' are
represented in Fig. 2.

Within the present EVM the use of Eqs. (17a)
and (17c) (with P =x ~) enables the calculation of
the thermal dependences of the first- and third-
order approximative susceptibilities. In particular,
in the limit T~O, the exact asymptotic behavior
[Eq. (60')j is recovered for both Xr" and I'r'. In
the other limit (T~ 00) the following results have
been obtained:

C. Susceptibility

2 2

b t bv't (61)

Through calculation of (x2) we obtain the ther-
mal dependence of the electric susceptibility, name-

ly,

and

(3) ~ 0.9524
b v~

(62)

E3/4( 1 /t)
x —1

b t Xi'( 1/f)
{60)

This expression (never registered in the literature as
far as we know) leads to

Once more the thermal dependences are the exact
ones and the pure numbers are, respectively, 14.6%
and 0.4% wrong. The full thermal dependences of
XT, X'T' X'T' have been represented in Fig. 3.

0.95-

0.85-

0.80
0 I5 t

FIG. 2. Thermal dependences of the exact, first-, and third-order specific heats of the mixed potential (bx'+cx 4)

classical single oscillator; they all converge to —kz in the limit t~ 00, t —=Sck~T/b; the dashed line indicates the initial

slope.
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0.5

0$

0.5

0.2

O.I—

'I

'i

I5

FIG. 3. Thermal dependences of the exact, first-, and third-order vanishing field isothermal electric susceptibilities

of the mixed potential (bx'+cx ) classical single oscillator with charge q; they all vanish in the limit t~ oo',

t =8ck~T/b'; the dashed line indicates the initial slope.

V. CONCLUSION

For classical systems associated to Hamiltonians

(as well as for quantum systems such that A
commutes with a trial Hamiltonian P 0) we have
performed a cumulant expansion of the associated
free energy (and, for classical systems, of the sus-

ceptibility as well) and have outlined a new pro-
cedure (referred to as the extended variational
method) whose purpose is to improve the results
obtained within the framework of the standard
variational method in equilibrium statistical
mechanics. Within the present context a sequence
of lth-order approximative free energies appears
which exhibits convergence problems in the limit
l~ ap (similarly to what happens in asymptotic
series); these problems do not necessarily persist for
other quantities (like the specific heat or the sus-

ceptibility).

The whole proceudre has been tested for two dif-
ferent types of classical anharmonic single oscilla-
tors, namely, those whose elastic potential is pro-
portional to x " with n =1,2, . . . (pure type) and
those whose potential is of the type bx +cx
(mixed type). For both types the exact free energy,
specific heat, and susceptibility are established (in
the mixed case for the first time as far as we
know) and then compared with successive approxi
mations [obtained by using trial elastic potentials
proportional to x ' (s =1,2, ~ . .) for the pure type
and to x for the mixed one]. In all the physically
meaningful situations the exact thermal depen-
dences are recovered for all approximation orders
and simultaneously for both limits T~O and
T~ oo. Furthermore great improvement is ob-
tained for the eventually wrong numerical coeffi-
cients (which are, nevertheless, frequently quite
close to the exact ones and sometimes coincide
with them) by minimizing

Fo+(~—A o)o ——[((~—~o)')o —(~—~o)o']
2

2

+ [((M—~o) )o—3'(A —~o) )o(A —A o)o+2(A —Mo)o ]
6

(third-order approximation),
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instead of

FQ+ {A —4 o)p

(first-order approximation).

As an illustration let us recall our results for the
pure-type elastic potential associated with n =2
treated with the trial potential associated with

s = 1; we have obtained, for all temperatures, the
exact specific heat in both first- and third-order
approximations and a third approximation to the
susceptibility which is 39 times better than the
first-order one. In the case of the mixed-type elas-

tic potential we have obtained (still using s =1) a
third-order approximation for both specific heat
and susceptibility which is 39 times better than the
first-order one {the relevant comparison refers to
the limit T~ ao where the discrepancy achieves its
maximum value).

On general grounds we must keep in mind that
only the first-order approximation [standard varia-
tional method (VM)] is a priori justified (through
the Bogolyubov inequality); higher-order approxi-
mations [extended variational method (EVM)] can
eventually violate the positive definiteness of the

underlying probability space. ' It seems never-

theless clear that for physically important oscillat-

ing systems (like d-dimensional crystals, ' for ex-

ample) the EVM (in its third-order approximation)
can be numerically quite perforrnant. No doubt

that the application of the present procedure to
other systems (like simple magnetic systems)

and/or its extension to general quantum ones

should clarify its possiblities and limitations.
Note added in proof: A recursion relation quite

similar to our Eq. (7) appears in H. E. Stanley and
T. A. Kaplan [Phys. Rev. Lett. 16, 981 (1966)].
Several points of interest concerning the VM are
discussed by T. A. Kaplan and P. N. Argyres
[Ann. Phys. (N.Y.) 92, 1 (1975)].
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