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Recent experimental results on the intermittent generation of shear turbulence raise
questions about the significance of Reynolds averaging. In this paper, statistical equa-
tions are derived by progressively averaging the Navier-Stokes equation over a series of
increasing time periods. Averaging over the shortest time smooths out part of the field
(which corresponds to the highest-frequency fluctuations). The mean effect of these fluc-
tuations may be calculated from the time-averaged equation of motion, and so eliminated
from the equation describing the rest of the velocity field (that is, the unaveraged part).
An iterative process leads to equations for the mean and covariance of the fluctuating
field, in which the Reynolds stresses do not appear explicitly. They are represented in

each cycle of the iteration by the sum of the following: (1) a constitutive relation, ex-

pressing the mean-square fluctuation in terms of the mean rate of strain, and (2) the
unaveraged portion of the nonlinear term. The method resembles the renormalization

group (it differs insofar as the averaging process is the defining operation). A
renormalization-group analysis is used to investigate the iteration process. With some

simplifying assumptions (e.g., the fluctuations are taken to be isotropic and the spectrum
to be a power law), a recursion relation for the viscosity is found to reach a fixed point.
In the limit of long averaging times, the mean-field equation reduces to the Reynolds
equation, with the turbulent stresses replaced by an effective viscosity.

I. INTRODUCTION

Statistical equations for shear turbulence are
traditionally derived by averaging the Navier-
Stokes equation with respect to time. The averag-

ing period must, in principle, be long enough to
smooth out the rapid fluctuations of the turbulent
cascade but short enough not to eliminate any
slower variations dne to (for example) changes in

external conditions. In practice, however, attention
is normally restricted to stationary flows and the
averaging period is taken to be infinite. As this in-

cludes a wide class of important practical flows,
the restriction may not seem too severe. Also the
averaging procedure has the merit of corresponding
unambiguously to the way experimental measure-
ments are usually taken in the laboratory. The end
result is the well-known Reynolds equations, for
the mean and covariance of the random velocity
field.

Although these equations have long provided al-
most the entire basis for phenomenological
theories, and the semiempirical analysis of en-

gineering problems, they are open to at least two
serious criticisms. First, they are theoretically in-

tractable. This is due to the moment-closure prob-
lem. For this reason theorists generally work with

isotropic turbulence, where the mean rate of shear
is zero and the closure problem may be studied in

isolation. The consequent reduction is complexity
is held to outweigh both the artificialities and the
problems involved in direct experimental cornpari-
son. Second, even at a phenomenological level the
equations are inflexible. In general, it is difficult
to treat nonstationary flows. In particular, recent
experimental results call the basic averaging pro-
cedure into question even for steady flows. This is
because of the intermittent character of turbulent

generation. Measurements of statistical properties
show, in some cases, a nearly bimodal probability
distribution. Correlation coefficients are found to
be zero for stretches of time, interspersed with

periods when they are unity. This behavior may be
compared to the conventional assumption of a
long-time mean value of about 0.4.

In this paper we propose a new approach to this
problem. The Navier-Stokes equation is progres-
sively averaged over a series of increasing time
periods. Averaging over the shortest time smooths
out part of the fluctuating field which corresponds
to the highest-turbulent frequencies. The mean ef-

26 1078 1982 The American Physical Society



26 REFORMULATION OF THE STATISTICAL EQUATIONS FOR. . . 1079

feet of these fluctuations may be calculated and
hence eliminated from the equation describing the
rest of the velocity field (i.e., the lower frequen-
cies). An iterative process leads to equations for
the mean and covariance of the fluctuating field, in
which the Reynolds stresses (as such) do not ap-
pear. They are represented in each cycle of the
iteration by both a constitutive relation expressing
the mean effect of fluctuations in terms of the
mean rate of strain, and the unaveraged portion of
the nonlinear term.

This method resembles that of the renormaliza-
tion group. ' In Sec. IV we make a
renormalization-group analysis of the iteration, on
the basis of simplifying assumptions about the
fluctuating field. The main assumptions are that
the fluctuations may be treated as isotropic and the
spectrum represented by a power law. On this
basis, as the averaging time is increased, a recur-
sion relation for the effective viscosity is found to
reach a fixed point. Renormalization-group
methods have previously been applied to turbulence
problems by Forster et al. , ' who study low-fre-

quency correlations; and by Rose, who considers
subgrid modeling of passive scalar convection.

We have noted above, that the intermittent gen-
eration of turbulence supplies one of the motiva-
tions for a different statistical treatment of the
equation of motion. As intermittency is currently
of interest to theorists we shall briefly develop the
point here.

Intermittency effects in turbulence seem to fall

roughly into one of three classifications. First
there is intermittency of the small scales. This is
due to the inability of the small eddies to fill space

and is characterized by local fluctuations in the
dissipation rate. This effect has been the most
studied theoretically. ' Second, there is the inter-
mittency found in free turbulence. This is a large-
scale effect and is associated with the instability of
the boundary between the turbulent fluid and the
surrounding nonturbulent fluid. Developments in
anemometry and signal processing have allowed ex-
perimentalists to take account of the effect of this
intermittency in their measurements. But, apart
from this, it has received relatively little attention.
Third, there is the "bursting process". This occurs
in shear flows and is also a large-scale process. In
essence, it consists of an intermittent cycle of in-

rush and ejection of fluid, in the turbulent boun-

dary layer. From both visual studies and measure-
ments ' it is clear that the process is remarkably
regular. For instance, velocity autocorrelations,

when measured with short sample times, have
shown an oscillatory behavior which corresponds
to the bursting process observed visually. It had
been established that most of the turbulence pro-
duction takes place during bursts. In view of its
immense practical importance, it is not surprising
that the bursting process has been the subject of
much experimental work. But there has been little
theoretical work, and formidable difficulties stand
in the way. "

It is, of course, this bursting process which con-
cerns us (even, if only in the sense of providing
part of the motivation for the work) in the present
paper. It is instructive to consider how the present
approach may be relevant. If we consider tur-
bulent shear flow in a straight pipe then the size of
the largest eddies will be of the order of the radius
a. And, if the mean velocity is U, then the time
scale associated with the largest eddies will be
~=a/U. Plausibly, we may take ~ to be the long-
est single time scale associated with the energy cas-
cade. From experiment, we know that the bursting
process introduces a longer time scale into the
problem in that Tz, the mean time between bursts,
is about 5a/U. That is TB-5r. So, if we average
over ~, we may eliminate the cascade but still have
some time-dependent behavior. In this sense, even
flows that are conventionally described as station-
ary, are really only quasistationary. We shall
develop this point further in Sec. VI, in the light
of the theory to be presented.

Finally, we should note that in work of this kind
it is difficult to make progress without making
some approximations. Several approximations of a
straightforward kind will be introduced and dis-
cussed as appropriate in the main body of the pa-
per. However, one particular step requires a spe-
cial mention. In Sec. III we solve for the high-
frequency part of the second moment, by neglect-
ing that part of the triple moment which is entirely
made up of high-frequency components. This is a
rigorous step initially (because the averaging time
can be taken as arbitrarily small) but there is a
possibility of a finite error accumulating during the
iteration process. Hopefully, further investigation
may provide numerical support, but for the mo-
ment this particular step (although plausible),
should be regarded as somewhat imponderable.

II. STATISTICAL EQUATIONS

A. Equations of motion

We shall restrict our attention to incompressible
flows. Accordingly, we may take the velocity field
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U (x, t) as satisfying the Navier-Stokes equations
in the form

a a
M~p ————D~p +D~y

2 Bx& Bxp
(2.6)

and

—vpVU = —Up U
Bt Bx Bxp

a
U (x,t)=0,

Bx

(2.1)

(2.2)

and D p is defined in terms of its effect on an ar-
bitrary function f(x),

D ttf(x)=5 pf(x)
2

I d x'H(x, x')f(x') .
Bx Bxp

V p= — U Up.2= a a
Bx Bxp

(2.3)

In other words, the external pressure satisfies
Laplace's equation whereas the internal pressure
satisfies Poisson s equation and is, in fact, a
Lagrange multiplier of the velocity field.

We can proceed by introducing the Green func-
tion H(x, x ') such that

where vo is the kinematic viscosity.
Equation (2.1) may be specialized to the case of

shear flow by the addition of an externally applied
pressure gradient which would be needed to sustain
the flow. To do this, we assume that part of the
boundary surface is at infinity so that one may add

Bp,„,/Bx to the right-hand side of (2.1) with p,„,
satisfying

2V p,„,=0.
Then we may eliminate the internal pressure by
taking the divergence of all terms in (2.1) and in-
voking (2.2), thus,

(2.7)

At a later stage we shall find it necessary to work
with the Fourier components of the velocity field.
Therefore, it will be convenient to summarize the
basic equations at this point.

We may consider the fluid to occupy a cubical
box of side L. Then the Fourier components of
the velocity field are defined by

U (x,t)=g U (k, t)e'" " .
k

(2.8)

at
+vpk U (k, t)=II (k)

++M pr(k)Up(j, t)
J

At a later stage we may take the limit L~ ao and
summations may then be replaced by integrations.
With the substitution of (2.8), Eqs. (2.5)—(2.7) be-
come

V H(x, x')=5(x —x') (2.4)
X U&(k —j,t),

and taking (2.1) on the boundary surface in order
to establish the boundary conditions on the pres-
sure. A fuller treatment of this procedure will be
found elsewhere. ' ' As we do not aim at practi-
cal calculations in this work, we shall simplify
matters by taking all boundary surfaces to be at in-

finity. This only excludes the surface integral
which represents the boundary condition on the
normal derivative of the pressure.

It follows therefore that we may write (2.1) in
the form

i3 cl——voV U (x,t)=-
at Bx

+Mopy Up( x, t) Uy(x, t),

M~p (k) 2i [kpD~r(k)+krD~p(k)]

and

(2.9)

(2.10)

(2.11)

B. Averaging and the Reynolds equations

For quasisteady flows, the average with respect
to time, is defined as

D p(k)=5 p kkp i
k i-

where II (k) stands for the Fourier transform of
the external pressure gradient in Eq. (2.5). We
shall not be manipulating this quantity and accord-
ingly need no more specific form than that.

(2.5)
U (x,t)= U (x,t+s)ds .1

2T —T
(2.12,'

where The averaging period 2T must satisfy two condi-
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tions. First, it should be long enough to smooth
out the fluctuations associated with the turbulent
cascade. Second, 2T must be shorter than the
time-scale associated with any external time depen-
dence that we might wish to study. A flow in
which both these conditions can be satisfied is, by
definition, quasisteady.

This is conventional wisdom and nowadays we
should probably class the bursting process (as dis-
cussed in Sec. I) with the external time distur-
bances. (This does not imply that the bursting
process is an external disturbance. It is simply a
recognition of the fact that the time between bursts
may be long enough for the above criteria to be sa-
tisfied. The implication would then be that al/ tur-
bulent flows are no better than quasisteady. )

Theorists normally use the ensemble average.
And, of course, in certain circumstances the differ-
ence between that and the time average as defined

by (2.12) is of some importance. However, this is
not the case here. In the well-established analysis
leading to the Reynolds equations (which we shall
presently summarize), the distinction would be
purely forrnal. The analysis is the same for either
form of average.

In this paper, we shall use the integral time aver-

age almost exclusively. This will turn out to be
central to our approach, which is to assess the ef-
fect of repeated smoothing with increasing values

U (x, t) = U (x,t)+u (x,t), (2.13)

where u (x, t) is the fluctuating velocity field.
Evidently u (x, t) itself has zero mean and the sta-
tistical description of the velocity field may be
completed by the infinite sequence of moments

Q p(x, x ';t, t')=(u (x, t) u(px ', t')),
Q p (x, x', x";t,t', t")

= (u (x, t)up(x ', t')uz(x ",t")),

(2.14)

(2.15)

and so on.
The equation for the mean velocity is obtained

by substituting (2.13) into Eq. (2.5) and averaging,
thus,

of the averaging period. Further, it will be seen as
a not entirely trivial point that this operation
corresponds exactly to the way in which the exper-
imentalist measures mean quantities in turbulence.

Let us now consider the problem of deriving
equations for the mean and covariance of the tur-
bulent velocity. Irrespective of how the average is
defined, we shall represent the mean velocity by an
overscore and all other averages over the fluctuat-
ing field by Dirac brackets, thus, ( ).

The analysis is well established and proceeds as
follows. Let us represent the total velocity field as
the sum of the mean and the fluctuation from the
mean, thus,

——voV2 U (x,t)= — +M»[Up(x, t)Ur(x, t)+Qpr(x, t)] . (2.16)

Also, subtracting Eq. (2.16) from (2.5), multiplying by u (x ', t'), and averaging, yields the general equation
for the second moment of the fluctuating field:

——voV' Q (x, x ';t, t')=2M, »U~(x, t)Qp, (x, x ';t, t')+M»Qp~ (x, x, x ', t, t, t') .
at

(2.17)

Clearly, an equation for the unknown third-order
moment can be formed the same way, and will

contain the fourth-order moment, and so on. This
is the well-known closure problem. In the en-

gineering literature it has traditionally been evaded

by making assumptions about the relationship be-
tween the mean velocity and the Reynolds stress;
and working only with Eq. (2.16). [Although, re-

cently, this approach has been extended to single-
point forms of (2.17).] In contrast, theorists have
tended to work with flows that are translationally
invariant. Hence, U and Eq. (2.16) are irrelevant,
with full attention being given to the moment

(2.18)

where Q, 2 is the Reynolds stress. An analogy be-
tween the turbulent dissipation and molecular dis-
sipation may be adopted, with the introduction of
an eddy viscosity e, such that

hierarchy.
Equation (2.16) is the Reynolds equation. As it

stands, it is not in its most familiar guise. Howev-

er, specializing to a steady, two-dimensional mean
flow, we may put U ( x, t) = U& (x2), for example,
and so reduce (2.16) to

d2U] a
, + Qiz(&2)=-

dk2 Bx)
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dUi
Qi2=&

exp
(2.19)

In practice this analogy has generally been devel-

oped by rather primitive arguments in which the
energy and momentum transfers in turbulence are
taken to be like those in the kinetic theory of dilute
gases. The end result can be relatively simple

forms of Eq. (2.18) for engineering applications.
But even when reduced from (2.16) to (2.18), the
Reynolds equation still presents a formidable chal-

lenge to theorists.
Finally, for completeness we note that the

Fourier-transformed Reynolds equation may be de-

rived directly from (2.9), using exactly the same

procedure, to obtain

—+ppk' U, (k, t)=II (k)++M ttr(k)[U&( j,t)Ur(k j—, t)+Qtt„(k,t)], (2.20)

with a corresponding form for the covariance
equation.

III. REFORMULATION OF THE
STATISICAL EIQUATIONS

lower frequencies), until one gets back to the con-
ventional mean value, when the nth averaging time
is just T. We begin by introducing the set

I rp, r~, . . . ,r, . . . I, such that rp ( r& (
-, and the weighting function a„(t),which

must satisfy

A. Averaging by repeated smoothing

Let us begin by considering a generalization of
the averaging process of (2.12), carried out over
some period 2~p, where rp && T. We do this by in-

troducing a weighting function ap(t), such that

( U (x t))p= f U (x, t +s)ap(s)ds, (3.1)

where

f ap(t)dt =1,
and 'Tp is the time scale which characterizes ap(t).
If we choose the weighting function to be

ap(t) = (rp) 'sine(et/~p),

f a„(t)dt=1,
and which we choose to be

a„(t)=(r„) '
sine (mt/r„) .

Then we define the general operation

(U~(x, t))„=f U (x,t+s)a„(s)ds,

and the associated definition

8 N(x, t)=U (x, t) —(U (x, t))5 .

With the choice of (3.2) as weighting function,
(3.3) satisfies

( U(t) )„~U(t) as r„~O

(3.2)

(3.3)

(3.4)

where sine(a) =a 'sin(a), then the operation of
(3.1) will average out those frequencies which are
greater than, say, cop, where cop ——~/7p. If ~p is
small enough, we note that the quantity

U (x, t) —(U (x,t))p=u p(x t)

is (a) small compared to U or U, and (b) its de-

cay rate is governed by the molecular viscosity.
Under these circumstances (which may be taken as
the criterion for choosing wp), we may solve the
equation of motion for the mean effect of the
high-frequency fluctuation u p. This may then be
eliminated from the equation of motion, with a
consequent reduction of the overall problem.

One could hope to carry on like this, averaging
over longer times (and eliminating progressively

and

U (x,t) = U (x,t)+ U+(x, t),
where

(U (x,t))„=U (x, t)

and

(U+(x, t))„=0.

(3.5)

(3.6)

(3.7)

(U(t))„~U(t) as r„~T.

Thus, in the limit of large n, (3.3) and (3.4) just
reduce to the conventional mean and fluctuation,
as defined by (2.12) and (2.13).

Now in any cycle (i.e., for any value of n), let us
write the instantaneous velocity field as
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where F. p is the energy spectrum tensor. With
these points in mind we are in a position to
develop an iteration procedure for the equation of
motion.

B. Iterative development
of the mean-field equation

Following the scheme outlined above, we substi-
tute (3.5) for the instantaneous velocity in the
equation of motion (2.5). To begin with we aver-

age over 7 p. The result for the mean field is
T

——voV (U x, t) Mpr(Up—(x,t)Ur (x, t))0
at

ext +M p Up (x, t)Uy (x, t) .
Bx

(3.9)

This procedure is analogous to the derivation of
the Reynolds equations which follows from (2.13).
That is, if we substitute (3.5) into the equation of
motion, and perform the operation ( )„,then we
obtain equations for U and ( U+ U+ )„.In each
cycle, U is the analog of the mean and U+ is the
analog of the fluctuation from the mean. As n in-

creases U ~U, but U+ does not become the fluc-
tuating velocity. This is because we eliminate fre-
quencies in the band cop&co & 00 for n =0, frequen-
cies coi & co & cop for n =1, and so on. Thus for a
given value of n, U+ only contains frequencies in
the band co„&co&co„&.This is by contrast with
the true fluctuating velocity as defined by Eq.
(3.4). For a given value of n, u „(x,t) contains
frequencies in the range m„&co & oo.

Similarly, the analog of Reynolds stress in any
cycle n, only contains frequencies co„&co & co„
and we have

CO

( U+ ( x, t) Up ( x, t) )„= E p( x,a) )e'"'dc@,
~n

(3.8)

Subtracting this from (2.5), multiplying through by
U+(x, t), and averaging over 7 p we obtain

——voV (U~+(x, t)U~ (x, t))0
Bt

=5 p5(x —x ')5(t t') . —(3.11)

Now, if we use (3.11) to obtain ( U+ U+ )0 in
terms of U and substitute back into (3.9), the ef-
fect of ( U+ U+ )0 is seen to be that of an addition-
al viscosity acting on the mean field. However, in-
stead of the scalar constant vp due to molecular ef-
fects, we are now faced with a transport coefficient
which is a tensor function of the variables x and t.
In principle, it is convenient to anticipate this by
generalizing the zero order to take a consistent (if
somewhat degenerate) form. Thus if we rewrite
(3.11) as

L ' '( x, t)S~p( x, x ';t, t')

=5 p5(x —x ')5(t t')—(3.12)

we may make the rather simple generalization

f d ' f dt'L' '(x x't t')S' '(x' " t' t")

=5 p5(x —x ")5(t t'), —

where L' ~(x, x ';t, t') contains the appropriate
combination of delta functions in order to allow
the right-hand side of (3.13) to reduce to that of
(3.12).

With some rearrangement of indices we may
write the solution of (3.10) as

(3.13)

=2M p, (Up(", t)U+{,t)),U„(x,t), {3.10)

where we have borne in mind that (Ur )0——Ur.
The next step is to solve Eq. (3.10). At this

stage we shall only do this in a formal sense by in-
troducing the Green's function S' ' such that

——vpV' S' Z(x, x ';t, t')
Bt

(Up(x, t)U& (x, t))0——2 f d x' f dt'Sp'(x, x ', t, t')M
tran (Utt(x ', t')U+r(x, t))0U& (x ', t')

and upon substitution of this into (3.9), we obtain for the mean field

a,„,f d'x' f dt'L' '(x, x', t t')U (x', t')= — +M,»Up{x,t)Ur(x, t),
Bx~

where

L~ '(x, x ';t, t')=L~~(x, x ', t, t') —5P' '(x, x ', t, t')

(3.14)

(3.15)

(3.16)
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5P' '(x, x';t t')=2 f d'x' f dt'M»Sg, '(x, x', t t')M tr (Utt(x', t')Ur+(x, t))0. (3.17)

We should note that 5P' ' acting on U in (3.15)
represents the increase in mean kinematic stress
due to the elimination of these fluctuations with

frequency greater than coo. The product
M p&M p gives rise to second derivatives such as

8

Bxp Bxp

acting to the right on U and hence to a mean
rate of strain. Thus 5P' ' can be characterized by
a transport coefficient 5v (in general, an anisotro-

pic second-order tensor), which is the increase in

effective viscosity due to ( U+ U+ )0. We shall

make use of this idea in Sec. IV when we analyze

the iteration in more detail.
Now let us repeat the process for an averaging

time ~& & ~o. We shall only write the mean-field
equation for this stage. In Eq. (3.15) we make the
replacement U —+ U. That is, "old mean field"
becomes "current total field" as the U+ for co&coo
has been eliminated. We then redivide into U
and U+ (current values) and average over ~&. The
result is

~ extf d'x' f dt'L~ "(x,x ';t t')U (x', t') M»(U—&+(x,t)Ur+(x, t)), = — +M»Utt(x, t)Ur (x,t),
Xa

(3.18)

along with appropriate generalizations of Eqs. (3.13), (3.14), (3.16), and (3.17).
If we carry this process on, then the forms for an averaging time w„ follow inductively. Thus,

~ ex)f d'x' f dk'L'"'(x, x';t, h')U (x', t) M»(U&+—(x,t)Ur+(x, t))„=— '"
+M»Utt(x, t)Ur (x,t),

Bx

(3.19)

where

L'"'(x, x ';t, t') =L'" "(x,x ';t, t') —5P'" "(x,x ';t, t'),
5P'"'(x, x', t, t')=2 f d x' f dt'M thing, '(x, x ', t, t')M tt (Utr{x', t')Ur+{x,t))„,

and

d'x' f dk'L'"'(x, x ', t, t')S'"&(x ', x ";t',t")=5,+(x —x ")5(t t") . —

(3.20)

(3.21)

(3.22)

We can establish the connection between (3.19) and the long-time-averaged Reynolds equation [as given by
(2.16)], by taking r„~T.Evidently U ~Uby definition, and the term (U+U+)„may be taken to be
zero in this limit. [From (3.8), (U+U+)„is the integral over that part of the spectrum for which

co„&co & co„~.Remembering that co„~Oas u ~ ao, and that E(co)~0 rather rapidly as co~0, the step
(U+U+)„~0as r„~Tis plausible. ] Then (3.19) becomes

ext
lim f d x' f dt'L'"'(x, x ', t, t')U (x ', t')= — +M»Utt(x, t)Ur(x, t) .

5~ ao Bx
(3.23)

Comparison with (2.16) shows that the Reynolds stress Q» has been eliminated. Its effect is now represent-
ed by the appearance of L'"' acting on the mean velocity. At this stage it is still an open question whether
L'"' will settle down something like

However, in Sec. IV we shall show that, provided certain simplifying assumptions can be made, this is
indeed the case.
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C. Application of the renormalization group

We close the work of this section by considering
how we may carry out a renormalization-group
(RG) analysis of the above iteration procedure.
The RG analysis is most conveniently discussed in
terms of the Fourier components of the field. We
shall consider its application to the equation of
motion in the form given by (2.9). The procedure
as applied to dynamical problems involves two
stages2 4:

(1) The Fourier decomposition of the velocity
field is taken to be cut off for k & A. Divide the
velocity field into modes U (k, t) and U (k, t),
where U are the modes such that aA &

~

k
~

& A.
Eliminate the high-k modes by solving the equa-
tion for U and substituting the solution into the
equation for U~. [Note, because of the "sum over
modes" in (2.9), the solution for U will contain
U .] Average over II( k). [For the purposes of
this brief discussion, II(k) should be taken as a
random stirring force with known statistics, rather
than the steady pressure drop of shear flow. ]

(2) Rescale k, t, U, and II(k) so that the new

equation looks like the original Navier-Stokes
equation. This last step involves the introduction
of renormalized-transport coefficents.

The RG analysis in just this form has been applied
by Forster et al. ' to the study of velocity correla-
tions at small wave numbers. Three different
models have been considered, according to the way
the forcing function is chosen. In all cases, the
cutoff k =A is taken to be small enough to ex-
clude cascade effects. Rose has applied the
method in a slightly different way to the problem
of modeling the effect of those eddies which are
too small to be taken into account in a numerical
calculation based on a finite-difference grid. The
passive convection of a scalar P by the velocity
field U is considered and both P and U are di-
vided up into subgrid and supergrid fields. In this
work the upper cutoff A is taken to be the dissipa-
tion wave number, while aA is bounded by the in-

verse of the smallest mesh length used in the calcu-
lation.

In applying the RG analysis to the present work,
we should compare the analysis leading to Eq.
(3.18) to stage (1) above. Clearly, the two pro-
cedures are similar in some respects. The division
of the field into U~ and UN has its analog in (3.5)
with the division into U~ and U~. An the elimi-
nation of U~ (in terms of U~ ) parallels that of

~0——(vokd ) =vo /e&/2 ]/2 (3.24)

Here we have used the relation kd ——(e/v )', e be-
ing the rate of dissipation of turbulent kinetic ener-

gy, which comes from dimensional analysis. '

It is tempting to make the generalization of
(3.24).

(3.25)

(and this will later be seen to be valid). Also, if we
take the spectrum to be given by a power law then
it follows that the effective viscosity will be a
power law.

In all then, we shall assume ~„to be given by

~„=h "~0, (3.26)

where 0& h & 1. The implications of this will be-
come clearer in Sec. IV when we carry out the
analysis in detail.

U+ (in terms of U ).
On the other hand, there are nontrivial distinc-

tions to be made. In the present work the averag-
ing comes first and is the defining operation [i.e.,
see Eqs. (3.5) —(3.7)]. A second, perhaps more im-

portant difference, is that the iteration is generated
by the averaging process which we have chosen
[i.e., see Eq. (3.3)]. Thus convergence to the
mean-field equation is guaranteed without the need
for any rescaling of the basic variables. Of course,
one must note that renormalized-transport coeffi-
cients in the form of series which only converge
"in principle" may be difficult to handle in prac-
tice, but there are several ways of tackling this
problem. Hence it is probably valid to draw a dis-
tinction between the present work and RG.

However, having made this point, we shall
nevertheless force our analysis into the RG mode.
This will be seen to provide us with a rather sim-
ple "first look" at the iteration procedure. This
poses the problem of finding an appropriate change
of variables in order to carry out stage (2) of the
RG analysis. Evidently such a rescaling should be
based on the set [ r„j,of the averaging procedure.

These averaging times are not arbitrary. For in-
stance, in order to solve (3.10) for U+, we require
ro to be such that the Reynolds number is of order
unity. In turn, this means that the "viscous" and
"inertial" contributions to the eddy turnover time
should be of the same size. The viscous response
time is (vok )

' and if we take the value of this
time at k =k~, where k~ is the boundary between
inertial and viscous regions of the spectrum, then
we have
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IV. ANALYSIS OF THE ITERATION
PROCEDURE FOR THE MEAN FIELD

A. The recursion relation

From now on, we shall simplify the algebra by
working with the Fourier components of the field
in k space. We shall also make the assumptions
that the fluctuating field may be taken as both
homogeneous and isotropic. These assumptions
would not be valid near solid boundaries but we
have ruled such regions out of consideration at the
beginning of this work. We shall enlarge on the
practical significance of this type of approximation
at a later stage.

With these assumptions, the pair correlation and
response tensors take particularly simple forms.
They may be written'

Q p(k, k';t t')=D p(k)5(k —k')Q(k;t, t')

(4.1)

and

(L/2n) (u „(k,t)up„( k—', t')}„
=D p(k)5(k —k ')Q„(k;t,t'), (44)

where u „(k,t) is the Fourier transform of the
derivation from the (nth) mean, as defined by Eq.
(3.4), and

'3

( U+(k, t)Up+( —k', t'))„

=Dip(k)5(k —k ')Qz+(k;t, t') . (4 5)

We now wish to obtain Eqs. (3.19)—(3.22) in terms
of the Fourier components. The above assump-
tions, and the properties of the D p operators, al-

low a considerable reduction of the problem. For
instance, the first term on the right-hand side of
(3.19) must take the form

f dt'L„(k;t, t')D ( k )U ( k, t')

=f dt'L„(k;t,t')U (k, t'), (4.6)

S~p(k, k ';t, t') =D~p(k)5(k —k ')$„(k;t,t'),
(4.2)

where S'"p(k, k ';t, t') is the Fourier transform of
S~p(x, x ",t, t'), as defined by (3.22), and the pair
correlation is defined by

3
L
2' (u (k, t)up( —k', t')}=Q p(k, k';t, t'),

(4.3)

where u (k, t) is the Fourier transform of the fluc-
tuation from the mean as defined in (2.13). Here

( ) means either realization or long-time average.
For completeness, we should also have the follow-

ing generalizations of (4.1) and (4.3):

where L„is defined by analogy with S„in (4.2). A
further simplification of the analysis is possible if
we follow the example of Rose who assumes that
the U~ (k) modes evolve more rapidly than the
lower-frequency U (k) modes, to such an extent
that the time dependence of the U~ (k) may be
neglected over time scales associated with the
U~(k). It would seem to be reasonably plausible
to make the same assumption about the U+ ( k )

and U (k) of the present work. And, although it
is not a necessary approximation, it does allow the
underlying structure of the iteration procedure to
be seen rather more clearly.

To see what this means in practice, let us return
to zero order. After Fourier transformation, Eqs.
(3.9) and (3.10) become

—+vok U (k, t) gM Pr(k)(U—P(j,t)Ur(k —j,t))P——II (k)
t

J

++M p„(k)Up ( j,t) Ur (k —j,t), (4.7)

and

(4.8)—+vok (U+(k, t)U~+(k, t) }0=2+M~p„(k)(Up ( j,t)U~ (k ', t)}DU& (k j,t) . —

Then the assumption that U+ evolves much more rapidly than U implies that U+ relaxes to the steady-
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state solution of (4.8) while U is still evolving. Hence we may write (4.8) as

(U+(k, t)U+(k ', t))0——2/M ttz(k)(vok ) '(U~+( j,t)U+(k 't))DUr (k —j,t) . (4.9)

This is the k-space equivalent of (3.14), with the time dependence simplified. Renaming dummy variables
we may rewrite (4.9) as

(U~+( j,t)U& (k —j,t))0——2+M trz ( j )Dtt& ( j )(voj ) '(Vtr( j ', t)U&+(k —j ))DU~( j —j ', t) (4.10)

and substitute into (4.7) to obtain for the mean field:

—+vok U (k, t) —2 g M ttr(k)M trr ( j )Dtt ( j )(voj ) '(Ut+r( j ', t)Ur+(k —j,t))OU& ( j —j ', t)
at

=II (k)++M ttr(k)U&(j, t)Ur (k j,t) —.
J

This may then be written in terms of an incremental change to the viscosity, thus

(4.11)

—+v&k U (k, t)=II (k)++M»(k)Utt( j,t)U~ (k j,t), — (4.12)

where

&i =&0+5&o

and [using Eq. {4.5) and taking the limit L ~ 00]

»0=k ' f d'jLk, {voj') 'Qo{ Ik —j I
t»

where

Lkj = —2Map] (k)Ma'p'z'( j )Dpa {j )Dp&{k —j )Dz'a(k) .

As in the previous section, we repeat the process for an averaging time r& ) ro, to obtain the Fourier-
transformed {and simplified) form of Eq. (3.18), thus

(4.13)

{4.14)

{4.15)

—+v, k U (k, t) gM ~r(k—)(Utt( j,t)V&(k —j,t)), =II (k) +g M~r(k)Utt( j,t)Ur (k —j,t),at
J

(4.16)

and so on. Again, the equations for an averaging time of r„follow inductively. Thus the analogous forms
of (3.19) et seq are

—+v„k~ U (k, t) gM t—tr{k)(Up+{ j,t)Ur {k—j,t))„=II(k)++M ~r(k)Up( j,t)Ur (k —j,t),

and

+n +1 +n +~+n

Q+(
~

k —j i, t)»„=f d JLkj.
v„(j,t)k j

(4.17)

{4.18)

(4.19)

For completeness, we note that Lki may be written as

[p(k +j ) —kj(1+2@ )]kj(1—p, )
Lkj 2 ~ 2k2+ j2 2kjp

where p is the cosine of the angle between the wave vectors k and j .

(4.20)
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B. Rescaling of time, frequency,
and wave number

~z ——a /U, (4.21)

We now consider a set of transformations based
on j r„j.In particular, we wish to relate Q„+to
the long-time-average spectrum Q. The smallest

averaging time rp is already fixed in Eq. (3.24).
We now need to fix the the largest averaging time
r~ (say). This is not too critical providing it in-

cludes all cascade affects without including the
bursting intermittency. As suggested in Sec. I, the
time scale of the largest eddies, in the form

C. Calculation of the effective viscosity

g(k) =ad"k-"", (4.29)

where a is a constant whose experimental value is
somewhere in the range 1.3—1.8. Then, Eq. (4.19)
may be written as

In order to make a definite calculation we shall
take the turbulence to be statistically steady (in the
usual sense). This allows the time dependence to
be dropped from Q+. We shall further assume

that the steady spectrum is given by the well-

known Kolmogoroff distribution, '"

would seem to meet both requirements.
Let us now define the long-time-averaged spec-

trum Q as

~N

Q(t) =Q„—= f f(t+s)ds,
27~ ~N

(4.22)

where we have dropped the spatial dependence for
convenience, and f stands for the square of the
fluctuating velocity. Introducing the change of
variables

6v„(k„k')

L '~~k' —'
'~~

2/3g —8/3 a3 t k J
v„(k„j')k'j'

where I & k', j',
~

k ' —j '
~

& h ', and

2n.h"
U

(4.30)

(4.31)

S =7~$

we may put

(4.23)
It follows directly that we may write v„in the
form (renaming k'=k, etc.):

Q„=Q (r„t),
and using (3.26),

(4.24)
vz(knk) =a E' kn vn(k) s (4.32)

Q„=Q(h "rpt) . (4.25)

Evidently, one may write the same relationship for
Q+ with the stipulation that this holds only for an

integral over the Fourier components in the fre-

quency range co„&co&co„ i. As we are working
with a wave-number decomposition, we invoke the
well-known Taylor hypothesis, thus

with Eq. (4.30) now becoming

5v'„(k)=f d3j
Lt,j fk —j .I

v'„(j)kj

120

(4.33)

kU =co .

Then, corresponding to the transformation

t h "~ t'

we have

k~(mwp h "U ')k',

and so we may express Q+ in terms of Q as

h"
Q+(k, t) Q k', h "rpt'

vpU

where 1&k'&h

(4.26)

(4.27)

(4.28)
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FIG. 1. Variation of the effective viscosity v„(k)
with iteration-cycle number n, for k =1.011k„;
vG

——0.01; : vG ——0.05;
vG ——0. 10.
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where 1 (k,j,
~

k —j ~
& h '. For consistency, it

is readily shown that the recursion relation of Eq.
(4.18) should be written as

V. EQUATIONS FOR THE
FLUCTUATING FIELD

h v'„+)(k) =v'„(hk)+5v„{hk). (4.34) A. The covariance equation

Equations (4.33) and (4.34) have been computed
numerically. The recursion relation is found to
reach a fixed point, such that

(4.35)

The effective (or eddy) viscosity v'(k) does not
depend on the molecular viscosity vo, but does
depend on the value chosen for the parameter h.
Results are shown in Fig. 1 for the particular case
of h =0.9. The effective viscosity v'„(k)is plotted
against n for three different values of the molecu-
lar viscosity vo, and for k =1.011k„.

In the Reynolds analysis, Eq. (2.17) for the co-
variance of the velocity field leads to the sta-
tistical-closure problem. In the present analysis,
the analogous equation (4.7) [or, more generally,
Eq. (3.14)] does not. Both these equations deal

with the contribution to the covariance from a
band of frequencies which depends on the iteration
cycle. In order to obtain a quantity which tends to
the covariance as n ~ oo {i.e., we want Q„rather
than Q+) we need to invoke the deviation from the
nth mean as defined by {3.4). In k space this be-

comes

u „(k,t)=U {k,t) —(U {k,t))„. (5.1)

We obtain an equation of motion for u~ „asfollows. Substituting (5.1) into the instantaneous equation of
motion (2.9), we find

+vok [u „(k,t)+(U (k, t))„]=11(k)++M p„(k)utt„(j,t)u&„(k—j,t)
at

++M tt„(k)[2(Utt( j,t))„uz„(k—j,t)
J

+(Utt( j,t))(Ur(k —j,t))„]. (5.2)

Remembering that (U )„=U on each iteration cycle, we tnay use Eq. (4.17) for U to reduce (5.2) to the
form

—+vok u „(k,t)=2+M tt&(k)[(Up( j,t))„u&„(k—j,t)+utt„(j,t)u&„(k—j,t)]
Bt

J

+(v„—vo)k (U (k,t))„gM tt(k—)( Up+( j,t)U+r(k —j,t))„.

(5.3)

It should be noted that the (v„—vo)k (U)„andM(U+U+) terms do not cancel. Quite the reverse: On

each cycle of iteration, some more of the M(U+U+) term is transferred into (v„—vo)k~(U)„. Together
these terms make up the M(uu ) term which occurs in the traditional derivation leading to Eq. (2.17). This
term vanishes when one multiplies through by u and averages. The same is true for (5.3) when we multiply
through by u „andaverage over ~„.It is trivial to show that the resulting equation reduces to (Fourier-
transformed) Eq. (2.17) in the limit of large n.

In order to study the closure problem in its simplest form, we again consider regions remote from the
solid boundaries of the system. This implies that the fluctuations may be treated as isotropic and that we

may neglect gradients of the mean velocity. Thus (5.3) reduces to
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(k r) —gM & (k)[p&„(j,t)p „(k—j,t) —(Up ( j,t)U& (k —j r))nl+fan(k t) (5.4)

where we have added the stirring force f „(k,t) to
represent the production of turbulent energy. As n

becomes large we have

u~ „(k,t) u~(k, t) . (5.5)

We ran also infer that, as the contribution from
(U+U+)„is transferred into f „(inreality, this
is achieved through the gradient of the mean velo-

city, and we have already seen that this process is
well behaved), we may expect

and

f „(k,t)~f (k, t),

gM &r(k)(U)r(j, t)U&+(k j,t))„—~0,

(5.6)

(5.7)

as n ~ oo. The last step was discussed in connec-
tion with the mean-field equation and follows plau-
sibly if E( k, t)~0 as ( k )~0.

Evidently, Eq. (5.4) just reduces to the Navier-
Stokes equation for the fluctuating field, in the
limit n ~ oo. Thus the iteration process that estab-
lishes the mean field does not in itself assist us
with the covariance field or the general-closure
problem. One possible approach is to tackle Eq.
(5.4) using perturbation theory. We shall briefly
examine this idea below.

B. The closure problem and the
infrared divergence

The application of renormalized-perturbation
theory to the Navier-Stokes equation has had its
successes. But there is also a serious difficulty to
be faced. We begin by discussing this.

Let us consider the effect of letting the molecu-
lar viscosity vo tend to zero, while keeping the dis-

sipation rate constant. In this process, the effects
of viscous dissipation are pushed to even higher
wave numbers. In the limit vo —+0, the viscous dis-

sipation is represented by a delta function at
k = oo. In a purely isotropic field, the stirring
forces are arbitrary —only the rate of doing work is
fixed—so we take the balancing input term to be a
delta function at the origin of k space. Under
these circumstances the inertial-range form of the

spectrum will aply for all values of k. And, al-

though there is currently some debate about the
precise form of the inertial-range solution, we shall

take it to be the Kolmogoroff distribution, as given

by Eq. (4.29).
Now this may seem rather an extreme situation

but, nevertheless, it poses a well-defined problem
for any turbulence theory. The Kolmogoroff
power law is derived using dimensional methods
and one might expect a general theory to provide a
value for the unknown constant of proportionality
a which may then be compared with the experi-
mental result. W'hile the theoretical problem is un-

realistic in that it requires the system to contain an
infinite amount of energy, it is not unphysical in

that the dissipation rate is finite and there is an in-

finite amount of k space to absorb the energy.
Thus, a theoretical value of a should also be finite.

Unfortunately this simple test has proved a
stumbling block for the straightforward application
of renormalized-perturbation methods. In most
modern theories, closure is in terms of the energy
spectrum and a response function. When the Kol-
mogoroff spectrum is substituted as a solution,
equations for the energy spectrum are found to be
well behaved, but integrals in the equation for the
response function diverge at k =0. This is some-

times referred to as an "infrared" divergence.
Some attempts have been made to introduce arbi-
trary cutoffs in wave number but evidently this ar-
bitrariness is reflected through in the dependence
of calculated values of a on the value chosen for
the cutoff. ' '" Various, more elaborate, closure
techniques have been tried, ' but it is probably
fair to say that all possess one or more unsatisfac-
tory features. A full discussion of this problem
will be found in the book by Leslie. '

Let us now consider a rather simple-minded ap-
plication of the direct-interaction approximation
(DIA)' ' ' to our present system, as defined by Eq.
(5.4). We proceed in the manner of the DIA and
introduce the infinitesimal response function g
such that

5u „(k,r)= I g „(k;r,t')5f „(k,r'),
(5.8)

where k„&k& 00. As n~00, g „becomes g
the DIA response function, and is itself a random
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variable. The same solution applies for infini-
tesimal changes in the U+ field, thus

5U+(k, t)= I g „(k;t,t')5f „(k,t'), (5.9)

where k„&k&k„
By lincarizing Eq. (5.4) in terms of 5u, 5U+,

and 5f, one may obtain an equation for g, that is,

—+vok g«„(k;t,t')=+2Matt&(k)[gp „(j;t,t')urn(k —j,t) —(gp „(j;t,t')U+&(k —j,t))„]

Averaging, and putting

gaan)n , gaa, n i

we then have

+D (k)5(t —t') . (5.10)

(5.11)

—+vok g „(k;t,t')=+2M th(k)[{gtt, „(j;t,t')ur„(k—j,t))„—(gtt „(j;t,t')U„(k—j,t))„]

+D (k)5(t —t') . (5.12)

DIA then involves expanding u, U+, and g in terms of a book-keeping parameter A, . Zero-order fields are
treated as Gaussian, the lowest-order nonvanishing terms are retained and A, put equal to unity. The result
for (5.12) may be simplified by again invoking isotropy, with

g „(k;t,t') =D (k)g„(k;t,t'),
and corresponding forms for {uu ) and {U+U+ ). Hence, one obtains

I—+vok g„(k;t,t') = — d j Lkj ds g„(j;t,s)

(5.13)

Xg„( k; st')[ Q( i
k —j i;t,s) —Q„+(

i
k —j i;t,s)] . (5.14)

We may make a comparison with the results in

Sec. IV for the mean field by introducing an effec-
tive viscosity through the eddy-decay rate co(k).
Assuming exponential time dependences,

Finally, with the transformations k~k„k',and the
assumption of the Kolmogoroff distribution for the
energy spectrum, we may write (5.17) as

Ng(krak') =ae kg

exp[ co(k)(t ——t')] t ) t'
g(k, t —t') =.

0 (5.15)

and

Q(k, t —t') =Q(k)exp[ co(k)(t —t'—)], (5.16)

we may reduce (5.14) to the form

co(k) = d j co„(j)+co„(
i
k —j i

)

(5.17)

(5.18)

where h &
i

k' —j'
i

& co. Comparison with
(4.30) for the mean-field case (note: eddy-decay
rate=k Xan effective viscosity) indicates that, de-
tailed differences aside, the two forms of the effec-
tive viscosity have the same basic structure.

At this point all we have done is apply DIA to
the nth-order equation of motion; knowing that, as
n ~ oo, this equation becomes the Navier-Stokes
equation. It might seem tempting to extend this
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by building up an iterative solution from Eq.
(5.12). That is, we take n =0, solve (5.12) by per-
turbation methods, recalculate the viscosity from
(5.17) and then proceed to solve for n =1. This
way we would obtain a recursion relation for
co„(k). And a comparison with the work of Sec.
IV suggests that such a process would converge,
leading to a finite co(k) =—lim„„co„(k),even for
the infinite Reynolds-number limit. One could
therefore expect to avoid the infrared divergence.
Unfortunately, there are serious difficulties in the
way. One can most easily see this by considering
why the method works so well for the mean field
U.

In general terms, U is the zero-frequency part of
the instantaneous field U. Thus any technique for
progressively eliminating the higher frequencies
will automatically tend to U as a limit. Moreover,
the mean effect of the fluctuations is always posi-
tive (i.e., they always give rise to a net dissipation
of energy from the mean field). This does not, of
itself, guarantee that the iteration will converge.
But if does allow one to make an unambiguous in-

terpretation of, for example, Eq. (4.11) in terms of
an effective viscosity. In contrast, the effect of
other fluctuations on a particular mode k is rather
complicated. At its simplest —the cascade
picture —there is a flow of energy into mode k
from lower wave numbers. Correspondingly, ener-

gy flows out of mode k to still higher wave num-

bers. Clearly the behavior of mode k—whether it
grows, decays, or remains the same —depends on
the relative magnitudes of these two energy flows.
If we take the example of a decay mode, then it
follows that the eddy-decay rate (and, hence, the
effective viscosity) is determined by the difference
between the two energy flows. Thus the effective
viscosity for the fluctuating field mode k must
also depend on modes below k. We cannot there-
fore just scale away wave numbers above k as we

did in the mean-field case.
It is no more than a definition of the inertial

range to state that there exist modes which are en-

tirely determined by these nonlinear energy
transfers. For such modes, the role of the stirring
forces is played by other modes at lower wave
numbers. Thus if we wish to obtain the velocity-
field covariance from (5.4), it is not sufficient just
to renormalize the viscosity, we must also renor-
malize the stirring forces. Clearly this raises the
question of how we divide up the nonlinear inertial
transfer between these two effects. A fuller discus-
sion of this point in the context of the Navier-

Stokes equations will be found in Refs. 18 and 19.
We shall not pursue these points in the present

work. Evidently the use of (5.4) does not solve the
problems inherent in the Navier-Stokes equation.
One still faces serious difficulties. However, it
seems reasonable to claim that the present pro-
cedures offer a useful and new approach to closure.
This will be the subject of future work.

VI. DISCUSSION

In Sec. III we have introduced a new form of
mean-field equation by repeated averaging of the
Navier-Stokes equation over progressively longer
averaging times. In the limit of long averaging
times, this mean-field equation [i.e., Eq. (3.19)] be-

comes equivalent to the Reynolds equation. How-
ever, the term involving the mean square of the
fluctuating field (the Reynolds stress) is replaced

by a constitutive equation which is linear in the
mean field. This constitutive equation is specified
by the recursion relations (3.20) —(3.22). These
equations are quite general but the set of averaging
tiines {r„I is determined by the need to keep the
Reynolds number small in each iteration cycle n.
This is a necessary condition for the solution of
Eqs. (3.21) and (3.22) which is crucial for the itera-
tion to work.

If we wish to make progress with a definite
problem, we have to specialize Eqs. (3.19)—(3.22)
to some tractable form. In order to make a first
analysis of these equations we have assumed the
following:

(1) The fluctuating field is homogeneous and iso-
tropic.

(2) The dependence on wave number is related to
the frequency dependence through the mean veloci-

ty (the Taylor hypothesis).
(3) The turbulent energy spectrum is a power

law.
(4) In each cycle of iteration, the high-frequency

components may be taken as quasistationary over
the time scales associated with the low-frequency
components.

(5) The averaging times I r„jcan be related to
each other through a power law.

In Sec. IV we carry out this analysis and show by
numerical calculation that the recursion relation
for the effective viscosity reaches a fixed point.

This analysis does not impinge on the closure
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problem associated with the moments of the fluc-
tuating field. Essentially one is making progress
by assuming a known form for the covariance (or
spectrum) rather than attempting to solve an equa-
tion for it. This technique offers a method of at-
tacking engineering problems in a fairly systematic
fashion. And, although some of the simplifying
assumptions of Sec. IV may seem less than realistic
for real shear flows, we have by no means exhaust-
ed the practical (and possibly more realistic) as-
sumptions that could be made in order to simplify
Eqs. (3.19)—(3.22).

A secondary motivation for the present work
was the need for a method of tackling time-
dependent phenomena that are slowly varying in
comparison to the turbulent cascade. We shall

conclude therefore with a brief discussion of how
the analysis of Sec. IV might be expanded to the
problem of the intermittent generation of tur-
bulence. In particular, we shall consider Eq.
(4.17) and suppose that n =N, where N is large
enough for us to have v~(k) =v(k). We shall
further suppose that U then contains only the
long-time averaged mean and the low-frequency
fluctuations of the bursting process. (In fact, for
the choice h =0.8, the calculation in Sec. IV satis-
fies these conditions. In general, one would intui-
tively suppose, from the wide separation of the cas-
cade and bursting time scales, that this would be
the case. Nevertheless, in any particular applica-
tion, this point would require further examination. )

Equation (4.17) may then be written as

—+v(k)k U (k, t) =II (k)++M ttr(k)Utt ( j,t)U& (k —j,t) .
at (6.1)

A further simplification results if we restrict our
attention to two-dimensional mean flow (e.g. , flow
in a straight pipe). Under these circumstances, the
term which is bilinear in the mean field is zero.
Thus if we further averaged each term in (6.1) over
infinite time, the equation would become

—+v(k)k U (k)=H (k) . (6.2)

This is just the familiar Reynolds equation with
the mean-square fluctuation (the Reynolds stress)
replaced by an effective viscosity v(k). With our
assumption of a steady-state pressure gradient
H (k), the mean velocity would be steady and
determined by v(k).

Now reverting to the short-averaging-time case
~~, as in Eq. (6.1), we can interpret the term in
U U . This contains the frequency band

0&co&co~, and goes to zero as co~0 (due to the
vanishing of gMUU). In other words U U is

just (less an additive constant due to the averaging
of frequencies greater than co~) what experirnental-
ists call the short-sample time autocorrelation (that
is, short enough not to smooth out the coherent
structure associated with the bursting process). We
may summarize this by writing Eq. (6.1) in the
form

I

where II is just the term g MU U and is intro-

duced to emphasize that it may be modeled as a
pressure-gradient input due to the (almost) regular
low-speed fluctuations.

We know from experiment what forms H must
take. In general, H will be an oscillatory function
with a small random variation in period and am-
plitude. The mean value of the period will be T~,
the mean time between turbulent bursts. If off-
diagonal components of U~ U& are involved, the
oscillation wil be stepwise between zero and some
finite value, i.e., a square wave. On the other
hand, if diagonal components of Up U& are in-
volved, the result will be nearly sinusoidal.

Although we shall not pursue this here, it is
clear that one could go on and derive equations for
both the on-diagonal and off-diagonal forms of
Up U&, for frequencies less than co~. Of course,
we should then encounter the problem of closing
the moment hierarchy. And, as we have seen in
Sec. V, some nontrivial problems will be involved.
Nevertheless, one consequence of scaling away the
high frequencies is that we are left with a much re-
duced problem overall. Experimental results tell us
that U may be thought of as the sum of a mean
and a near-deterministic fluctuation. At the very
least, this quasideterminisrn should have interesting
implications for the closure problem.

—+v(k)k' U.-(k, t) =H.(k)+H.(k, t),

(6.3)
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