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The one-dimensional harmonic liquid, subject to a temperature gradient, is studied using
the Fokker-Planck (FP) equation. A formalism is set up for solution of the FP equation
and calculation of (1) the phase-space distribution function for the nonequilibriurn steady
state (NESS), (2) the conditional probability for evolution through phase space in the
NESS, (3) phase-function averages in the NESS, (4) the correlation of phase functions in

the NESS, etc. For the harmonic liquid this formalism can be implemented without ap-
proximation. Some properties of the harmonic liquid in equilibrium are examined to illus-

trate use of the formalism; so are some phase-function averages in the NESS. The
displacement-displacement correlation function D(k, co) in the NESS is calculated and
found to have the well-established, interesting amplitude and frequency dependence. The
completeness of the Fokker-Planck description makes it possible to identify the physical
processes responsible for the behavior of D (k, co) and the dynamic structure factor S(k,co).

The interesting features of light scattering from a liquid subject to a temperature gradient,
seen in S(k,co) or D(k, m), are due to light scattering from width fluctuations induced by
the gradient; the interesting features in light scattering from a liquid-supporting shear are
due to an attenuation mechanism that arises because of the velocity field induced by the
shear. The results in this paper constitute a partial demonstration of the usefulness of the
method employed in handling the Fokker-Planck equation.

I. INTRODUCTION

The problem of characterization of a nonequili-
brium steady state (NESS) and of a proper descrip-
tion of fluctuations about such a steady state is
known to be far more difficult than the equivalent
equilibrium problem. Renewed interest in the
behavior of fluctuations about the NESS has arisen
in response to the description of a fluid supporting
flows given by Procaccia, Ronis, and Oppenheim'
and by Kirkpatrick, Cohen, and Dorfman. These
authors and others have found a wave vector k and

frequency co dependent contribution to S(k,co), in
the presence of flow, that involves "long-range
correlations", the breaking of time-reversal symme-

try, etc. Attempts to understand these results have
led to a number of kinds of contributions; for exam-
ple, those that confirm the results finding them in a
different limit or in a different kind of calculation
of S(k,co), those that attempt to construct a suitable
formal apparatus in which proper questions can, in

principle, be asked exactly, answered exactly,
etc. This state of affairs is described nicely in
the introduction and conclusion of the paper by

Tremblay, Arai, and Siggia (TAS).
In this paper we describe the harmonic liquid

(the one-dimensional harmonic chain) subject to a
temperature gradient through the introduction of
suitable stochastic forces. This liquid is described
by a Fokker-Planck equation that is able to be
solved exactly. Thus, within this model, we are able
to give an exact description of the NESS, and of
fluctuations about the NESS. We are able to exam-
ine the way in which the temperature gradient
makes itself known in physical phenomena. To be
specific as to what is meant by this last remark let
us briefly consider a light-scattering experiment.
Light in entering a fluid couples to the density fluc-
tuations present in the fluid. The frequency struc-
ture of the scattered light arises from the time evo-
lution of these density fluctuations. A nonequilibri-
um state in the fluid could make itself known in
two ways: (l) it could induce an additional fluctua-
tion structure in the fluid from which the light will
scatter and/or (2) it could modify the time evolu-
tion of the fluctuations to which the light couples.
We look at S(k,co) to learn the relative importance
of (1) and (2). We examine fluctuations about the
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NESS and learn that width fluctuations play a ma-

jor role in a fluid supporting a temperature gra-
dient.

In Sec. II we introduce the harmonic liquid, the
Fokker-Planck equation with which we describe
this liquid in a temperature gradient, and the for-
mal apparatus for solution of the FP equation that
we employ. In Sec. III we review the equilibrium
properties of the harmonic liquid in preparation for
Sec. IV in which we calculate various single-particle
averages in the NESS, various correlation functions
in the NESS, etc. Particular attention is paid to the
displacement-displacement correlation function that
is related to S{k,r0). We summarize our results in
Sec. V. There some time is spent in discussing a
view of the physics that is involved in the scattering
of light from a fluid supporting a temperature gra-
dient and from a fluid in shear. Certain cumber-
some details are found in the Appendices.

II. HARMONIC LIQUID
FOKKER-PLANCK EQUATION, ETC.

A. Harmonic liquid and the Foyer-Planck equation

Consider a one-dimensional harmonic chain with
Hamiltonian

1 2 1

A =g [—,mu; + —,I (x;+~ —x; —a) ],
where x; and mv; are the position and momentum
of the ith particle along the chain (see Fig. 1). The
chain is attached to a system of temperature reser-
voirs that bring each particle (if uncoupled from its
neighbors) to temperature T; =k /pa;. Then, the
FP equation for the chain is

r)F ~ t) 1 8+LF= g u;+ F, (2)

(mK~ ———t)P /t)x;) is the Liouville operator that
gives the classical dynamics of the particles and y is
the damping constant that occurs in the associated
Langevin equation

mu;+yu; =—mK~+ f;(t} . (4)

The stochastic forces in Eq. (4), due to the reser-
voirs, obey

(f;(r)fj(t') ) =2yka T;5(r t')5—,,
The function F in Eq. (2) is the phase-space distri-
bution function. The inhomogeneous (i-dependent)
velocity terms on the right-hand side of Eq. (2) de-
scribe the diffusion of a particle in momentum
space toward an equilibrium value of
(u; ) =2k' T; /m that is enforced by the stochastic
forces (the reservoirs}. The physical picture of a
fluid carrying a heat current, to which the model
implied by Eq. (1) corresponds, is described further
in Sec. V. Here it suffices to say that the heat
current is carried by the fast modes that are the
source of the stochastic forces but not by the slow
modes that are driven by those forces.

It is useful in developing a solution to Eq. {2) to
go to a set of dimensionless variables:

mvo =pro2

t =vot/a,

yi =vi/vo s

u„=(x„na)/rt, —

g=ya/mvo ',

L=g u; +K~
B B

Bx Bv;

B
'

l B=rl X yr+ — F, (6)
6; By;

l
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FIG. 1. Linear chain with temperature gradient. Each particle on the chain, of mass m, is connected to its neighbors
by spring I and to its own thermal reservoir that drives it with stochastic force f;( t)
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where e;=P;/Po and Po is a convenient reference
temperature (in thermal equilibrium e; =1@i) .[A
remark about time reversal is in order. The
momentum damping term in Eq. (6) describes for-
ward evolution in time. Backward evolution in

time is described by an equation like Eq. (6) except
with a minus sign in front of g on the right-hand
side qi~ —r). See below, Eqs. (38) and (39).]

Equation (6) can be put in a particularly useful

form upon writing it as an equation for F defined

by

B; =g Q[(toqk2)/N]bqe
q

B' =g Q[(toq A2)/N]bqe
q

[coq
——4sin (qa/2); A, 2

——PI a, R„=na], we find

+LF=g —q)aqaq+ g p (q +q')aqa F,

with
(10)

F=@oF,

where 4o ——%0——exp( —PA /2). We have

L =g QAztoq(aqbq aqbq)
q

with

~F - t tt"
at

+LF=g ( —ria; a;+p;a; a; )F,
and

p(q)= —gp;e
l

(12)

L =g(a;B; a;B; —),

where

1+ 2yl'
By;

1a;= + —,y;,
By;

a 1 ap~ a 1 ap~+— = ~2 — +
Bu,. 2 Bu,. Bz,. 2 Bz,.

a 1 ap~ ~ a 1 ap~
'=au, +2 au,

= '
az, +2 az,

(8)

(9)

The operators bq, bq obey the algebra

[bq, bq ]=5qq, [aq, bqt
]=09q, q', etc. It is the FP

equation in the form given by Eq. (10) that we will
use in this paper. The form of the Fokker-Planck
equation in Eq. (8) is a particularly useful place
from which to initiate the use of a variety of many
body techniques for its solution. '

B. Solution of the Fokker-Planck equation

To proceed to a formal (but useful) solution to
Eq. (10) we view it as involving an unperturbed
operator &0 and a perturbation due to the tempera-
ture gradient W';

and p;=g(e, —1). The operators a; and a; are
—1

harmonic oscillator creation and annihilation opera-
tors that create excitations in momentum space
[a; a; has eigenvalues n =0, 1,2, 3, . . . , [a;,aj ]
=5;J, etc; the ground-state wave function

((io(y; ) =exp( —y; /4) is the equilibrium
momentum-space distribution function
it'iii= exp( ——,Pmu; ), etc. ]. The operators B; and B;
are many-particle operators in configuration space.
Unlike the momentum-space operators, in general,
these operators have no simple algebra. However,
for the harmonic liquid these operators take on a
simple form when Eq. (8) is Fourier analyzed.
Upon writing

—l'qadi
al- = aqe

N

l'qR,.
ai = aqe

at PDF+—~'F,

where

and

Po ——gPo(q)
q

=g [+q)aqaq+Qkitoq(aqbq aqbq)] (14)—
q

P '=gp(q+q')aqaq
qq

(16)

We solve Eq. (13) by using perturbation theory on
P '

employing the states and the algebra generated
by Wo. In preparation for this we note some of the
properties of Wo and W'. For p; =0 V i the chain is
at uniform temperature Tp and described by

(jF
at

POF . —
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The eigenvalue problem associated by Po, a non-

Hermitian operator, " is

Wp%„= AA „, (17)

with Ap ——0, %p ——4p ——exP( —I/2' ). Here we use

4„ to denote the left-hand eigenfunction associated
with A„. From Eq. (7) F =C&pF. The harmonic os-

cillator states generated from ja~ ] are complete for
the purposes of describing motion in momentum

space; the harmonic oscillator states generated from

(be] are complete for the purposes of describing
motion in configuration space. Thus we assume the
set of states (qi„( is complete for the purposes of
describing motion in phase space. Note that W'

creates excitations only; there are no matrix ele-

ments &0
l

P'
l
v), etc., where we use the motion

&vlA Il )=f dr C„Aq„; (18)

dI =dy1 . . dyN+1du1- - . duN+1,

VN+1»1 ' ' uN+1)

A =A(yi 'y~+j, ul ' ' ttx+t)
etc.

Let us construct a formal solution by perturba-
tion theory to Eq. (13) for F, and develop expres-
sions for single-particle averages, two-particle aver-

ages, etc., that will be called for below. We write

F =pc„(t)e (19)

Then, for the conditional probability, the probabili-

ty that the system is at I at time t, given that it is at
1' at time t', we have

where we have required F(lt
l

1't') =5(l —1'). Here
we use the notation

l =(V1 VN+1 u1 uN+1)

(V1 VN+1 u1 uN+1)

The time evolution operator in Eq. (20), T(tt'), fol-
lows from applying perturbation theory to W', in

Eq. (13) and is given by

F(lt
l

1't') =@p(l) g% (l)T(tt') „C„(1')ICp(!'),
nm

(20)

t t t
T(tt')„~=e "'T 5„~+fdt"W, '(t")„~+g fdt" f, , dt'"W'(t")„!~'(t'")t~+

I

(21)

where T is the time-ordering operator and

~ '(tt')„=e (A„—A )(t —t'j
(22)

I

we have

&OIA(t)B(t')) =g &OIA
l
n)T(tt')„

lmn

and the average of A (I) in the NESS is (d I =dl)

&OlA(t)) =f dl A(—1)F,(lt l

—~)

=g &0 lA l
n ) T(t, —oo)„p . (24)

Similarly, for a correlation function defined by

&OlA(t)B(t'))—:f dl f dl'A(l)B(1')

xF(lt
l
1't')F, (l't'

l

—~),

It is useful to view T(tt') as a power series in the
addition of excitations, i.e.,
T=T' '+T' '+T' '+ T' ' leaves the excita-
tion level unchanged, T' "' increases the excitation
level by 2n. If at t~ —ao the system is in thermal
equilibrium with P;=PpVi, then at time t the
phase-space distribution function {the distribution
function for the nonequilibrium steady state) NESS,
is

F (lt
l

—oo ) =g @p(l)% (l)T(t —co ) p (23)

x&m lB l
l)T(t', ~)». —

(25)

The structure of this equation is clear. At t = —ao

the system is in equilibrium (p; =pp tti) Evolutio. n

from the equilibrium state at —oo to the NESS at
time t' is brought about by T(t', —oo ). [It is during
this evolution that the temperature gradient drives
the system into the additional fluctuation structure
described under (1) in the Introduction. ] At time t'

the NESS is probed by B(1'). The disturbance pro-
duced at t' by B propagates from t' to t according to
T(tt')„. [The terms T' '(tt'), T' '(tt'), . . . , pro-
duce the modification in the time evolution of fluc-
tuations described under (2) in the Introduction. ]
At time t the system is probed by A and returned to
the ground state, the equilibrium state. In principle,
&OlA(t)B(t')) is a function of t, t' and the initia-
tion time (here —Do) at which the perturbation is
turned on.
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C. Form of ~', diagonalization of P 0, etc.

Implementation of the formalism outlined above
for calculation of (0A(t)), (0A (t)B(t')), . . . ,
requires use of Eqs. {25), (24), (22), and (21) for a
particular choice of P 0 and P '. For the harmonic
liquid Po is given by Eq. (14) and P ' is given by
Eq. (15).

To specify W' we need the temperature gradient,
we use

ks T; =go '(1+be sinQR;)

and consider (later) the Q~O limit. Thus,

p; =i)(e; —1)=i)5esingR, .

and

(26)

(27)

It is convenient in working with P 0 to diagonal-
ize the quadratic form in Eq. (14) for each q. To
this end we employ the transformation, described in
detail in Appendix A, which leads to

3 p=gE (q)aqaq+ep(q)PqPq
e

where e, hatt, a~ in terms of a& and P~, etc., are
found in Eqs. (A10), (All), etc. As discussed else-

where, '0 the modes created by a& and Ps are a set of
modes with which the phase-space distribution
function can be described. These modes are con-
structed from the normal modes for motion in
momentum space (created by a~) and the normal
modes for motion in configuration space (created by

b~). As i)~+ ao, the heavy damping limit, the a
modes are inoinentumlike and the P modes are con-
figurationlike (i.e., at=a" and 13t=bt). As ii~0,
no damping, the a and P modes go over to modes
that permit the distribution function to describe the
motions given by the I.iouville operator, i.e., the
motions that solve the F=ma problem, the normal
modes of a harmonic chain. This can be seen by

P' =—g B;B;=—g toq bq~bq .1 g A2
(28)

See, for example, Ref. 12. The first equality here is
general; the second equality is special to the har-
monic liquid.

calculating (O~y), (0~z), for F =as ~0), etc. For
q &0 the P modes are right-hand-going waves and
the a modes are left-hand-going waves. We call the
modes created by a and Pt the displacement
modes.

The transformation that diagonalizes Po(q) has
two forms according to whether the mode q is
overdamped or underdamped, see Appendix A. As
we proceed we write all equations in the form ap-
propriate to the underdamped case [case 2(b) in Ap-
pendix A]. Thus for q ~0 some equations will have

to be modified. To be more precise, in the g —+0
limit the eigenvalues e (q), ep{q) go over to

ett (q)=+ito(q),

where to(q)=2~A, &sin(qo/2). The parameter that
determines the transition from underdamped to
overdamped is P(q) =2to(q)lri For P. (q) & 1, large

ii, a mode is overdamped, both e (q) and gati(q) are
real; for P(q) & 1, small rt, a mode is underdamped,
both e (q) and hatt(q) are complex [e (q)=ett(q)]
Thus for fixed g the q~0 modes are always over-
damped. We ought, in principle, to separate &0(q)
into two parts at q given by P(q) =1 and to write
out all equations with due note taken of the change
at q. We do not do this.

Although we make no explicit use of it in this pa-
per, it is useful to observe that the Smolouchoski
equation (valid in the heavy damping limit, g &&1)
is derived from Eq. {8) by applying perturbation
theory to g '. The result is

= —P'F,
Bt

where

III. EQUILIBRIUM PROPERTIES
OF THE HARMONIC LIQUID

In this section we calculate the equilibrium properties of the harmonic liquid: the displacement-
displacement correlation function, the static structure factor, the diffusion constant, etc. We do this in part to
illustrate use of the FP formalism outlined above, to display some useful results, and to make comparisons
with known results.

(I) The displacement displacement cor-relation function To calcu.late D (ij;tt'), defined by

D(ij;tt')= (0
~
z;(t)z, (t') ) (29)

in thermal equilibrium, we use Eq. (25) with
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T(t, t')„=T' '(t, t')„=5„exp—A„t. We have (0~z;(t)zJ(0)) =(O~z;T' '(tO)zj ~0). Forz;, we have

z; =g [ [M(q)Pq —iM+ (q)aq ]e '+ [M (q)Pq+iM+(q)aq]e
q 1/Ncoq

(30)

from z;~bq~ pq+ . . aq+ . , as shown in Eqs. (9) and (All). Substituting Eqs. (30) into Eq. (29) we

find for D' ', the equilibrium value of D,

D' '(ij;tO)=g [M(q) e ~ +M*(q) e ' ]e ' ', t&0.
Na)q

(31)

To make comparison with the results of YMS we let g~0 so that all modes q are underdamped. Then

e = —i+A&, cqo=ep, M(q) =M (q) = —,, and

D~ ~(ij;tO) =g cosgA~coqt cosq(R; RJ )—
Ncoq

Similarly, as g~0 we have

(0
~
[z;(t)—zj(0)]~) =2[D'0'(ii;00) —D' '(ij;t 0)]

[1 cos+—A.2co t cosq(R —R )]
2

Nco q J
q

[R;—R, i

+6~~. ~ ~(S),
a l J

where S ~ t, and 6
~

R
~

is defined by Yashida, Shobu, and Mori (YSM), 6(0)=0.
(2) The static structure factor. The static structure factor is defined by

(32)

(33)

(34)

S(k)= —ge ' '(O~e 'e ') .
,)

Upon using the well-known identities that exponentiate the average

(0
~
exp(ikz;) exp( ikzJ ) )—=exp[ —k'D' '(ij;00)/2],

and inserting Eq. (34) at t =0 (S =0) to find (K =ka):

(3S)

»nh( —,K /~2)
S(k)=

cosh( —,K /A, 2) —cosK

The static structure factor has pseudo-Bragg peaks with width determined by the structural fluctuations, i.e.,
~~2 (see Fig. 2).
(3) Phonons. The phonon modes supported by the harmonic liquid in equilibrium are found from examina-

tion of the k —co Fourier components of the displacement-displacement correlation function. Here we employ
a slight generalization of this function that will be useful later:

D(kk', coco')= gg—e 'e ' I dt J dt'e '"'e ' 'D(ij;tt'), (37)
J

(36)

with D(ij;tt ) given by Eq. (29) and in this case, thermal equilibrium, Eq. (31) for t~0. The time evolution
of z(t) in Eq. (31) is forward time evolution. This is implied by our convention that unless otherwise noted
time evolution is forward, t & 0. To denote the time evolution in Eq. (31) explicitly we write

D' '(ji;t &0,0)=g [M(q) e ~ +M*(q) e ]e
Ncoq

where e (q) =(rt/2) i Qq, eg (q) =—[e (q)]*. For backward time evolution we have

q

(38)



1068 R. A. GUYER 26

1 +M*(k)2
(a —nk)'+2

2

(CO+n~)2+ ~
4

where e~ (q) =—E'p (q), e~ (q) = —e (q). We need D' '(;t & 0) and D' '(;t &0) to learn about the frequency
structure of the phonons because of the time integration. Making use of Eqs. (38) and (39) we find

D' '(kk', romp') =2n5(to+to')Sk, I,
" M(k)

1 (40
COk

where Ok ——gP(k)A(k)/2, A(k) =1—P(k), and
P (k) =2+X2tok /rt. Equation (40) describes two
displaced Lorentzian lines at +Qk with width deter-
mined by g. Had we been dealing with modes k
that are overdamped, P(k) &1, we would have
found two Lorentzian lines centered at co=0; a line
that narrows as q~+ 00 and results from diffusion
in configuration space and a line that broadens as

q —++ oo and results from diffusion in momentum
space. The momentum-space Lorentzian has an
amplitude that goes to zero as g~+ 00. At fixed g
as k evolves the displacement response function
evolves as shown qualitatively in Fig. 3.

(4) Velocity correlations and diffusion The.

velocity-velocity correlation function is defined by

(0
~
u;(t)U;(t')) = (0 ~y;(t)yj(t'))

mpp

and in thermal equilibrium we find

V'"(iq;tO)

=g —[M(q) e +M*(q) e ]
N

iq(R; —R. )
Xe (43)

The diffusion constant is related to V' ' by

D= I dt V(ii;tO) .
m p

(44)

V' '(ii;tO) =g —cos(QA2tpet)

To calculate D from Eq. (44) using Eq. (43) we take
rt~O [P(q)~+ 0p for all q], M =(M~) = —, ,

E'p=l0, 6'~= —l 0,

1 V(ij;tt') .
m

(41) =Jp(2~A, pt) . (45)

To calculate V(ij;tt') we use

y;=g { [M(q)az+iM~(q)P~]e
N

Thus D =1/(2mPp~k, 2) in agreement with Eq.
(3.8) of YSM. This result for D may also be found
from Eq. (32) by using (0

~
[z;(t)—z;(0)]2) ~ Dt.

+ [M (q)ae iM*(q—)Pe ]e '
I (42)

S ( k, cv)

0
0 2 7r

ka
4 7r

FIG. 2. S(k): Static structure factor S(k), Eq. (36), as
a function of ka for several values of A, 2 (A, 2 measures the
width of simple particle displacements).

FIG. 3. S(k,co) at fixed g. Qualitative behavior of
S(k,co) is shown as a function of k, co. S(k,co) has two
I.orentzian peaks at co=0 for P(k) &1; for P(k) &1 a
pair of Brillouin lines appear. P(k)=1 is shown by a
dashed line in the k-co plane.
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IV. FLUCTUATIONS FROM
THE NONEQUILIBRIUM STEADY STATE

(o) a

In this section we calculate a number of proper-
ties of the harmonic liquid that are sensitive to the
presence of the temperature gradient; e.g., the aver-

age kinetic energy of a particle, the kinetic energy
current, the displacement-displacement correlation
function, etc. The formulation in Sec. II of calcula-
tions with ~ 0, W' suggests the use of diagrammatic
perturbation theory. While such a perturbation
theory can be developed, the use we would make of
it is so modest as to preclude undertaking such a
development. However, as we proceed we will use
the language and physical ideas that such a develop-
ment provides. In carrying through calculations
that involve Eqs. (24} and {25), in which the non-

trivial part of the time-evolution operator is in-

volved, an important point to note is that T(tt')
works in only one direction, it works only to in-
crease the excitation level: Since matrix elements in

(0~&) and (0~AS) are always froin ground state
to ground state it is up to A or AB to undo excita-
tion produced by T(tt'). Thus for simple A's and
B's the possibilities for the influence of T(tt') are
extremely limited. This fact will be continually use-

ful as will the fact that the series in excitation level
T=T' '+T' '+T' '+ is also a series in 5e,
T =1+5m+5m'+

(1) The kinetic energy in RESS. The average ki-
netic energy in the motion of the atom at the ith
site is given by Eq. (24),

(0 ~y ) = (0 ~y,
'

~
0)

+ g (0
~ y ~

n ) T(t, —oo )„p . (46)
n~

To calculate (0 ~y; ) we use Eq. (15) and equations

( b)
q +Q

q

(c)
N

Q -q
O.

Q-q

w~ (q)

0
Q —q

q

g —W

-Q- q

q

0-~ ——~
Q —q

0
—Q — q

FIG. 4. Diagrams for (0
~ y; ). Calculation of (0

~ y; )
involves use of Eq. (42) for y; and Eq. (47) for P '. Con-
tributions to calculation of (0 ~y; ) can be found from
eight diagrams that can be evaluated using rules like;

represents a P displacement mode;
represents an a displacement mode; each closed P line

— has a factor M(q); each closed a line

has a factor M~(q)', etc. Excitation created by the tem-

perature gradient, a pair of displacement modes, is

termed a width fluctuation and denoted as shown in (b).

from Appendix A to find

P '=QP(q+q')[M(q}aq+iM+(q)Pq]

X [M(q')aq +iMa(q')Pq ] (47)

and Eq. (42) for y;. Then, there are eight contribu-
tions, shown in Fig. 4, that lead to the departure of
(O~y; ) from (O~y; ~0). These contributions are
due to T' ', they are proportional to 5e, and are
given by

(Oiyy, ) — 5(
Oi yi )0

2+56 1 iqR,. iq'8.—e 'e
2i

M(q)2M(q —Q) M(q) M*(q —Q) M*(q) M(q —Q)
E (q)+e (q —Q) q (q)+eii(q —Q) ~ii(q)+e (q —Q)

M*{q)Mq{q —Q)+
ep(q) +ep(q —Q)

(48)

where the ellipsis represents replacement of —Q by
+Q. Each of the diagrams in Fig. 4 corresponds to
the creation, by the temperature gradient, of a fluc-
tuation structure in the NESS. This fluctuation

structure has no dynamics; it is established by the
temperature gradient T(t, —ao) and is time in-
dependent; its presence is probed by (0

~ y; ). If we
take the limit Q~0 we find (following considerable
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algebra)

(0
l y~yj ) —5;J (0

l y; l
0) =5; ~5e sinQR; (49)

as we would expect; cf. Eq. (26).
(2) The kinetic energy current in NESS. The ki-

netic energy current, a component of the heat
current, is zero in the NESS. This result follows
from the construction of the model system we are
describing, see Secs. II and IV below. It also fol-
lows from direct calculation since the kinetic energy
current, proportional to (y; )y;, has no nonzero ma-
trix elements of the form (Oly;

l
n) T(t, —ac)„o

since T(t, —(N ) creates even numbers of excitations.
(3) Phonons in the NESS. We calculate the

kk' —coco' Fourier component of the displacement-
displacement correlation function defined in Eq.
(37) with

D(ij,tt')=g (0 lz; l
n ) T(t, t')„

I

I

I

I

I

I

I
Q — q t'

(0)

(c)

FIG. 5. Diagrams for 5D. Calculation of 5D requires
evaluation of terms that correspond to the two-step de-

struction of the various width fluctuations. Temperature
gradient begins at —00 to establish a width fluctuation in

the system that is probed by zj at t' and decays into a dis-

placement mode that propagates to t where it is destroyed

by z;. Diagrams correspond to contributions that are like
those described in Fig. 4; there is a denominator with the
"energy" of the modes present at the location of the vert-
ical solid line. For each contribtion with +Q there is

also a term with —Q.

X(m lzj l
l)T(t', —ao)lo . (50)

We note that z;zj can at most destroy two excita-
tions; the nontrivial part of D must involve T(tt')„
=T' '(t, t') cc5„and T(t', —00)~o ——T~'0'. Thus
we see, even before the details are displayed, that
D(kk';coco') probes the same fluctuation structures
present in the NESS that are probed by (0 ly; ).
D (kk';coco') does not probe modification in the time
evolution brought about by the temperature gra-

dient. In carrying through the calculation called for
by Eq. (50) we note that t' & —ac for all t' so that
T(t', —ao) involves forward time evolution only.
On the other hand, we have t & t' as well as t & t' in

T(tt') so that we must be careful with the time in-

tegration. In Fig. 5 we show four contributions to
5D(ij;tt') =D —D' '. For one of them we have,
Fig. 5(a), e.g.,

5D(ij;t &t')=+y IM(q)
I

'l~(q')
I
'p(q+q')e 'e ', e

ep(q)+&p(q )
(51)

In this formula the denominator, involving egq) and hatt(q'), comes from the time evolution from —ac to t',
T(t', —ac ), and exp[ eg (t ——r')] comes from the time evolution from t' to t. For t & t' we have the same re-

sult with exp[ sit (t —t')] rep—laced by exp[
@is

(t —t')]. A—ssembling the contributions corresponding to the
diagrams in Fig. 5 leads to (t =t —t' & 0)

~ (sa,. (ss, p(q+q')
w tQq

1 1 —
ep+

(q)&

erat(q)+egq') et((q)+e (q')

1 1 eg (q)(—+ e
e (q)+e (q') & (q)+ep(q')

(52)

Thus for 5D(kk';coco') we have (after some considerable algebra)

5D (kk', coco') =4~5(a)+co')p (k +k')P (k,co)P (k', co'),

where

P(k, co)= 1

[ice —elk)][iso —e (k)]

(53)

(54)

Further algebraic manipulations are made easier upon using E =(k +k')/2, a =k —k'. An example of this
algebra is given in Appendix B. We find as Q ~0 [cf. Eq. (5.11) of TAS].
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5D«k'~~')=2~5(~+~')5k', k4—n'5&Q&~ftk
d(k )

( IPa I'IPg I')'
d (ka)

where P„=im —e„(k). This extra contribution to D is to be compared to

(55)

D' '(kk';CON') =2%5(N+CO')5k
M(k)

iP i2
M (k)

k k
(56)

The following remarks are in order: (1) 5D is proportional to the temperature gradient through the factor
5ega; (2) 5D is antisymmetric in co so that upon doing more algebra (try Appendix B again) we have

D(kk', coco')=2175(co+co')5k k [ ~P~
~

[I—6{k,N)]+ ~Pg~ [1+6{k,co)]I,
2cok

(57)

where

e(k, ~o) = 85ega
7l

X
r)'co{q)'

[a) —a)(q) ] +rl co(q)
(58)

V. DISCUSSION AND CONCLUSION

We begin here by describing the physical picture
that develops from the results above, of light
scattering from a liquid supporting a temperature

and ~(q) =A,z~&,
' (3) the amplitude asymmetry in D

goes as 7)
' [in TAS this factor is replaced by

(D 2)—1]

An extensive discussion is given by TAS about
results like Eq. (57) in terms of the physics that
leads to their essential features. We understand re-
sults like that in Eq. (57) somewhat differently from
TAS and we describe that understanding below.
Before we go on to this let us remark further. Em-
ploying the procedure sketched above for obtaining
5D we are able to calculate the velocity-velocity
correlation function (it is much like the
displacement-displacement correlation function)
and the velocity-displacement correlation function.
These correlation functions probe the fluctuation
structure in the NESS; like 5D they do not probe
modification of the time evolution brought about by
the temperature gradient. On the other hand, the
energy-energy correlation function has contribu-
tions that are sensitive to modification of the time
evolution of fluctuations. Note that the formalism
we have employed provides a prescription for calcu-
lating the phase-space distribution function ap-
propriate to the NESS and a prescription for deter-
mining the conditional probability for motion
through phase space.

I

gradient. We also discuss the physical picture of
light scattering from a fluid in shear. Some general
and speculative concluding remarks follow this dis-
cussion.

Temperature Gradient. To review; a description
of light scattering from a solid supporting a tem-
perature gradient has been developed by Griffin. '

The basic microscopic process considered by Grif-
fin involves a photon (k,e)-phonon (q, Q) interac-
tion of the type shown in Fig. 6. The Stokes and
anti-Stokes components, at frequencies co+0 and
co —0, come from phonons that are moving toward
or away from the direction of momentum transfer
K=k —k'. The amplitude of the two components
is proportional to the number of phonons in the sys-
tem at wave vector q in thermal equilibrium, No(q).
When a temperature gradient is present this picture
is modified. The temperature gradient induces a
heat current; it accomplishes this by driving the
phonon distribution function away from No(q).
From simple modeling the phonon distribution
function is given by

BXo
N(q) =No(q)+r~C V T

T

k, 4I

q, Q

(o)

FIG. 6. Light scattering and the heat current. Basic
microscopic process in Griffin's description of light
scattering from a solid is shown in (a), a photon transfers
energy and momentum to a phonon. This process in-
volves momentum transfer a to the photon. This
momentum transfer has an additional amplitude when a
heat current is present due to the component of phonon
flux along the direction e„.
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This nonequilibrium phonon distribution function
has a shift at wave vector q proportional to r~ ~

C ~,
where

~

C
~

is the phonon velocity and r& is a mea-

sure of the time required for the phonon distribu-

tion function at wave vector q to relax to local
equilibrium (e.g., a phonon collision time). A heat
current Q results from the shift in the phonon dis-

tribution function. There are more phonons going
in direction e~(e~) than in direction —e~( —e~),
Fig. 6. The difference in phonon populations, pro-
portional to N(q) —No(q), gives rise to the modifi-
cation of the amplitude of the Stokes and anti-
Stokes lines. The picture of the amplitude asym-

metry developed by Griffin stresses the involvement
of the phonon flux or heat current, induced by the
temperature gradient, in the process.

In the picture of light scattering we have
developed here a very different process is involved.
The modes of the system we have examined are the
long-wavelength modes, the hydrodynamic modes.

By construction these modes carry no heat current.
The heat current is carried by the high-frequency
modes. It is participation in the heat current pro-
cess that informs the high-frequency modes of the
local temperature. The local temperature character-
izes the reservoirs that drive the long-wavelength
modes. That is, each particle on the chain is driven

by a local reservoir; a manifestation of the aggre-

gate of local high-frequency heat current carrying
modes. Thus, the long-wavelength modes are in lo-

cal thermal equilibrium. The light scattering is
from modes in local thermal equilibrium that carry
no heat current and no momentum flux. An argu-

ment like Griffin's in explanation of what is going
on would be incorrect.

Before going further we emphasize once again
that the modes with which we build up the phase-

space distribution function, the phase-space modes,
describe the damped, classical motions of the parti-
cles. In the state a~t

~

0) a particle on the chain has
a nonzero average value for its displacement, veloci-

ty, etc., (0 ~y;an't ~
0) +0. This is to be contrasted

with the phonon description of the chain. In the
phonon state aJ ~

0) the expectation value of y; is
zero; (0

~ any;an't ~
0) =0. The phase-space modes

are like to the coherent states that can be built up
from the phonon modes.

To identify the source of the asymmetry of the
amplitude in the light scattering from the hydro-
dynamic modes we begin by looking at the equili-
brium result D' '(kk';coco'). The diagram, Fig. 7(a),
shows that zj probes the system at t', excites it out
of the equilibrium state, and that the frequency

(b)

FIG. 7. Contributions to D' ' and 6D. Time evolution
in D' ' is the same as that in 5D, compare (a) and (b) even

though the source of the displacement mode that pro-
pagates in the two cases is different. In D' ' the mode is
created at t' by z~; in 5D the mode is left over after part
of a width fluctuation is destroyed at t' by zj.

structure in D' ' is a consequence of the time evolu-

tion of excitation from t' to t; (at time t the excita-
tion is destroyed by the probe z;). The amplitude of
this process depends on the amplitude of various ex-

citations in the probes, z;, zj, recall Eq. (30}. The
diagram, Fig. 7(b), for D(kk';coco') shows that the
source of the additional scattering is in the static,
fluctuation structure induced by the temperature
gradient. The probe zz at t' couples to this fluctua-
tion structure and creates an excitation of the same
kind as that created from the equilibrium state by
the action of zj in D' '. The time evolution of this
excitation is the same as that in D' ' so that the fre-

quency structure is essentially the same in 5D as in
D' '. Thus we must understand the source and
characteristics of the static fluctuation structure.

The static fluctuation structure arises from local
heating of the chain. This local heating is produced
by pairs of displacement modes a&~+~a ~

q
that carry

no heat current, lead to no average velocity or aver-

age displacement, etc. We call these pairs of dis-

placement modes the width fluctuations; they have
(0 ~y; )+0, (0 ~z; )+0. Light incident on the
chain finds the width fluctuation modes to be
present and is coupled to them. The size of the
asymmetry in the light scattering depends upon the
response of the system to the temperature gradient.
That is, the width fluctuation modes are driven by
the temperature gradient and acquire an amplitude
that measures the systems response to that gradient.
The temperature gradient drives four pairs of
modes, g'g', pat, at/', and atat. It is the mixed
pairs at@' and g'at that are responsible for the
essential features of the light scattering. (In Appen-
dix C we repeat the phonon calculation from Sec.
IV, considering these modes only, to demonstrate
this point. ) Perhaps the most important of these
features is the dependence of the amplitude of the
width fluctuation on q ', Eq. (58). This depen-
dence comes about because the two displacement
modes involved, e.g., propagate in the same direc-
tion (their group velocity is to the right) and have
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time dependence exp —[e)s(q+Q) +e ( q—)]t. As

Q~O, exp —[ep(q) +e (q)] t~exp t)t—; the two
displacement modes are "in phase" and the width
fluctuation is driven coherently by the perturbation
for times of order g '. The width fluctuation ac-
quires an amplitude proportional to g

' and be-
comes important as Q~O. By way of contrast, the
pair of displacement modes P~t+(igt v

evolve in
time as exp —[eti(q+Q) +eti( q)]t w—hich goes as

[exp( —i)t)][exp( —2iII&t)] as Q~0. Thus the
width fluctuation mode Pst+&Pt z is incoherent in

its response to the temperature gradient because of
the factor exp( —2iQqt); it acquires amplitude pro-
portional to (g+2iQq) ' and as g~O it is much
less important. The time response we are describing
here is not in the evolution initiated by the probe
z~(t'); it is the time evolution in T(t', —oo) that
gives rise to the NESS.

Finally, we note that the width fluctuation mode

Pst+~Pt &, while involving right-hand going and
left-hand going displacement modes, has group
velocity to the right (the width fluctuation mode

a~t+(iP" q
has group velocity to the left). It is this

group velocity that retains the sense of the tempera-
ture gradient and gives direction to the asymmetry
in the light scattering. Several observations are in
order. They are as follows.

(1) There is discussion of the result of analysis of
calculation of light scattering from a fluid subject
to a heat current that pays attention to the long-
range correlations that are present, for example, in
the amplitude of the asymmetry. These long-range
correlations have their source in the response of
various modes of a fluid system to the temperature
gradient; i.e., in the structure of the NESS. The
k~O modes of a fluid recover very slowly from a
perturbation [from the Navier-Stokes equation
rk (Dk ) '] and the temperature gradient is able
to drive them to particularly large amplitudes.
Thus the long-range correlations are brought about

by a mechanism that has none of the qualities of
the long-range correlation in a system near its criti-
cal point. On the other hand, a system near its crit-
ical point can have modes with especially slow

recovery from a perturbation so that a large ampli-
tude NESS can be created in such systems.

(2) In the simplest kind of modeling of light
scattering from the width fluctuations, the )Stat and
at@ modes only are retained, all of the important
features are found and the line shape is Lorentzian;
see Appendix C. Thus departures of the line shape
from the Lorentzian have their source in the de-

tailed features that are brought about by coupling of

the light to the gg and atat width fluctuation
modes.

(3) The physics we have described is not at all
that of Griffin. The mechanism that he gives atten-
tion to does not operate in the hydrodynamic re-
girne. Thus in contrast to the remarks of TAS we
find Griffin's assessment of what is not going on to
be correct.

Shear. Here we briefly discuss the physics
operating in light scattering from a fluid in shear.
Calculations which deal with this situation are
described in detail in TAS and elsewhere. The prin-
ciple observation we want to make is the following.
Light scattering from a fluid arises from coupling
to the density fluctuations that propagate in the
fluid. The light senses the velocity of the fluctua-
tions as well as their lifetime (i.e., the attenuation
mechanisms). When a density fluctuation pro-
pagates in a fluid supporting a shear it is propagat-
ing in a fluid on which a velocity field vp has been
impressed. Because of the nonlinear flow term in
the Navier-Stokes equation (v V)v the velocity
field vo drives the density fluctuation out of phase
and gives rise to an additional attenuation mecha-
nism. '~ Thus the velocity field obeys [TAS Eq.
(4.7)]

2

+ vp'V 5v = — V5p+gV 5v —(5v. V)vp
pp

instead of the same equation with v=O (we have
left out the stochastic force and the more complex
form of the viscous damping). The terms gV 5v
and (5v. V)vp cause attentuation. The first by
causing the velocity field to diffuse and the second
by driving fluid in the opposite direction from that
which will restore 5v to zero. The first of these at-
tenuation mechanisms has an amplitude that is re-
lated to the strength of the stochastic forces; the
second has an amplitude that is unrelated to the sto-
chastic forces. Thus the characteristics of these two
attentuation mechanism makes themselves known
in S(k,co) in slightly different ways [see, for exam-
ple, the treatment of S(k, to) by TAS], and give rise
to the features noted. '

In this paper we have discussed fluctuations from
a nonequilibrium steady state for a particular model
system, the harmonic liquid, using the Fokker-
Planck equation. We exhibited a formalism for em-
ploying the Fokker-Planck description of the liquid
that permits calculation of the NESS distribution
function, the conditional probability for evolution
through phase space in the NESS, single-particle
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averages, two-particle correlation functions, etc.
Application of this formalism to the equilibrium
problem yields known results. Application of this
formalism to calculation of correlation functions in
the NESS yields results in essential agreement with
those found earlier. By virtue of the completeness
of the Fokker-Planck description it is possible to
ask and answer specific questions about the physics
that underlies the results. We find that the "excess"
light scattering from a fluid supporting a tempera-
ture gradient is due to width fluctuation modes es-
tablished in the fluid by the temperature gradient;
that the excess light scattering from a fluid support-
ing shear is due to the attenuation mechanism
brought into play by the velocity field established in
the fluid by the shear. To the degree that one is in-
terested in phenomena as well as their mathematical
description an understanding of the physics of the
phenomena is useful. Several variations on the
standard experiments that probe the NESS are sug-
gested; e.g., light scattering from liquid He, solid
He, NaI, etc., supporting a standing second sound

wave; light scattering from fluid in which a velocity
field has been established by other than a shear
flow, e.g., a shallow water wave; the propagation of
an energy probe, second sound, in a fluid (solid)
supporting a temperature gradient, etc.

in S and summed. We find, x =v'4UV,

4 =A +(btb —ata) (VB —UC)

(A —D)
2

(coshx —1)

with the conditions

(A3)

B+U (D —A)

+ 2( yR UC)
{cosllz 1 )

x
=0

and

C —V (D —A)

+ 2(VB —UC) =0. (A4)
x

The operators a, a ~, b, and b f transform thus:

x 2V. x
a t =cosh —at+ sinh —g',

2 x 2
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x 2U. xa =cosh —a— sinh —P,
2 x 2

x 2U. x
b "=cosh —g+ sinh —at,

2 x 2

x 2V. x
b =cosh —P— sinh —a,

2 x 2

(A5}

APPENDIX A: DIAGONALIZATION
OF THE QUADRATIC HAMILTONIAN

We want to diagonalize

where a, at, P, and g' denote the operators that
work on the transformed states. Here we display
the results of the transformation for several special
cases.

Case 1; 3~0, 8&0, C=B, D=O. Equation (A4)
is solved by V = —U, tan2U =28/A—:Q. Then,

4:—Aa ta +Bafb+ Cab f+Db~b, (Al) A
A =—(1+R)ata+ —{1—R)gP,

2 2
(A6)

A=e Ae (A2)

S =Uatb+Vabt with U and V chosen to remove

the cross terms, a~b, abt. Because the commutator
of Swithin repeats itself, [S,S,S,P ] 0:[S,A ], the
transformation can be written out as a power series

where [a,at]= [b,bt]= 1, [a,bt ]=0 For th. e
variety of choices for A, B, C, and D this diagonali-
zation, although always tedious, is easiest to carry
through using the transformation

R =(1+Q )' and

a t= V [(R + I )/2R]at —&[(R —I )/2R]Pt,

a =V'[(R +1)/2R]a —V [(R —1)/2R]P,

b t =V'[{R+ I )/2R] g+ v'[(R —1)/2R]at,

b =v'[(R + I)/2R]p+ v'[(R —1)/2R]a .

(A7)

Let us examine several limits As A~+~ the
"damping" becomes large, Q ~0, R ~ 1 and
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at~at, Pt ~bt T. hus in this limit the a inodes are
momentuinlike, the P modes are configurationlike
and the two sets of modes involve only weak
momentum-configuration coupling. This limit is
the Smolouchowski equation limit in which
momentum-space evolution and configuration-space
evolution proceed independently. As A ~0, there is
little damping, Q~+. ao, R~+ ao, and at~at
+bt, Pt~at b"—; both the a and P modes involve

combined momentum-space and configuration-
space motion. In this limit the motion proceeds
with little damping; the motion is that given by the
Liouville operator.

Case 2; A&0, 8&0, C= —B, D=O. Equation
(A4) is solved by V = U, tanh2U =2B/A =P.
There are two cases to be considered: case 2(a),
P & 1, tanhx =P and case 2(b), P ) 1, x =X+iY,
tanhX=P ', Y=m/2.

Case 2(a). Here,

A
A =—(1+r)ataj—(1 r)Pt'P, — (AS)

2 2

A=(1 —P )'

a t =Mat+iM~Pt ,
'

a =Ma iM—~P,

b t =MPt +iM'*at,

b =MP iM—~a,

where

M = —,[t/(1+ A)/A+i v'( I A—)/A] .

(A11)

Note that the eigenvalues e and e~ are complex.
Case3;A&0, B&0, C=B, 0&D&A. Here,

4 =e~ta+e)tptp,
A+D {A —D)

6'~ p= + R,C,

(A12)

Case 2(b). Now,

A AP =—(1 iP—A)ata+ —(I +iPA)Pt P,'(A10)
2 2

r =( 1 —P2)1/2

a t =Eat+ FPt ,
'

a =Ea FP, —

bt=EPt +Fat

b =EP Fa, —

where E =V'(1+ r) /2r and F =v'(1 —r)/2r .

(A9)

a t =Pat NPt, —

a =Pa NP, —

b t PPt+Nat,

b =PP+Na,

(A13)

where P =(R +1)/2R, N =(R —1)/2R,
R =(1+P')'",P'=4B'/(A D)'. —

APPENDIX 8: SIMPLIFICATIONS

We exhibit the algebraic manipulations that simplify equations like Eq. (55). Equation (55) is of the form

5D =2mA 5(co+co')p (k +k')P (k,co)P(k', a)'),

where P(k, co) =P~(k, co)P~(k, co); P,(k,co) '=iso —e~(k). Use I( =(k +k')/2, x =k —k' to write

5D =2mA5(co+a)')p(2I( )P E+—,co P E——,—co2' 2'

Take p (2K) to be given by Eq. (27); then as Q~0 find

5D = lim 2trA5k i,5(co+co')—.P —+2Q, co P ——2Q, —co P ——2Q, co P ——+2Q, —co
K K K K

Q —+0 2i 2
'

2
'

2
'

2

where we use the fact that P is an even function of k. Taylor-series expansion of P to first order in Q leads to

56' K, K K, K
D =16trA5k k5(co~co') QP —, c—o P' —,co P——,co P' —, c—o-

2i 2 2 2' 2

where the prime denotes differentiation with respect to ~. Using the product form of p {p=p p~) and
(d/dz)P„(s/2, co) =+P„(a/2, co)[de„(cc/2j/dic], Pii(k, co) =P'(k, co), P (k,co)=—Pii(k, co), leads to—
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P (k, —co)P'(k, +co) —P (k,co)P'(k, —co )

= /P (k,co)i fPp(k, co)/

dip(ic/2) de~(ic/2)
[Pp(k, co) Pp—(k, —co)) + [P (k,a)) P—(k, —co)]

dK dK

Recall ep~ rl/——2+i Q, de /die= dip—/dcc, and use Pp(k, co) Pp(—k, —co) = 2ico—Pp(k, co)Pp(k, co—),
P (k,co) —P (k, co—)= 2i—coP (k, co)P (k, —co)= 2icoP—p(k, co)Pp(k, co—) tofind

5D =16A5i, I, 5(co+a)')5eQco
~

P (k,co)
~ ~

Pp(k, co)
~

ImPp(k, o))Pp(k, —co) .p d Q(a/2)
dK

Finally, use

ImPp(k, co)Pp(k, co) = —i)—Q
~
Pp(k, co)

~ ~

P (k,co)
~

to achieve

5D = —16nrl 5i, g5(co+co')Q5ecoQ(cc/2)2 I d Q(~/2)
( iP (k, co)

i
) ( (P (k, co) i')'

K

Manipulation to achieve the form in Eq. (57) proceeds as follows. The real part of D is [aside from the fac-
tor 2n5i, 1,5(co+co')]

2" (IP. I'+ IPpI')+~~(IP I'&'(IPpI'&'.
2cog,

We want to write this in the form

Dcc [iP i
(1—e)+ iPpi (1+E&] .

2NI

Comparison of these two equations and suitable algebra leads to [co(q) =A, ico~]
' 1/2

~z i)ico(q)~
a=85eQa

[co —co(q) ] +i& co(q)

See also Appendix C.

APPENDIX C: EVALUATION
OF 5D (kk';coa)')

In this appendix we evaluate 5D(kk';coco') in the approximation in which the g'at and at@' terms alone are
used. From Eq. (52) we have

5D(kk', r=& —t')= p(k+k') ~M(k) ~'~M(k') ~'
'(/coi ~i

1 epk)r- —e (k)~
X

ep(k) +e (k ') e +
E (k)+ep(k'),

e (C1)

where p(k+k')=r15e(5s i, +ti —5i, s ti)/2i The firs. t term in the large parentheses comes from g'cr"
and the second term comes from Pat. Use

~

M
~

=1/2A and QA~cosA=Q to write

2 I4IIi, ep(k)+e (k') e (k)+ep(k')

Upon using p (k +k') and considering the limit Q ~0 we find

(C2)
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A,25e Qk
5D(kk';t) =-

2iQk

1 t' r—a(k)r 1 l e~—(k)r
e + +—e

Qk Qk
(C3)

where Qk ——d Qk/dk. For the real part of 5D we have

~25eQ Q k ra( k—)r e~( k—)r
Re5D=

2 (e —e ) .
20k'

This is to be compared to the real part of D' '(kk', ~);

ReD' '(kk'~)= (e " +e ) .
—E~( k) —6~(k)

2cok

(C4)

(CS)

In proceeding from Eq. (C3) to Eq. (C4) and in writing Eq. (C5) we have ignored the cotnplex structure in the
exponential time dependence. The justification for this is that when using D' '(~) or 5D(r) to calculate
D' '(co) or 5D(co) we use forward and backward time evolution so that the exponential time dependence like
e ~ leads to a real result. Combining Eqs. (C4) and (C5) leads to

ReD(kk';r)= [(I+ek)e +1(1 ek)e —],
2cok

(C6)

where

5eQQk

2q Ak
(C7)

which should be compared to Eq. (57).
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