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Spinodal decomposition of a one-component fluid:
A hydrodynamic fluctuation theory and comparison with computer simulation
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We present a theory of spinodal decomposition which is based on the linearized hydro-
dynamic equations including the stochastic fluctuations in stress tensor and heat flux and
which accounts for nonlocal driving force through pressure gradient. The equation of state
is obtained using liquid-state perturbation theory, and the transport coefficients are ob-
tained from the Enskog theory of dense fluids. The theory thus has no adjustable parame-
ters. The time-dependent structure factor calculated from the theory is in good quantita-
tive agreement with molecular-dynamics experiments for early times. An effective amplifi-
cation factor extracted from the experimental results also agrees well with the theoretical
dispersion of the growing mode. Extension of our theory to binary-fluid mixtures shows
that, within the linear regime, hydrodynamic flow effects are negligible and the Cahn-Cook
description is adequate.

I. INTRODUCTION

Twenty years ago, Cahn' pioneered the diffusion
theory of spinodal decomposition for describing the
phase-separation dynamics of thermodynamically
unstable solid solution. Eight years later, H. E.
Cook introduced a significant generalization of the
Cahn theory by including fluctuations in the dif-
fusion flux. Important theoretical developments
within the framework of the Cahn-Cook diffusion
fluctuation theory followed, noteworthy contribu-
tions to the nonlinear dynamics regime coming
from Langer and co-workers and Kawasaki and
Ohta. Since the middle 1970's, experimental inves-
tigation of spinodal decomposition in binary-fluid
mixtures has occupied an important part of phase-
transition research, and the Cahn-Cook-Langer
theory has been adopted as the principal theoretical
description for the interpretation of the laboratory
measurements. In contrast to past developments,
we present the first dynamical theory of spinodal
decomposition based on the hydrodynamic equa-
tions which include the stochastic fluctuations in
the stress tensor and the heat flux. The nonlocal
driving force arising from density inhomogeneities
is specified by the van der Waals or generalized van
der Waals prescription and is accounted for
through the pressure gradient in the dynamical
equations. Comparison is made with a molecular-
dynamics computer experiment for a one-

component fluid. ' The time-dependent structure
factor caculated from the theory is in good quanti-
tative agreement with experiment for early times.

An effective amplification factor extracted from the
experimental results also agrees well with the
theoretical dispersion of the growing mode. Exten-
sion of our theory to binary-fluid mixtures shows
that within the linear regime, hydrodynamic flow
effects are neglegible and Cahn-Cook description is
adequate.

II. THEORY

A. Linear hydrodynamics

The time-dependent structure factor S(k, t) is re-
lated to the Fourier component of density fluctua-
tions p(k, t) by

S(k, t) = (p(&, t)p*(k, t)),
Vpo

where

p(k, t)= I d re '"'"[p(r, t) —po],

(2.1)

pp being the homogeneous mass density. We use
linear hydrodynamic theory with fluctuations to
evaluate the time evolution of density fluctuations
and, hence, S(k, t). Normally the equations of hy-
drodynamics are written for mass density p, fluid
velocity v, and entropy density s. For our calcula-
tion, we only need the longitudinal part of fluid
velocity g—:V.v, since the transverse part of the
velocity decouples from the other variables in the
linear regime. We also choose to express the entro-

py density in terms of density and temperature fluc-
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tuations through the thermodynamic relationship

apds = cvdT= —
2 dp,

To po aT

where e„ is the heat capacity at constant volume
and p is the pressure. The set of hydrodynamic
variables

p'p= Vpt~ pp f d3r'~(r —r ')V'p(r')

= a' - a'P p +
ap aT

+pp f d r'W(r r)—V'p(r'), (2.8)

V(r, t) =col(p—,f, T)

satisfies the following equations:

P —0a
at

qq~t 0
at

(2.2)

(2.3)

where we have introduced a nonlocal operator
W{x) to describe the inhomogeneity which we
specify later on. Since the hydrodynamic Eqs. (2.2)
to (2.4) are linear first-order differential equations
for the initial value problem associated with spino-
dal decomposition, we can obtain the solution using
the Fourier-Laplace transform technique. If we
denoteby f(k,z)

ppc„+ Tp g+ V q =0,aT ap
"at aT .P

(2.4)

q= —~VT+g . {2.6)

where the viscous stress tensor o', and heat flux q
are given by

av; aUk 2 aU. av.
&rik ='9

~
+

~ 3
5ik

~
+g

~
5ik+sik ~

axk ax; 3 axj ax.
L

(2.5)

f(k,z)= f dte *' f d re '"''f(r, t) .

and using Eqs. (2.2) —(2.6) and (2.8), we obtain

M.V(k,z)=V(k, t=0)+~ (k,z),
where

~ (k,z) =col[0, —k;kisi(k, z)/pp,

ikigz—(k,z)/poc„] .

Summation over repeated indices is implied

(2.9)

(2.10)

(2.11)

In Eqs. (2.5) and (2.6), i&, 2), and g are thermal con-
ductivity, shear, and bulk viscosities, respectively.
The hydrodynamic Auetuations in cr' and q are
represented by s and g. Following Landau and
Lifshitz, we assume that s and g obey Gaussian-
Markov process

—ak

a To le„z+DTk

and

z po

M= —b {k)k z+Dyk2 (2.12)

(s ) = ( g ) = (s g ) =0,
(sik(r i, t& )si (r2, t2) )

(2.7a) ap'b(k)=-
po ap

+W(k),

=2To(2)(5it5km+5im 5kt)+(0 3rtlik51m I—

X&(r i
—r2)6(ti —t~), (2.7b)

(gi( rl tl )gj( r2 t2) ~

=2~To& J5(r1 —r2)5(ti —t2) . (2.7c)

Since our objective is to investigate the limitations
of a linear theory for one-component fluid (at the
level of Cahn-Cook linear theory of binary solid
solutions), we assume that the nonlocal driving
force during spinodal decomposition enters only in
the pressure gradient term. We denote the thermo-
dynamic quantities for a constrained single-phase in
the two-phase fluid region by a superscript f. In
terms of a van der Waals-like picture, we have

p(1&, t)=L, p(1&, t=0) — 4(1&,t=0)
detM detM

where

ik.
gj(k, z)

detM J
p()c„

(2.13)

Dv=( '9+4)/po
4 I ap~

po aT

and DT ——a/p~„. Equation (2.10) can formally be
solved and inverted to obtain V(k, t). For p(k, t) we

get
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~» ——z +(DT+Dv)k z+(DTDvk +a Tp/c„)k:—z +pz+v, (2.14)

~2& ——pp(z+DTk ) =pp(z+v3) (2.15)

M3i ———ppak (2.16)

and
detM= z +{DT+Dv)k z

2a Tp 2 4+ +ppb(k) k +DTDyk z
cv

+ppDrb (k)k
3 2=z +a2z +a&z+ap

We have introduced the notations p, v, v3, a2, a&,

ap, and the (complex) roots ai, a2, a3 which we use

and discuss later. We have also used the symbol
I. ' to indicate the inverse Laplace transform. It is

appropriate to assume that, in a typical quench of a
spinodal decomposition experiment, the fluctuations

g(k, t =0) and T(k, t =0) are negligible cotnpared
to the initial density fluctuation p(k, t =0)~ With
this assumption we substitute Eq. (2.13) in Eq. (2.1)
and use Eq. (2.7) to obtain the time-dependent
structure factor. The result can be analytically
given in terms of (complex) roots of the cubic Eq.
(2.17), as

=(z —a&)(z —a2)(z —a3) . (2.17)

2

S(k t)= g g PiPi'S(k 0)e ' ' —2Tpk DyQtQj' + DTk RtR&' (1—e ' ' )/(at+aj )
i =1j=1 V

(2.18)

where R; (i =1,2, 3) are the cyclic permutations of Ri =[(al —az)(al —a3)] ', P; =(a; + jta;+v)R;, and

Q; =(a;+v3)R;. Equation (2.18) is the basic result of the linear hydrodynamic theory.
We note from Eq. (2.18) that the first term arises from the initial value and the remainder is a consequence

of the hydrodynamic fluctuations g and s. Since g,g P;Pj' ca.n be. shown to be unity, one recovers the prop-
er initial value, and we see that hydrodynamic fluctuations begin contributing only for t & 0.

If initially the system is in a stable one-phase configuration (i.e., Rea; (0), the result in Eq. (2.18) evolves,
as t~ 00, towards the original equilibrium structure factor

2

S(k oo ) = —g g DyQiQj*+ Drk R RJ 2Tpk /(a; +at ) = Tp/ppb (k)
l J U

(2.19)

It is straightforward to prove the second equality in

Eq. (2.19) at k =0. More generally, it may be ap-
propriate to follow the procedure analogous to that
in Sec. 133 of Ref. 8.

In contrast to the time evolution in a one-phase
system, we expect the quantity b(k) to be more in-

teresting for the spinodal decomposition experi-
ments. For homogeneous systems,

b(k) = — +W(k)
ap'

pp ~p T

reduces to cT/pp, where cT is the isothermal sound
speed. However, within the unstable region of the
two-phase coexistence, (Bp /Bp)T is negative and
the ratio of heat capacities y is less than one; i.e.,
ppb(0)=cr and

I

linear hydrodynamics to the specific situation of
spinodal decomposition, we have to specify the
prescription for the equation of state and various
transport coefficients.

B. Equations of state and transport coefficients

Liquid-state perturbation theories have been
sucessfully applied to the study of the thermo-
dynamics of a constrained single-phase system
within the two-phase coexistence region. ' The
reference system in these theories is one with hard-
sphere interaction. In our dynamical calculation, it
is therefore appropriate to use similar ingredients.

From the Enskog theory of dense fluids, ' we
have the following expressions for the three trans-
port coefficients:

Tp 1 =(y—1)
c„ppb (0)

are both negative but the product (a Tp/c„)
remains positive. In order to apply the result of

g =gp( 1 +0.8y +0.761y )/ Y,
g= gp(1.002yz)/Y,

K=Kp( 1+1.2y+0. 755y )/Y,

(2.20a)

{2.20b)

(2.20c)
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where gp, ~p are the low-density values of the shear
viscosity and thermal conductivity, respectively,

g/( 3 hippo ), and F is the factor by which the
binary collision frequency is increased in the En-
skog theory. This factor is usually determined from
the knowledge of the equation of state, p ~(p, T):

ap'
V= (2.21)

p T r)T

We use WCA perturbation theory" to obtain the
equation of state pt(p, T) and hence (Bp /BT) andp
(Bp /Bp)T. In addition, we need to specify only the
nonlocal driving term W(k) introduced in Eq. (2.8).
Traditionally, one would use the square-gradient
theory which was introduced by van der Waals' to
discuss the liquid-vapor interface and by Cahn in
the study of spinodal decomposition of solid solu-
tions. This would imply

dw(k) =~k (2.22a)

In any extension of van der Waals theory, one has
to explicitly or implicitly specify the direct-
correlation function c (k). An approximate
prescription of c(k) used by Abraham gives the
generalized van der Waals theory for W(k),

Ws,dw(k) =4' I (coskx —1 )QO(x)dx i (2.22b)

with
00

np(x) = u(x)g2(x, pp)x dx,
X

where the pair-correlation function g2 is calculated
for the Lennard-Jones fluid using the WCA pertur-
bation theory. " We have used in our computations
both the prescriptions (2.20a) and (2.20b) to see how
sensitive the qualitative features of S(k, t) are to the
choice of W(k). W„dw(k) and ~gpdw(k) are com-
pared in Fig. 1.

24"

18"
van der Waals /

12
generalized

6"

simulation of spinodal decomposition has been
made starting at this point. For this (pp, Tp), the
various quantities entering the numerical analysis'
of the theory are: DT ——1.137, Dv ——Q. 850, c„=1.8,
a =2.184, b(0)= —8.93, and the van der Waals
constant A =7.127, which is extracted from the
small-k limit of Eq. (2.22b). In Fig. 2(a) we display
a;(k) for van der Waals ansatz and in Fig. 2(b) the
same for the generalized van der Waals prescrip-
tion. As expected both of these agree for small k
and the general qualitative features are also identi-
cal for all k values. For k (0.035, we have three
unequal real roots and for larger-k values, we get
one real and a pair of complex roots. The real root
[always denoted by ai(k) in the subsequent discus-
sion and by a solid line in Figs. 2(a) and 2(b)] is pos-
itive up to some critical wave number k, and is neg-
ative thereafter. Thus for k gk„we have a grow-
ing mode which is related to the hydrodynamic in-
stability in the phase-separation process. In order
to understand its physical origin, we have studied
the small-k expansion of all the three modes a;(k).
The results are

0
0 0.4 0.8 1.2 1.6 2.0

Wave number k

FIG. 1. Comparison of ~„d~(k) and W~„d~(k) for a
three-dimensional Lennard-Jones system (pp=0. 35,
Tp ——0.8). See Eq. (2.22) in text.

C. Hydrodyamic modes swithin unstable region

The dispersion of hydrodynamic modes can be
extracted from Eq. (2.17) by setting detM =0. We
obtain the three modes a;(k) by solving the cubic
equation. For a three-dimensional Lennard-Jones
system, the phase diagram has been previously in-

vestigated using WCA perturbation theory, and the
coexistence curve, as well as region of instability,
has been determined.

We choose pp=0. 35 Tp =0.8 to study the disper-
sion of modes a;(k) since this point lies almost in
the middle of the unstable region and numerical

a1(k)=a»k —a12k +O(k ),
a2(k)= —a11k —a12k +O(k ),
a3(k) = —a32k +0 (k )

where

a, i = [—p(P (0) aT0lc„]'i-
' 1/2

Bp
y

Bp

1 1
a12 Dv +DT I +—"2. ' '. y

a32 —Dr/y .

(2.23a)

(2.23b)
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FIG. 2. Dispersion of the hydrodynamic modes within the unstable region of Lennard-Jones liquid-vapor coexistence

(po ——0.35, To——0.8) using (a) van der Waals theory and (b) generalized van der Waals theory. The inserts show the
small-k behavior of the modes (see text).

Here we have identified a To/[pab(0)c„] with

(y—1) which is normally positive but is negative in

the unstable region. These results are reminescent
of the dissipative heat diffusion mode [a3(k)] and a
pair of (normally propagating) sound modes, a] and

a2. In the stable one-phase region, (Bp/Bp)T is a
positive number, and a~~ becomes pure imaginary,
ic0, where c0 is the adiabatic sound speed. In the
unstable part of the phase diagram, however,

(Bp/Bp)T is negative, and we get a~~ as a real posi-
tive number. Thus we see that at the spinodal line
and within the spinodal, the complex pair of sound
modes turn into real roots, and one of these, a&(k),
acquires the characteristics of a growing mode. For
a;(k) given in Figs. 2(a) and 2(b), we have found
that the small-k expansion, Eq. (2.23), gives correct
results up to a k of about 0.03.

One further characteristic of the growing mode
can be directly inferred from the dispersion equa-
tion detM =0, Eq. (2.17). At a well-defined wave
vector k =k„ the quantity b(k, ), and hence also
the constant coefficient a0(k, ), becomes zero. Thus
one of the roots becomes zero. This is the growing
mode root a~, since a2 and a3 are found to have
their real part to be negative for all k. The critical
wave vector k, depends only on thermodynamic
properties since it is determined from

b(k, )—:— +~(k, ) =o . (2 24)
apt

For van der Waals ansatz,
1/2

ap'
ppA Bp

These results are well known.

III. STRUCTURE FACTOR:
COMPARISON OF THEORY AND EXPERIMENT

Using the hydrodynamic modes a; of van der
Waals (vdW) and generalized van der Waals (gvdW)
theory [Figs. 2(a) and 2(b), respectively], we numeri-
cally evaluate Eq. (2.18) to obtain the time-
dependent structure factor. The results are plotted
in Figs. 3(a) and 3(b) for different times after the
quench. For S(k,0) we use the experimental data
just after the quench to be able to compare the
theoretically predicted time evolution with experi-
rnent. Figures 3(a) and 3(b) show a very similar
overall behavior of Sg„dw and S„dw. The structure
factor in generalized van der Waals theory is
broader than S„dw because the critical wave number
k, (gvdW) is larger than k, (vdW). The faster
growth of S(~„dw) reAects the greater positive values
of a&(gvdW) in comparison to a&(vdW).

In Fig. 4 the experimental structure factor is plot-
ted for several times after the quench. For small
times (lowest curves), theory and experiment agree
quite well. For later times, linearized hydrodynam-
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van der Waais generalized van der Waals
TABLE I. Peak position of structure factor compar-

ison between theoretical and experimental values.
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o 20"

1.5"
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I
3.5

,
:r3.og',

,.'/r, ~

0
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r
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I

3 5
/ (~N

r 1.5
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14 02 06
Wave number k

10 14 18

t(ps)

0.78
0.78
0.77
0.76
0.74

0.92
1.06
0.98
0.92
0.88

k theory
vdW gvdW k,„(expt)

0.78
0.74
0.72
0.68
0.67

FIG. 3. Theoretical structure factor S(k, t) vs k for
various times after quench. (a) van der Waals ansatz
for W(k), (b) generalized van der Waals W(k).

ic theory clearly overestimates the absolute values
of S(k, t). Nonlinear contributions will slow down
this growth rate. In addition, we have listed in
Table I, as a function of time, the wave number

k,„,at which the structure factor has a maximum.
The experiment shows a decrease of k,„with in-

creasing times due to the coarsening process. Quali-
tatively, this feature is described even by our linear
theory.

In order to make a sensitive comparison of our
theory with the molecular dynamics experiment, we
deduce an "effective growing mode a,~~" from the
experimental time-dependent structure factor
S,„p,(k, t) in the following way: (1) in Eq. (2.17),
S(k, t) is taken to be equal to the measured

Sexpt (k, t ); (2) a i is assumed to be unknown, and is
denoted by a,~~, (3) a2, a3 are assumed to be given by
theory Eq. (2.18); and (4) a solution for a,rr(k) is ob-
tained and compared with the theoretical a&. This
procedure was done using a2, a3 from the van der

Waals dispersion [Fig. 2(a)) and from the general-
ized van der Waals dispersion [Fig. 2(b)]. In Fig. 5
we present the comparisons for both prescriptions
and for several times after the temperature quench.
These times are the earliest measurements in the
simulation experiment where linear behavior is most
probable. It is very gratifying that the effective arn-
plification factor ad~ is of the same qualitative
magnitude as the ai for each prescription, even
though the theory has no adjustable parameters.
Quantitatively, the generalized van der Waals
description yields a& and a,~~ that are in very good
agreement over the entire range of wave numbers at
the earliest times. However, a,~~ from the approxi-
mate van der Waals picture deviates unphysically
for large wave numbers, and the magnitudes of a&
and a,~~ are not in as good agreement. Further-
more, this is in contrast to the results of a similar
analysis based on the diffusion-fluctuation dynami-
cal theory of Cahn-Cook, where comparison be-
tween the effective amplification factor and the
theoretical mode did not show good quantiative
agreement (see Fig. 25 of Ref. 6). For later times,

experimental structure factor

4.0 ps
1.5 -.

&/~+gw
&.O-. P, 2~~

1.5

~et'
van der Waais

0.75 "

. .1.5 ps
p 45 . . (pre=~~~

0.15"
5

-0.15"

-0.45 "

generalized van der Waais

. - .1.5 ps/

05" -0.75
(

0.2 0.6 1 0 1 4 0 2 0 6
Wave number k

1.0 1.4 1.8

0.6 1.0 1.4
Wave number k

1.8

FIG. 4. Experimental structure factor S,„p,(k, t) vs k.
Results of molecular dynamics experiments for several
times after the quench (see Ref. 6).

FIG. 5. Comparison of the theoretical growing mode
a& (solid line) predicted by (a) van der Waals and (b)
generalized van der Waals theory with the effective am-
plification factor a,qq (dashed lines) obtained using exper-
imental structure factor measurements for a Lennard-
Jones fluid quenches to the unstable region of the phase
diagram (pp ——0.35, Tp=0. 8).
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nonlinear coarsening destroys the agreement with
linear theory.

IV. SPINODAL DECOMPOSITION
IN BINARY MIXTURES

The hydrodynamic instability in binary mixtures
during the spinodal decomposition occurs because
the thermodynamic derivative of chemical potential

p with respect to concentration c, (Bp/Bc)z q, be-

comes negative within the spinodal region in the c-
I

$(k, t)=(
~
ck(t)

~
) . (4.1)

The appropriate hydrodynamic variables are c, p, P,
and T. The set of coupled hydrodynamic equations
including the hydrodynamic fluctuations are' (in
k, t space)

T plane. The generalization of the linear theory (see
Sec. II) to binary mixtures can be made in a
straightforward manner. To a good approximation
the intensity in x-ray diffraction experiments in-
volves only the concentration fluctuations and the
time-dependent structure factor is written as

Bck
Po gt

Bck

Bt
+

k ~ (g "+2K k ) (t) —— p (t)+
po Bc

ap apk ap aTk

Bp rtt dT dt
tC T C,P

+—T„(t) —ik. f'(k, t),
BT Q

(4.2)

(4.3)

po =k pk(t) (g+ ,—q)k g—k(t) kk:sk(t—),al(„
Bt

(4.4)

Qp, p Bck To ap BPk 5Tk T p—pp +— + +pocp ———ak Tk(t)+ik gk(t) —— i k f'(k, t), (4.5)BT, a Bt p BT Bt Q

where the hydrodynamic fluctuations f' and g are
related to the Onsager coefficients a and P as

(ff{t,)f;(t, ))=2T,a5;;5{t, t, ), — (4.6)

(f (t) )g~(tp) ) = (g;(t) )fJ(tp) )

=2Top5,,5(t, —t, ) .

Owing to the coupling of concentration and tem-

perature fluctuations, Eq. (2.7c) is modified to

(4.7)

{g;(t~)g,(t~)) =2TO(tr+T, 13'/a)5;, 5(t, —t, ) .

(4.8)

where g(c) and K(c) have to be specified. Cahn'

has discussed a theory with the choice K(c) =Ko

The fluctuations in the viscous stress tensor are
unaffected and sk(t) still satisfies an equation ident-
ical to Eq. (2.7b) with the viscosities appropriate to
binary mixtures. Also sk is uncorrelated with both

g and f'. In Eq. (4.2), the concentration term is at
the level of linear theory of van der Waals; the
second derivative of Gibbs free-energy density ap-
pears since ck(t) is the mass concentration fluctua-
tion. In a nonlinear theory, this term would be
modified as (in r, t space)

a 7 [g"(c)—2E (c)7 ]Vc, (4.9)

I

and g "(c)=go' +g'"(5e) + 1/2g""(5c) . In the
linear theory, coupling of ck(t) to the hydrodynamic
variables pk and Tk occurs through the second and
third terms on the right-hand side of Eq. (4.2). It is
known that the coefficients of pressure diffusion
and thermal diffusion which represent these cou-
plings are very small at liquid densities. ' Thus to
an excellent approximation concentration fluctua-
tions decouple in a linear theory. Introduction of
hydrodynamic fluctuation f' in Eq. (4.2) then puts
the theory on the level of the Cahn-Cook' theory.
For fluid mixtures, nonlinearities can occur either
through g(c),K(c) as in the expression (4.9) or they
can also occur through the bilinear convection term
pov. Vc(r, t) which would be present in nonlinear
hydrodynamics. Such a nonlinearity would couple
ck(t) to gk(t) and has been considered by Kawasaki
and Ohta. At the level of linear hydrodynamics,
however, we see that the linear Cahn-Cook descrip-
tion ' is an adequate approximation, in contrast to
one-component system.

V. CONCLUSION

We have demonstrated that linear hydrodynam-
ics, including stochastic fluctuations and nonlocal
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driving force, gives a good description of spinodal
decomposition at early times for a one-component
fluid. We have also constructed a similar theory for
two-component fluid mixtures. We find that within

the linear regime of spinodal decomposition of a
binary fluid, the coupling of concentration fluctua-
tions to the hydrodynamic flow effects is negligible,
and the Cahn-Cook theory is obtained.
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