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Invariants for forced time-dependent oscillators and generalizations
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Several methods for deriving invariants for time-dependent systems have been developed.
Four of these methods are as follows: (1) dynamical algebra, (2) Noether's theorem, (3)
transformation group, and (4) Ermakov's method. These four methods are related by their
use in deriving invariants for the forced, time-dependent oscillator. For this system the
methods give the same results. We also discuss forced, nonlinear oscillators possessing
analogous invariants. The nonlinear superposition laws for the forced oscillator are derived
and discussed.

I. INTRODUCTION

There has been a recent revival of interest in in-
variants (constants of the motion) for time-
dependent systems. Ermakov systems' are one class
of such systems which have been extensively stud-
ied. There are two main uses of such invariants. In
classical mechanics the invariant leads to a non-
linear superposition law that allows the solution of
the problem of interest to be expressed in terms of
particular solutions to other auxiliary equations. A
review paper contains a discussion of this theory
along with earlier references. In quantum mechan-
ics the invariant allows for the exact solution to the
time-dependent Schrodinger equation for certain
time-dependent potentials. Besides these exact
solutions for certain potentials, the theory is also
useful in numerical solutions of the time-
independent Schrodinger eigenvalue problem for ar-
bitrary potentials. '

There have been several methods developed for
deriving in variants for time-dependent systems:
there is Lutzky's form of Noether's theorem, Ray
and Reid's use of the Ermakov method, ' Korsch's
use of the dynamical algebra for the system, '

Sarlet's differential form integrability conditions, '
the Lie theory of extended groups, "*' and the
group transformation method. ' If this is not an
exhaustive list of methods, it is sufficient for our
purposes.

In this paper we discuss the forced time-
dependent harmonic oscillator using some of these
different approaches. We also show how to enlarge

the class of systems and still obtain invariants.
Our starting point is the system

y'+h (t)y+co (t)y =F(t),
where h (t), co (t), and F(t) are arbitrary functions.

By use of the well-known transformation
(~)

x =yexp —, h dt

we can eliminate y from (1.1) to obtain

x +.to (t)x =f(t), (1.2)

(t)f(t) =F(t)exp —, f h dt

respectively.
Recently, Takayama' derived an Ermakov-type

invariant for this system using the dynamical-
algebra approach of Korsch. This same problem
has been treated by Khandekar and Lawande' and
Ray, ' primarily in a quantum context. First we re-
view the results of Takayama.

II. DYNAMICAL ALGEBRA

The method of the dynamical algebra is clearly
explained and applied in Refs. 7 and 8. Takayama
applies this approach to (1.2) and obtains the invari-
ant

where the transformed frequency and driving term
are given by

N (t) =co (t) ——,h —
4 h
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( Cx Cx )2+ (x /C)2
2 2

or

X= J g(A. )f(A. )dA, . (3.5)

+ J '"p(A, )f(A. )dA, —g(t)x+l(x C—xf,

{2.1a)

Finally, the Noether invariant calculated using Ref.
15, has the form

C+co (t)C =k/C

/+ co (t)g =C'f +3CCf,

(2.1b)

(2.1c)

where C(t) and P(t) are auxiliary functions satisfy-
ing the equations

( Cx xC )2+ ( /C)2
2 2

+ I p(A, )f(A, )di, —fx+l(x Cx—f .

(3.6)

where k is an arbitrary constant. I in (2.1a) is an in-
variant for the system (1.2) for C any solution to
(2.1b) and 1( any solution to (2.1c). Note that we
have made certain changes in notation from Takay-
ama' for later simplicity. Next we shall present
these results using Lutzky's version of Noether's
theorem.

III. NOETHER'S THEOREM

~ ~ ~

( —coro/ —co'g ——„g )x [/+co'(t)g]x-

+ (gf+gf)x + ,fxg+ fg X=O—, —(3.1)

where g(t), P(t), and X(t) are at this stage arbitrary
functions. Equation (3.1) must be identically satis-
fied in order for (1.2) to have a Noether symmetry.
This fact requires that the separate powers of x in

(3.1) must vanish. The x terms yield

Here we may use the results presented in the pa-
per by Ray and Reid' on Noether's theorem and
time-dependent invariants. Equation (2.9) of Ref.
15 is the requirement for (1.2) to allow a Noether
symmetry, with p of Ref. 15 replaced by x, G(t) re-

placed by f(t), and F(x) by x. Equation (2.9) of
Ref. 15 yields

The results (3.3), (3.4), and (3.6) are exactly the
same as the results obtained by Takayama using
Korsch's method. The symmetry operator for the
Noether symmetry has the form

X =C —+(CCx +1(t)
2a a

at ax
(3.7)

Thus, the first integral (3.6) is associated with the
five-parameter Lie group defined by the group
operators (3.7) (X depends on five parameters k, two
integration constants for C, and two integration
constants for (().

Thus, we see that Noether's theorem reproduces
the same results as the dynamical-algebra approach
for (1.2). These same results can also be obtained
from Leach's treatment of symmetries using
Noether's theorem. ' These results of Leach are
discussed in detail by Reid and Ray. '

IV. TRANSFORMATION-GROUP METHOD

This technique was applied for finding invariants
by Ray' in his study of the quantum problem for
(1.2). The method uses the transformation-group
techniques introduced by Burgan et al. ' '

We transform the equation (1.2) via the transfor-
mation

or

g +4m&iog+4co (=0 (3.2) x'=x/C {t)+A{t),
t'=D(t),

(4.1a)

(4.1b)

C+co (t)C =k/C (3.3)

P+~'(t)Q=C'f+3CCf . (3.4)

with g=C (t) and k an arbitrary constant of in-

tegration. The linear terms in x in (3.1) give an
equation for g,

where C(t), A (t), and D(t) are at this stage arbi-
trary functions. Under this transformation (1.2)
takes the form

~ 2 d '

~ +(2CD+CD), +[C+co (t)C]x'
dt' dt'

The remaining terms of (3.1) produce

X=/(t)f(r)

+[—CA —2CA co (t)CA —CA f]=0 . — —

(4.2)
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Following Burgan et al. we demand (1.2) be form
invariant under the transformation (4.1). Thus the
coefficient of dx'/dt' in {4.2) must vanish which
yields

(5.2)

then calculating P and forming /+co (t)P yields,
using (4.5) and (4.6),

Pico (t)Q=C f+3CCf,

D= dt' 1

dt

Equation (4.2) becomes

2

+C3(C+ 2(t)C)x~

iCi( —CA —2CA co (t—)CA —CA f ) . —

{4.3)

(4-4)

or the equation for g found in (2.1c) and (3.4).
Thus, the equation (5.1) relates the dynamical-
algebra —Noether theorem variable P(t) to the
group variable A (t). The invariant I in (4.9) also is
converted into the form {2.1a) or {3.6) under the
transformation from A to P (5.1). Writing out (4.9)
we have

I=—(Cx —xC) +—(x/C) +C Ax —C CAx2 2

Up to this point C(t) and A (t) have been arbitrary,
now we choose them to simplify (4.4). We make the
choices

+kAx/C+kA /2+C A /2.

With (4.6) we can derive

(s.3)

C+a) (t)C =k/C

A ikA /C i 2CA /C if/C =0,
{4.5)

(4.6)
CAf= ———CA +—A

1 4 2 k

dt 2 2
(5.4)

which reduces {4.4) to the simple harmonic-
oscillator equation

Using this latter result along with (5.1) in the in-

variant (5.3) we obtain

d x +kx'=0,
dt'

(4.7) I= —,(Cx —xC) +—(x/C) —1(x

which is the autonomous equation associated with
(1.2). The energy integral for (4.7) has the form

'2

I=—,+—x'1 dx' k
(4.8)

2 dt' 2

By carrying out the inverse transformations, we can
write the invariant I in the form

I=-,'(C--Cx+C'A)'+-'(x/C+A)'
2 (4.9)

Thus, I is an invariant for (1.2) if C is any solution
to (4.5) and A is any solution to (4.6). We shall
show in Sec. V that these results are equivalent to
the results obtained in Secs. II and III. Leach has
also employed transformations such as (4.1) to find
invariants by this method of reduction to auto-
nomous systems.

V. DYNAMICAL ALGEBRA, NOETHER,
AND GROUP-METHOD EQUIUALENCE

The group methods of Sec. IV led to the invariant
(4.9) for (1.2), where C and A satisfy (4.5) and (4.6),
respectively. If we define 1( by

Q= —CA, (F 1)

+( —C CA+kA/CifC )x fC x-
—f '"

C'Af dr, (s.s)

ltd= —C2CA ikA/C ifC',
which when used in (5.5) gives

(5.6)

I= —,(Cx —xC) +—(x/C) —1(xi' fC x—
i f P(A)f(A)dk, , , (5.7)

which is exactly the invariant (2.1a) or (3.6). Thus,
starting from the equations of motion for C and A

we find the equation of motion for 1(, defined in
(5.1), is exactly the same as (2.1c) and (3.4). Also
the invariant found by the group method is the
same as {2.1a) or (3.6). These results prove that the
group method used in Sec. IV contains the results
derived by the dynamical-algebra approach in Sec.
II and from Noether's theorem in Sec. III. There-
fore, these three methods lead to equivalent results
when applied to the forced harmonic-oscillator
equation (1.2) In Sec. VI we turn to our final

where we have also added and subtracted the term
fC x. From (5.1) and (4.6) follows
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method of deriving these results, the Ermakov
method.

VI. ERMAKOV'S METHOD

The Ermakov method is more heuristic than the
previous three methods of arriving at invariants, but
it can sometimes lead to more general systems pos-
sessing invariants. This is true mainly because this
method is so simple that one can often guess more
general systems to which the method can be ap-
plied.

Our starting point for the Ermakov method is the
set of equations

»+to (t)x =f(t),
C+co (t)C =k/C

g+ cu'(t)Q=C'f+3CCf .

(6.1)

(6.2)

(6.3)

Here (6.1) is the primary equation and (6.2) and
(6.3) are auxiliary equations. First we eliminate the
frequency co (t) between (6.1) and (6.2) and multiply
the resulting equation by Cx —xC which gives

——(Ci —xC) +——— =(Cx —xC)Cf .
1d . 2 kd x
2 dt 2 dt C

lier methods since here the auxiliary equations must
be known a priori, whereas in the other methods
they are derived in a systematic manner.

On the other hand, it is easy to see how to gen-
eralize to more general nonlinear equations and still
obtain invariants using the Ermakov method. For
example, the equation

I = —,(Cx —xC) + (x/C—) C fx —+xg fx—
2

+ f g(A, )f(A, )dA, + f g()(, )dA. .

(6.8)

As an explicit case we take g =k'C/x, and obtain
the invariant

k'I = -'(Cx —xC)'+ —(x/C)'+ —(C/x)'
2 2 2

C'fx +xl—( —gx+ f Q(&)f (&)d&, (6.9)

for the driven Pinney equation

x+co (t)x =f(t)+k'/x (6.10)

x+~'(t)» =f(t)+ g (C/x),
x C

where g is an arbitrary function, possesses the in-

variant

Next we eliminate the frequency co (t) between (6.2)
and (6.3) and rearrange the resulting equation to ob-
tain

where k' is an arbitrary constant.
Other generalizations involving, for example,

velocity-dependent forces in the x equation can also
be obtained. However, we shall not discuss these
examples further here. ' It is interesting that the
group method will work for the equation of motion

(Ci xC)Cf =—(—C fx)d 2

dt

+ (4» x0) Pf—. — —d
Ck

(6.5)

x+co (t)x =f(t)+ m(x/C+A),
C3 {6.11)

Employing this latter result in (6.4) results in the in-

variant where m is an arbitrary function. Under the
transforrnations (4.1) this equation reduces to the
autonomous equationI= —,(Ci —xC) + (x/C) C fx—+xg fx— —

2

+ f f(A, )f(k)dk, {6.6)
d x +kx'=m (x') .
dt

(6.12)

which is exactly the same as found by the other
three methods. Note that in the original Ermakov
method' we had only one auxiliary equation and,
therefore, only one elimination of frequency was

necessary. Here, with two arbitrary functions o) (t),
f(t) in the original equation (1.2) we need two auxi-

liary equations C and A in order to arrive at the in-

variant. This example illustrates the weakness of
the Ermakov method as compared to the three ear-

From this equation we can derive the energy in-

tegral
2

(6.13)

Applying the inverse transformations to (6.13) we
obtain a time-dependent invariant for (6.11). The
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system {611) can also be treated using the
dynamical-algebra or the Noether theorem ap-
proach. This fact means that the several methods
that we have discussed, and whose equivalence we
proved in Sec. V, are all valid for a larger class of
systems than just the forced oscillator. In Sec. VII
we discuss the idea of nonlinear superposition as ap-
plied to the equation (1.2).

VII. NONLINEAR SUPERPOSITION

(7.2} gives the general solution to (1.2) without fur-
ther numerical integrations.

In the classical theory such nonlinear superposi-
tion laws are interesting but perhaps not of much
practical use. However, the mathematica1 structure
that leads to nonlinear superposition in the classical
theory carries over and is useful in quantum theory.
This structure allows the exact solution to certain

time-dependent Schrodinger equations ' as well as
the efficient numerical solution to the time-
independent Schrodinger eigenvalue equation. '

Following previous usage, ' a solution to the x
equation, written in terms of particular solutions to
the auxiliary equations A and C, is called a non-
linear superposition law. Here we investigate this
idea for (1.2). %'e use the notation introduced in
Sec. IV.

The autonomous equation (4.7) has the solution

x'=a sin(V kt'+5), (7.1)

x =Cz[a sin(v k t'+5) —Az], (7.2)

where Cz and A~ are any particular solutions to
(4.5) and (4.6). In (7.2) t' is calculated from

(7.3)

The advantage of the nonlinear superposition law

(7.2) is that, for all initial conditions that can be
secured by a and 5 in (7.1), it gives the solution to
the equation (1.2} in terms of particular solutions

Cp and A~ . Thus, if we tabulate Cz, A~, and t ', then

where a and 5 are integration constants. Inverting
the transformation (4.1a) we obtain the solution to
the x equation in the form

VIII. CONCLUSIONS

In this paper we have related four different
methods for deriving invariants for time-dependent
systems by concentrating on the forced time-

dependent harmonic oscillator. The three basic
methods: (i) Dynamical algebra, (ii) Noether's
theorem, and (iii) group method, lead to equivalent
results for this problem. Given the auxiliary equa-
tions, Ermakov's method of eliminating the fre-
quency gives the same results as these three
methods. As we were able to show in Sec. VI, these
methods can be generalized in various ways to give
invariants for different forced nonlinear systems.

The quantum theory of the forced, time-
dependent harmonic oscillator was given in Ref. 13
using the group method. The exact solution to the
Schrodinger equation for this problem is analogous
to the nonlinear superposition laws discussed in Sec.
VII. This point is also made in Ref. 3. The exten-
sion of these and related techniques to (1) more gen-
eral time-dependent equations, (2) higher-order dif-
ferential equations, and (3) systems of differential
equations ' is an important task for future work.
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