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Temperature-dependent screening of neon in an electron gas.
Application to pair-potential calculations
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The electronic structure of a neon impurity in jellium as a function of temperature is

studied. The self-consistent density profile is calculated within "density-functional formal-
ism. " It is shown how the pair interaction between ionized atoms in a neon plasma can be

deduced from these calculations.

I. INTRODUCTION

Neon is a material commonly used in laser exper-
iments, either as impurity for diagnostic purposes,
or as a substance for filling microballoons in high-
compression implosions. ' The interpretation of
such experiments needs reliable numerical data for
the electronic properties of a dense neon plasma at
various temperatures. Several theoretical models

describing the electronic structure of ionized matter

may be found in the literature. One of the most

popular is the "average-atom" model2 (AAM),
which calculates the average electron density, aver-

age occupation numbers, equation of state, etc.,
each of the various versions having its own degree
of accuracy. The basic idea behind the AAM is to
isolate an electrically neutral sphere, whose volume

is the average-atomic volume, containing a single
ion perfectly screened by core and valence electrons.
The Thomas-Fermi (TF) statistical model, the
most simple AAM, treats the electronic response in

the semiclassical approximation, with possible
quantum corrections. In the Thomas-Fermi-shell

(TFS) models, ' the delocalized electron density is

still given by the statistical approximation, but the
core electrons are treated as quantum particules. In
a recent work, the Dirac equation is solved for free
as well as for bound electrons.

The AAM represents the whole plasma as a jux-
taposition of identical atomic spheres: the system is
viewed as a quasiperiodic arrangement of neutral
cells, a picture which is relevant only at low tem-
peratures. In a number of situations, the following
description is more appealing: the total electron
density in the plasma results from the overlap of
the densities attached to single ions. The positions
of these ions are given by the pair correlation func-
tion which must be calculated for each temperature
and density using analytical methods (for instance,

the hypernetted chain equation ) or computer simu-

lations. ' In all cases, the pair interaction of two
screened ions in the plasma is needed. The pair po-
tential, which depends strongly on the long-range
behavior of the electron charge displaced by a single

ion, cannot be deduced from the AAM.
In this paper, we propose a determination of the

pair interaction in an ionized neon plasma, as an ap-
plication of self-consistent screening calculations.
The most simple quantum method for treating that
problem is to use the random-phase-approximation
(RPA) dielectric constant. " But it has been proved
in a previous paper that, even in hydrogen, the
linear screening of the bare nucleus is inadequate. '

Solid-state theory has shown that linear screening is
relevant only when the concept of pseudopotential'-'

is valid, that is when the constraint of orthogonali-
zation to the core electrons cancels the largest part
of the potential. In plasma physics, however, it is
impossible to define the pseudopotential a priori:
ionization and ion-core configuration change with
temperature and density, and must be deduced from
detailed calculations for each value of the plasma
parameters. Thus, in temperature-dependent prob-
lems, the pseudopotential is practically an output of
electronic structure calculations, and not an input
as in solid-state physics. Nevertheless, the pseudo-
potential concept will be useful to deduce the pair
interaction from the single-ion calculation.

Our procedure will be the following: We shall
use the temperature-dependent density-functional
formalism to calculate the self-consistent screening
density profile. In Sec. II, we recall the main
features and equations of the model, and comment
on them in relation with the standard AAM. The
results of the single impurity calculation are briefly
discussed in Sec. III. A definition of the pseudopo-
tential at finite temperature is proposed and applied
to the problem of ion-ion interaction in Sec. IV.
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II. OUTLINE OF THE THEORY

We consider a single impurity atom immersed in

an infinite electron gas of density no, neutralized by
a uniform positive background. The external poten-

tial v(r)

Z 1
v(r) = ——— nod r

r —r'

polarizes the electron gas. The electron density of
the system in thermal equilibrium is n(r). The

grand potential Q[n], a unique functional of n, is

the basic quantity of the density-functional formal-
ism. ' Q[n] is minimum for the exact density cor-
responding to a given external potential v (r). With
the assumption that the exchange-and-correlation
free energy can be accurately approximated by a lo-

cal functional

F„,[n]= J ~„,(n(r))dr,

the total electron density is

n (r) =no+gf(eb)q b'+
' f—f(ek)dkg(21+1)[qPqi kj& (k—r)] .

b n O
I

(2)

gb is the radial part of a bound eigenfunction, solu-

tion of the Schrodinger equation in the effective po-
tential

&(r) = ——+ [n (r') —no] dr 'Z, l

r
/

r —r'/

(3)+ V„,(n) —V„,(n )

which includes the exchange-and-correlation poten-

tial
dW~{n)

V„,(no) =
dn

{4)

The eigenvalues eb correspond to the boundary con-

dition of exponential decay of yb at large radii.
The occupation number f(eb) is given by the
Fermi-dirac statistics:

f(e)= [1+exp[P(e—p, )]] (5)

(with P '=ksT), the chemical potential p being

fixed by the relation

no Pr——~ f y'~ [1+exp(y Pp)] 'dy— (6)-3n " in

as for noninteracting free electrons. The summa-

tion over the bound states b includes degeneracy on
the magnetic quantum number and spin. The con-
tribution of the continuous spectrum to the density
is given by the last term in Eq. (2). The wave num-

ber k is defined by ek ———,k (a.u.), and the discrete
sum runs over the angular momenta I. The radial
part (pk~ of the eigenfunction, integrated in the po-
tential V(r), Eq. (3), is normalized to Bessel func-
tions at infinity. The asympotic value of the densi-

ty, Eq. (2), is no, as a consequence of the total
screening of the impurity at large distances.

We make an emphasis on the fact that the local-
density approximation for F„,[n] is the only ap-
proximation in this model. Once Eq. (1) is accept-
ed, the self-consistent density n (r) is the exact den-

I

sity of the impurity problem in the interacting elec-

tron gas. ' It has none of the shortcomings of the
various AAM (Refs. 4—7); all electrons are treated
on the same quantum-mechanical basis, the boun-

dary conditions in the infinite sphere are exactly
handled, and the density of states is not arbitrarily
fixed (the exact density of states can be deduced
from the phase shifts of the wave functions in the

continuous spectrum' ). Finally, the model is per-

fectly thermodynamically consistent, so that all the

properties deduced from n(r) are continuous, as

they must be, when a bound state delocalizes into a
scattering state. ' Nevertheless, only average quan-

tities (corresponding to the average over all the pos-
sible thermal configurations of the single ion) can
be deduced from such calculations. The eigenvalues

e, for instance, have no physical meaning and can-

not be used straightforward as excitation energies

for optical transitions. The correct procedure to
deal with optical properties would be to build the
relevant Green's functions from the complete basis
set of eigenfunctions generated in the self-consistent

potential V(r).
We now discuss the exchange-and-correlation

functional. The local form in Eq. (1) is recognized
as an accurate approximation for simple metals at
zero temperature and is used in most band-structure
calculations. ' Nonlocal corrections have been pro-
posed' but their effect on n (r) has not been investi-

gated for the moment. The temperature-dependent
functional used in the present work reduces to the
well-known Wigner formula at T =0. For the ther-
mal part of F„,[n], two different approximations,
both obtained for a uniform electron gas, are pro-
posed in the literature. One is given by Gupta and

Rajagopal, based on the first-order exchange and
sum of the ring diagrams. ' The second is due to
Dharma-Wardana and Taylor, including first-order
exchange, all second-order graphs, and ring
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graphs. ' The results may be rather different at low
temperatures but seem to be in reasonable agree-
ment for T higher than the Fermi temperature. In
the calculations reported in this paper, we have used
the first of these approximations which was im-
planted in our routines before we became aware of
the second one. The accuracy of such approxima-
tions is still an open question.

For given values of the atomic number, tempera-
ture T and electron density n0, Eqs. (2)—(4) are
solved self-consistently. The practical difficulties of
such a calculation are the following:

(a) There is the possible existence of very shallow
bound states (particularly at high temperatures)
which may appear and disappear from an iteration
to the following one, leading to numerical oscilla-
tions and instabilities.

(b) There exists a large number of wave-vector
sampling points at high temperatures; the max-
imum value km of the wave vector to be treated in
the continuum is approximately such that
p+7kT = —,k, which increases with T (although p
decreases).

(c) The large value of the maximum angular
momentum l needed for convergence [cf. Eq. (2)]
when the screening length of the impurity is large.

So there are cases where the calculation may be dif-
ficult. Fortunately these cases, in general, corre-
spond to high temperatures where the physics of the
problem is simple and where "asymptotic" models
(like Debye-Hiickel or Thomas-Fermi) may be
relevant. We don't reproduce here the formulas
giving the thermodynamic quantities (total energy,
entropy, etc.) which can be found in Ref. 12.

III. SINGLE NEON IMPURITY CALCULATION

We report the results of calculations for an im-

purity of neon embedded in an electron gas r, =2
a.u. [n0 3/(4mr, ), so that ——n0 ——2.012&(10 cm ].
The temperature is varied from T =0.5 TF to
T =4TF, where TF is the Fermi energy (TF——12.53
eV). This range is physically interesting since it
covers the transition from degenerate to nondegen-
erate electrons.

In Table I are shown the discrete eigenvalues of
the spectrum. Let us recall that they have no sim-
ple physical significance within the temperature-
dependent density-functional formalism. They are
mathematical quantities occurring in the construc-
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tion of the electron density, but are not one-electron
energies. Comparing the eigenvalues for the lowest
temperature at r, =2 to those of the free atom at
T =0, one sees that e rises as a consequence of the
electron gas environment. Then, when the tempera-
ture is increased at fixed electron density np, the
eigenvalues lower because the impurity nucleus is
less and less screened by the bound charge which is
more and more delocalized. This is a well-known

effect. As the potential becomes deeper when T in-

creases, new bound levels are found: The 3s level

appears at T =2TF and then the 3p, 3d, 4s, and 4p
at T =4TF. These new levels accommodate 2.26
additional electrons which compensate the decrease
of the population of the deep levels; this mechanism

explains the quasistationarity of the total number of
bound electrons Zb between 2TF and 4T+. This
splitting into bound and free electrons is somewhat
arbitrary since there is no discontinuity in the
behavior of the density when an eigenvalue crosses
the zero energy. '

In Fig. 1, we show the displaced electron density
n(r) —np as a function of r. At T=O.ST+, the
curve exhibits a bump around r =3 a.u. This bump
is due to the continuous spectrum contribution to
n(r) —np. The free electrons are mainly 3s and 3p
in character and have a maximum of density at this
place. The bump disappears at higher temperatures
because the free electrons are distributed more uni-

TABLE II. Modification with temperature of the dis-

placed electron density around Ne, at r, =2. n (0)—np is
the displaced density at the nucleus. Rp is the radius of
the sphere containing a displaced charge Q =0.594Z.

1
The radius R

&
is such that n (R

& ) —np ———np. Units of
measurement are in a.u.

T/TF n (0)—np Rp Ri

0.5
1.0
2.0
4.0

591.6
592.3
590.9
583.1

0.835
0.867
1.003
1.843

1.891
2.069
2.259
2.350

formly in more angular momenta and in a wider
range of energies. For T & TF, the density spreads
out very regularly. Friedel oscillations have been
observed at T =0.5TF only, the first node of
n(r) —np occurring at r =10.75 a.u. The delocali-
zation of the density when T is increased is illus-
trated in Table II: The density at the nucleus
n (r) —np decreases and, conversely, the characteris-
tic radii Rp (the displaced charge inside the sphere
of radius Rp is 0.594Z; in the Debye-Hiickel theory,
R p is twice the inverse of the screening constant)

1

and R& [such that n (R, ) —no ———,nc] increase con-

tinuously. Finally, the total internal energy and en-

tropy of the impurity (as defined in Ref. 2) are
given in Table III.

n-n,

I I I

IV. TEMPERATURE-DEPENDENT
ION-ION INTERACTION

10

10

The previous sections have dealt with the self-
consistent determination of the electron charge dis-
placed by a single Ne atom in an electron gas. It is
well known from the solid-state theory that the pair
interaction between two ions in a simple metal at
T =0 is related to the valence density outside the
ion core. ' The main assumption is that the density

10

TABLE III. Energy and entropy of the neon impuri-

ty (a.u. ) for various temperatures.

T/TF ThS

ro-'—
R'(a. uJ

FIG. 1. Modification with temperature of the screen-

ing density profile of a neon impurity in the jellium at
r, =2. The curves correspond to the temperatures 0.5,
1.0, 2.0, and 4.0 in units of TF.

0.0 (free atom)
0.5 (r, =2)
1.0 (rs=2)
2.0 (r, =2)
4.0 (r, =2)

—128.00
—126.76
—125.30
—120.14
—100.98

0.0
0.28
2.49

11.62
41.28
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is accurately obtained to first-order in the pseudo-

potential w. Outside the core, w is equal to the bare
ion potential —Z'/r, Z' being the number of
valence electrons. Inside the core, w is much small-

er because the orthogonality constraint acts on the
valence electrons as a repulsive potential. For a
metal at T =0, it is often possible to choose w a
priori since Z' is known. The Fourier transform of
the pseudovalence density is, in linear response,

n„(q)=X(q)w (q),

where X(q) is the susceptibility of the interacting
electron gas at T =0. It has been shown that the

pair interaction is improved if the following pro-
cedure is applied: The "exact" (to all orders in the

potential) valence density is first calculated, using,
at T =0, a method equivalent to that described in

Sec. II for finite temperatures. The pseudopotential
is then chosen in such a manner that the linear
response of the electron gas outside the core is just
the exact density.

We shall develop similar ideas for Ne at finite
temperatures. First, we note that, at low tempera-
tures, two atoms with complete shells interact only
through van der %sais forces. An ion-ion interac-
tion due to "metallic" bonding can occur only at
temperatures high enough to produce appreciable
ionization. Let us assume that this is the case.
Dharam-wardana suggested to define the pseudopo-
tential, in reciprocal space, by

'

(7)

where nf(q, T) is the Fourier transform of the free-
spectrum contribution to the density n (r) defined in

Eq. (2). Such a definition gives rise to some diffi-
culties. First, when shallow bound states do exist
(see Table I, T =4TF), there is no clear distinction
between the contributions of negative or positive
eigenvalues close to the threshold; the definition is
somewhat arbitrary and the variation of Z* with

temperature will be discontinuous. Second, the
quick oscillations of nf near the nucleus generate
much too large a pseudopotential with an incorrect
behavior at large q. We propose the alternative de-

finition for a pseudodensity n to use in Eq. (7) in-
stead of nf..

valence density at the core radius ranges between
0.65np in Li and 1.03np in Al. We shall see later
that, in our example, the ¹Ne interaction is not
sensitive to the value of A, in the range
0.5&A, &0.66. With A. =0.5 at T =4TF, n(r) is con-
stant in the region r &R~ ——2.35 a.u. But R& can-
not be considered as a core radius since the bound
states still contribute for 70% to n(Ri) —np. The
total charge corresponding to n(r) is taken as the
valence Z'. At T =4T~, Z' =3.75 with A, = —,, and
Z'=3.98 with A, = —,. These numbers differ signifi-

cantly from Z —Zb ——2.63 found in Table I. The
potential w defined in Eq. (7), with n instead of nf,
is compared to the bare potential u(q) = —4m.Z'/q
in Fig. 2. The ratio g(q) =w(q)/u(q) is well
behaved and, except for a small maximum near

q =0, not very different from the standard local
form

sinqR,
g (q) =D +(1—D)cosqR, ,

qR,

with D =1.3 and R, =2.7 a.u. The routine used to
calculate X(q, T) has been written by Pelissier; the
exchange-and-correlation effects are included by
means of the local field factor

X(q) =d V„,(np)/dnp

The correct numerical values found for w(q) sug-

gest that our approximation is correct at T =4TF.
When temperature is decreased, the pseudopotential
is still correct at T =2TF, but g(q) becomes much
larger than one at lower temperatures so that the
method is inapplicable, as expected, when ionization
is too low.

The generalization to nonzero temperatures of
the ion-ion interaction formula, within second-

1.0

w(qp
V (g)

0.5

00

n(r) = knp, if n (r) —np )np

n (r) —np, otherwise
(8)

A, must be strictly lower than one since n(r) must be
consistent with linear response of the electron gas at
density np. In Ref. 20, for instance, the value of the

FIG. 2. Ratio of the effective pseudopotential w(q) to
the bare Coulomb interaction —4mZ*/q for neon at
r, =2 and T=4TF.
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order perturbation theory, is straightforward:

X I qdqn(q, T)w(q, T)sinqR . (9)

Ag

i
5.0

R is the distance between the two nuclei. Accord-
ing to the conclusions of Ref. 20, it is legitimate to
assume that a large amount of the nonlinear effects
(beyond second-order perturbation theory) are in-
cluded in (t through n(q, T) which is nonlinear in
essence. We should mention at this point that an
even better approximation could be obtained using
the displaced density of an atom with minimum
scattering (i.e., the screening density of an auxiliary
impurity neutralized by a hole of charge Z' in the
positive background; such an impurity, at T=O,
gives rise to a zero Friedel sum}. The pair potential

P is shown in Fig. 3; it is expected to be correct for
R &2R&, approximately 5 a.u. The two curves
shown for T =4TF correspond to the values A, =0.5
and 0.66 [cf. Eq. (8)]; the variation of P, a quantity
generally very sensitive to pseudopotential modifi-
cations, can be considered as relatively small. The
bonding is important at T =4TF, but disappears at
T = 2TF'

V. CONCLUSION

ao

FIG. 3. Ion-ion interaction in neon at r, =2. Two
curves are shown for the temperature T =4TF', the solid
line corresponds to A, =— [cf. Eq. (8)] and the dot-

dashed line to A, =—.At T =2T~, the pair potential has

been calculated with A, =
z

.

um. The accurate evaluation of the spectrum, elec-
tron density profile and thermodynamic quantities,
which is shown to be possible in these calculations,
might be useful for laser diagnostics. The pair po-
tential generated using the calculated density pro-
files could be the input for Monte Carlo or
molecular-dynamics calculations leading to new
properties, for instance, the ion-pair distribution
function

We have presented the extension to a more com-
plicated system of the model previously used for the
temperature-dependent screening of a proton. ' The
self-consistent electronic structure of a neon impuri-

ty in an electron gas has been calculated as a func-
tion of temperature, at a given density of the jelli-
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