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The Z dependence of the total electronic energy for an atomic isoelectronic series, was in-

vestigated in several different ways, first by the consideration of a Taylor-series expansion

of V,„,the average electron-nuclear attractive potential energy, used in conjunction with the
virial and Hellmann-Feynman theorems and, secondly, a Taylor-series expansion of V,
the average electron-electron repulsive potential energy, used in conjunction with the same

two theorems. A direct Taylor-series expansion of the total energy E was also studied.

Convergence of these expansions was inferred from the rate of convergence of least-squares

fits of tabulated values of the total electronic energies as a function of the increasing num-

ber of terms in the expansion. Theoretical nonrelativistic Hartree-Fock energies, accurate
theoretical nonrelativistic energies, and experimental total energies, the latter approximate-

ly corrected for relativistic and quantum electrodynamic effects, were used in the fits.
These expansions were compared with 1/Z expansion results. All Taylor-series variants

studied showed comparable or superior convergence properties to the 1/Z expansion. The
choice of a V,„or a V expansion forces certain behavior on the total electronic energy E as

a function of Z. From a least-squares rate-of-convergence criterion and other considera-

tions it appears that the Taylor-series expansion of V,„offers slightly better results. It is

pointed out that by the use of the virial and Hellmann-Feynman theorems it is possible to
obtain accurate estimates of V and P,„ from a knowledge of total electronic energies of
isoelectronic series alone. The technique is applied to accurate values for the He isoelec-

tronic series and experimental data corrected for relativistic and radiative contributions for
the He through Ne isoelectronic series in order to determine the effect of electron correla-

tion on the quantities P and P . Comparisons are made with available experimental and

theoretical results in the case of Ne. The Z expansions for the energy were also used to fit
individual ionization potentials across an isoelectronic series. These fits were used to
predict electron affinities and improved values for certain ionization potentials.

I. INTRODUCTION

Accurate analytical expressions for the total elec-
tronic energy E in atoms as a function of the atomic
number Z in an isolectronic sequence have long

been of interest in predicting ionization potentials'
and electron affinities. The main method for ob-

taining expressions for the Z dependence of E has
been the use of perturbation theory to obtain the
so-called 1/Z expansion. There have been reports,
however, of convergence problems in the use of

such expansions. ' It does not appear that use of a
Taylor-series expansion about a fixed nuclear
charge Zo used in conjunction with virial and
Hellmann-Feynman relations has been explored, al-
though Clementi showed that a polynomial in posi-
tive integer powers of Z was capable of giving an
excellent representation of total electronic energies.
We report here several new Z expansions of total
electronic energies for an isoelectronic sequence. By
the use of virial and Hellmann-Feynman theorems a
method is proposed to derive values of V,„, the
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average electron-nuclear attractive potential energy,
and V„, the average electron-electron repulsive po-
tential energy, from total electronic energies alone.
The theory is developed in Sec. II and numerical ap-

plications are discussed in Sec. III. The present

techniques are applied to experimental total energies

to deduce nonrelativistic estimates for V«and V«
for atoms from He through Ne. The relevance of
these quantites to x-ray and electron scattering ex-

periments, and quantum-mechanical calculations on

atoms are detailed in Sec. IV.

II. THEORETICAL DEVELOPMENT
OF Z EXPANSIONS

aE(Z)
BZ Z

(2)

where E(Z) is the total atomic electronic energy,

T(Z) is the average kinetic energy, and Z is the nu-

clear charge. Equation (2) can be expressed in in-

tegral form as

z
E(Z)=E(Z, )+ fz dg'V, „(g)/g (3)

We express the virial theorem as

E(Z) = —,[V,„(Z)+V„(Z)]= —T(Z)

and a particular application of the Hellmann-

Feynman theorem written as

E(Z) = E (Zp ) +(Z —Zp)
BE(Z)

z —zo

(Z —Zp ) B2E(Z)
2 BZ z z+ (5)

while the second variant consists of expanding

V,„(Z) in a Taylor series about some nuclear charge

Zp and then using Eq. (3) to obtain E(Z). The
third variant involves a Taylor-series expansion of
V„(Z) about Zp llsed in conjuction with Eq. (4) to
obtain E(Z).

The results of these last two approaches through
terms in second order in Z —Zp are

which expresses the fact that if V«(Z) is regarded
as being a continuous function of Z then a
knowledge of its Z dependence is sufficient to deter-

mine the total electronic energy. On the other

hand, Eqs. (1) and (2) can be combined with some

algebraic manipulation to obtain

E(Z) = E(Zp) Z —f d( V„(g)/g
Zp Q

(4)

which shows that a knowledge of the Z dependence
of V„(Z) is also sufficient, assuming it to be a con-
tinuous function of Z, to determine the total elec-
tronic energy.

It is possible, therefore, to develop three variants
of Taylor-series expansions of E(Z). The first is
the obvious one

E(Z) = E(Zp)+ V,'„'(Zp)ln + V,'„"(Zp) (Z —Zp) —Zpln
0 0

(Z —Zp) Zp Z+ V,'„'(Zp)
4

—Zp(Z —Zp ) + ln
2 Zo

+ ~ ~ ~ (6)

and

E(Z) = E(Zp)+ — l — i V„'(Zp) —V„(Zp)

+ Vee (Zo) 2 (Z —Zo)(3Z —Zo) —Z ln
0

+ ~ ~ ~

where Ve (Zp) and V«(Zp) are the Ith derivatives with respect to Z evaluated at Zp.
Some comments concerning Eqs. (5)—(7) are in order. Equation (5) is a simple curve fitting with the possi-

bility that its convergence properties might be superior to that of 1 /Z expansions. Equations (6) and (7), on
the other hand, introduce a very different dependence on Z in the total energy and enable one to immediately
determine V (Z) and V,„(Z) once a fit of experimental data is obtained and estimates of the parameters

V,'„'(Zp) or V,', '(Zp) are known. ' There is, however, a problem. Note that while both energy expressions con-
tain logarithmic terms, they are not the same and if one uses Eq. (6) then Vee(Z) will contain logarithmic
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terms while V,„(Z) will not and vice versa if Eq. (7) is employed.
Because it is known that the free-electron exchange potential contains logarithmic terms" it is tempting to

assume that Eq. (6) is the more correct way to proceed. In fact, it can be shown that the use of Eq. (6) leads to
an expansion for V«(Z) which contains no dependence on Z .' This is interesting since March and Parr"
have shown that the Z expansion of V (Z) in the free-electron limit is also devoid of any Z terms. The re-

sult for V (Z) in terms of V,„(Z)can be written as

V (Z)= V' '(Zp)+2V' ' (Zp)ln
ZQ

+ Ven (Zp) (Z Zp) 2Zpln(1) Z
p

—V~~ (Zp) Zp(Z —Zp) —Zpln
(2) 2 Z

p
+ ~ ~ ~ (8)

(9)

It is also of interest to note that all terms in Eqs. (6) and (7) can be summed vertically if one assumes the ex-
istence of convergent Taylor-series expansions of V,„(Zp) and V«(ZQ) about the point ZQ ——0 as

(Z2 Z2)
E(Z) E(Z )+ln V (0)+(Z Z ) V (0)+ V (0)+

Zp 4

and

ZE(Z)= E(ZQ) —
2 V,', '(0) — V,',"(0)— ln V,', '(0)+ .

p

(10)

The exact significance of such a replacement is not clear but it is tempting to assume that the V,'„'(0) and
V,', '(0) values are somehow related to a free-electron limit.

III. NUMERICAL INVESTIGATIONS
%VITH THEORETICAL

AND EXPERIMENTAL RESULTS

A. Convergence properties

In order to test the applicability of the various

possible Z expansions, Hartree-Pock (HF) values'

of total electronic energies for various isoelectronic
series were utilized. Constants were obtained by
least-squares-fitting procedures for the expansions
given by Eqs. {5)—(7), (9), and (10) along with a
1/Z expansion with an equivalent number of terms.
The behavior of parameter variances, covariances,
and goodness of overall fit as a function of adding
new parameters was then used as a numerical test of
convergence. All studied Taylor-series expansions
displayed comparable fits of the total energy for an
equivalent number of parameters. The variances
obtained for the various cases are presented in Table
I. For a rapidly converging series we would expect
the change of variance to reach a plateau with the
addition of new terms. An examination of the table
reveals that for the 'S state of Be, Eqs. (5)—(7), (9),
and (10) definitely show superior convergence
behavior from this point of view compared to the

I

1/Z expansion. For a system such as the P state
for S, the situation is not as clear cut but the Z ex-
pansions still exhibit slightly better convergence
properties. Unlike previous observations ' we were
unable to detect any radical failure of the 1/Z ex-

pansion to converge with addition of higher-order
terms. On the other hand, our least-squares derived
values for the constant term e2 in the 1/Z expan-
sion were not in good agreement with values derived
from perturbation theory except for two- and
three-electron systems. This may be indicative of
convergence problems with the perturbation series
approach. The limiting value of the variance is
governed by the accuracy of the input energies
while the actual value, if larger, can be regarded as
a problem with the convergence. It is interesting to
note that fits using either Eqs. (6) and (9) or (7) and
(10) have essentially the same variance as might be
expected since the latter series in each case is ob-
tained by summing terms in the former. The fits
using Eqs. (6) and {9) give poor results with only
two coefficients. This could be because of the lnZ
term which diverges as Z approaches zero. Other
terms are finite at Z =0. However, when we in-
clude the next terms, these expressions are better
representations than Eq. (5). We emphasize the fact
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TABLE I. Variances' calculated from computed total energy E(comp) and input total ener-

gy E(input) for beryllium and sulfur isoelectronic series for different numbers of coefficients

(NC) used in the fit. Numbers in parentheses are the powers of ten by which the number

should be multiplied. Twenty energy values were used in each fit and the input energies were

Hartree-Fock values.

Method
Beryllium ('S) isoelectronic series

NC=2 NC=3 NC=4 NC=5

1/Z
Eq. (5)
Eq. (6)
Eq. (7)
Eq. (9)
Eq. (10)

2.51 (—2)
1.61(—5)
1.70(+ 2)
1.61(—5)
1.70{+ 2)
2.40( —4)

1.09(—5)
3.83(—6)
6.27( —7)
2.61(—6)
6.27(—7)
2.09(—5)

1.12(—7)
7.91(—7)
1.12(—7)
4.11(—7)
1.12(—7)
4.90(—6)

1.12(—9)
1.90(—7)
2.15(—8)
7.57(—8)
2.18(—8)
5.71(—7)

Method
Sulfur ('P) isoelectronic series

NC=2 NC=3 NC=4 NC=5

1/Z
Eq. (5)
Eq. (6)
Eq. (7)
Eq. (9)
Eq. (10)

5.16(—3)
2.26( —3)
1.25(+ 2)
2.26( —3)
1.25{+2)
3.74( —3)

1.61{—3)
2.16(—4)
6.17{—5)
1.55(—4)
6.17{—5)
2.83(—4)

2.31{—5)
1.81(—5)
3.50{—6)
1.08(—5)
3.50(—6)
1.89(—5)

5.84( —6)
2.98(—6)
5.96{—7)
1.10(—6)
2.79(—5)
1.99(—6)

'Variance is defined as g, , [E;(comp) —E;(input)] /19.

that Eqs. (6)—(10) are derivable from Eq. (5) using

Eqs. (1) and (2) by summing the series in different

ways. It appears that for an isoelectronic sequence

with a large number of electrons, Eq. (6) gives a
slightly better fit than a 1/Z expansion.

It is of interest to note that the fits obtained with

Eqs. (9) and (10) were independent of the choice of
Zp within the accuracy of the fits. Unfortunately
the values for V,„(0) and V„(0) turned out to be
positive and negative, respectively, counter to physi-
cal expectations.

B. Calculation of P,„and P„

An application of these fitting procedures which

does not seem to have been made use of previously

is the decomposition of total electronic energies into
the parts V,„and V„. A least-squares fit of the
(HF) total energies of an isoelectronic sequence to
Eq. (6) gives the coefficients V,'„'(Zp). These are
used to compute V,„directly for any element in the
sequence. By the use of the virial relation, V„ is
also calculated. It is possible to calculate V„and
V,„by using Eq. (7). Notice that one could also cal-
culate these same quantities using Eq. (5) or the
1/Z expansion in conjuction with Eqs. (2) and (1).
Again, the results obtained using Eq. (6) to obtain

V,„(Z) and V„(Z) are slightly better than those ob-

tained using the 1/Z expansion. Another advan-

tage of using Eq. (6) or (7) is that the errors in V„
and V,„can be estimated more directly since they
can be obtained from the variances of V,„(Zo) or
V„(Zp ).

In Table II values of V,„and V„computed from
the coefficients obtained by fitting Eq. (6) to accu-
rate HF energies are compared to the exact HF
values for these same quantities. This proves that

V,„and V„can be recovered with reasonable accu-
racy from HF total energies. It only remains to
show that the method also works when electron
correlation is included in the total energy.

C. A test with very accurate nonrelativistic

total energies: He isolectronic sequence

It is well known that the exact nonrelativistic to-
tal energy is lower than that calculated in the HF
approximation. This energy difference is called the
correlation energy. As a test, the present Z expan-
sions were fitted to nonrelativistic total energies of
the He isoelectronic sequence due to Thakkar and
Smith. ' These energies were chosen because highly
accurate values of V,„and V were given. The re-
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TABLE II. Comparison of computed values (comp) of V,„and V using Eq. (6) with Hartree-Fock (HF) values. ' N
signifies the number of electrons in the ion/atom. All values are in a.u.

Comp. HF Comp.
V„

HF

5
7
9

16
6

16
24
17
22
27

4
4
4
4
6
6
6

16
16
16

54.5917+0.001
111.4727+0.001
188.3414+0.001
614.8531+0.001

88.1557+0.03
715.7402+0.003

1649.6703+0.003
1086.3403+0.02
1921.7185+0.02
2989.4573+0.02

54.5932
111.4733
188.3402
614.8540

88.1376
715.7410

1649.6712
1086.3313
1921.7001
2989.4674

6.1158+0.001
9.3085+0.001

12.4735+0.001
23.4962+0.001
12.7792+0.03
45.8825+0.003
72.0461+0.003

168.2401+0.02
247.2312+0.02
324.5862+0.02

6.1181
9.3087

12.4721
23.4968
12.7604
45.8834
72.0475

168.2345
247.2124
324.5964

'V,„and V are calculated using the relations ge;=E+V and 2E=P +V where both ge;, the Hartree-Fock

eigenvalue sum and E, the total HF electronic energy, are given in Ref. 14.
'%ere 1 a.u. =2R~, where R~ is the Rydberg constant calculated with the reduced rest mass of the electron in relation
to the nuclear mass of M.

suits obtained by fitting to Eq. (6) are given in Table
III. This demonstrates the accuracy of the present
method when electron correlation is included. The
results given were from fits of the energies of He
and the available heliumlike positive ions, but not
the energy of H . Inclusion of H in the fitting set
does not appreciably change the final result al-

though the variance increases. Omission makes it
possible to test the predictive ability of the Z expan-
sion.

IU. APPLICATIONS
OF THE PRESENT TECHNIQUES

TO EXPERIMENTAL DATA

The formulations of the present Z expansions us-

ing Eqs. (I) and (2) are based on the nonrelativistic

spin-independent Hamiltonian. Note that if rela-

tivistic or other effects are included then the form
of the virial and Helmann-Feynman theorems will

change and the formulation given here will be in-

TABLE III. Comparison of V,„, V, and E determined by fitting to Eq. (6), V,„, V, E ", respectively, with the ex-

act values V,„,V, and E'x"' for the He isoelectronic sequence. Z denotes the nuclear charge. All quantities are in

a.u.'

Z

2
4
6

10
12

Efit

2.903 724
13.655 565
32.406 245
59.156 594
93.906 803

136.656 940

Eexact

2.903 724
13.655 565
32.406 245
59.156 594
93.906 802

136.656 944

Ven

6.753 318
29.502 003
68.251 383

123.001 05
193.750 83
280.500 76

Vex act
en

6.753 267
29.502 002
68.251 386

123.001 06
193.750 85
280.500 71

0.945 869
2.190873
3.438 893
4.687 864
5.937 222
7.186 871

V
—exact

0.945 818
2.190872
3.438 893
4.687 865
5.937 244
7.186 821

'Here, 1 a.u. =2R~, where R~ is the Rydberg constant calculated with the reduced rest mass of the electron in relation
to the nuclear mass of M.
The estimated accuracy is +0.0000003.

'The estimated accuracy is +0.000007.
The exact values quoted here are from Ref. 15.
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valid. Successive experimental and very accurate
theoretical ionization energies have been compiled
by Moore. ' For our purposes these must be
corrected for relativistic effects and quantum elec-
trodynamic effects in order to derive nonrelativistic
energies.

A. Relativistic effects

An approximate formulation of the Dirac equa-
tion for a multielectron atom utilizes the Dirac-
Breit Hamiltonian which, when formulated in the
Hartree-Fock approximation, is known as the
Dirac-Breit-Hartree-Fock approximation. ' Anoth-
er approximate formulation called the Dirac-Breit-
Pauli-Hartree-Fock (DBPHF) method' involves the
calculation of relativistic effects by first-order per-
turbation theory using nonrelativistic Hartree-Fock
wave functions. We used the approximate relativis-
tic corrections of the DBPHF method calculated by
Fraga et al. ' The accuracy of these values were
checked by employing fitting procedures to deter-
mine a particular ionization potential, other than
the K shell, by adding the difference in the relativis-
tic corrections for the two states, before and after
ionization, to the nonrelativistic result from the fits.
The atom under study was excluded in the fits. The
determined value agreed with the spectroscopic
value in all cases studied, thus indicating that the
Fraga et al. ' values are consistent within the exper-
imental uncertainties. The agreement also supports
our assumption that the radiative corrections dis-

cussed below are similar for two states with the
same nuclear charge and K shell.

B. Quantum electrodynamic effects

Although we have to correct for the interaction
of electrons with the nuclear spin, the hyperfine in-
teractions, these can be ignored because the correc-
tion to the energy is insignificant. On the other
hand, the vacuum fluctuations of the electromag-
netic field that give rise to Lamb-shift (radiative)
corrections ' must be accounted for because these
corrections can be as large as 1.4 eV as in the case
of Ca"+.

The radiative corrections are largest for 1s elec-
trons. The radiative corrections for two-electron
systems were determined from the difference be-
tween the accurate nonrelativistic total electronic
energies due to Scherr et al. and the experimental
values corrected for relativistic effects. It was as-
sumed that the total radiative correction for each
atom was given completely by the 1s contribution.
A check of this procedure was made in the cases of
the neutral atoms Li, Be, C, and Ne, where
accurate estimates of the total nonrelativistic ener-
gies are known. A comparison of present estimates
of nonrelativistic energies with the literature values
is presented in Table IV for these cases. The error
in assuming that the 1s radiative correction is
dominant is less than 0.02 eV in all cases. Strictly
speaking, the good agreement confirms that the
sum of the relatiuistic and radiatiue corrections is
accurate.

C. Estimation of the accuracy
of derived energy quantities

The experimental total energies for the atoms
considered in this work, containing more than two

TABLE IV. Comparison of experimental total energies corrected for relativistic and radi-
ation effects with literature values.

Atom
Literature value

(eV)
Present estimate

(eV)

Li'
Be
Cc

Ne

203.48229+0.00003
399.11430+0.00003

1029.75 +0.04
3508.3 +0.2

203.483
399.083

1029.78
3508.35

'See Ref. 23.
See Ref. 24.

'See Ref. 25.
"See Ref. 26.
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electrons derived by adding up successive ionization
energies, ' should be accurate to +0.01VN eV
where N is the number of electrons in the atom.
We estimate that the relativistic and radiative
corrections are each good to at least +0.03 eV.
Hence the estimated nonrelativistic energies should
be good to better than +0.1 eV for atoms with ten
or fewer electrons.

D. Calculation of F,„and P„
from experimental data and their significance

in the study of electron correlation

The nonrelativistic total energies of isoelectronic
sequences of the atoms He through Ne were derived
from the experimental data corrected for relativistic
and radiative effects by use of least-squares fit to
Eq. (6). The estimated values of V,„", V„" for the
elements are given in Table V along with the uncer-
tainties and the nonrelativistic energies used. These
quantities V«' and V~ include electron correlation
effects. The difference between these and the corre-
sponding HF quantities EV«and hV show how
the correlation energy is partitioned between these
two quantities. A perusal of Table V shows that
hV is negative and a monotonically decreasing
function of the number of electrons, while hV
shows oscillatory behavior. The observation con-
cerning 6V„means that

1 1

HF ~ &2 exact

where r &2 is the interelectronic distance. If hV„, is

negative then

1 1

exact ~ HF

while the opposite is true if 5V~ is positive where r
is the electron-nuclear distance. It is also of interest
to note that LV,„ is positive when the total number
of p electrons is greater than the number of s elec-
trons, and negative when the total number of p elec-
trons is less than the total number of s electrons.

As noted above V« is a one-electron property
while V„ is a two-electron property. Until very re-
cently, configuration-interaction (CI) calculations
gave adequate descriptions of the second-order diag-
onal two-electron density, while the first-order den-

sity matrix was less satisfactorily determined be-
cause of the then usual custom of omitting the con-
tributions from singly excited configurations. How-
ever, the values of Smith et al. ' include all correla-
tion effects in both density matrices and, using
these, the authors have published reliable theoretical
values for V„and V«which have been used as a
check on our procedures (see Table III). Our use of
Z expansions of the electronic energy to determine
V„and V from total energies alone is of current
interest because of the recent experimental measure-
ments of 6V«and AV«reported by Duguet.

We have attempted to compare our predictions
for Ne with those of highly correlated wave func-
tions and the results of Duguet. Unfortunately, no
values appear to have been given in the literature
for V„and V,„ for such wave functions. On the
other hand, Peixoto et al. , and Naon and Cor-
nille have given results for the x-ray coherent
scattering factor F(s) and the incoherent scattering
factor S(s) from which EV,„and EV„values can
be derived. The results are summarized in Table
VI.

For the 65-term CI wave function due to Bunge
and Peixoto we calculate from the form factors

TABLE V. Values for V,„and V obtained from total experimental electronic energies using Eq. (6) for atoms. All
quantities are in a.u. (1 a.u. = 27.2107 eV).

element pit
ea hV,„' hV

He
Li
Be
B
C
N
O
F
Ne

2.903 72
7.4781

14.667
24.654
37.845
54.589
75.067
99.732

128.933

6.753 27
17.157
33.711
56.97
88.21

128.41
178.09
238.63
311.09

+0.00005
+0.004
+0.004
+0.01
+0.01
+0.02
+0.02
+0.02
+0.025

0.945 83
2.201
4.376
7.67

12.52
19.23
27.96
39.17
53.22

+0.00005
+0.004
+0.004
+0.01
+0.01
+0.02
+0.02
+0.02
+0.025

—0.003 21
—0.009
—0.074
—0.07
—0.07
—0.05
—0.01
+ 0.04
+ 0.05

—0.08009
—0.08
—0.113
—0.17
—0.24
—0.32
—0.50
—0.68
—0.82

—pit —j4F —HF . —fit6 Ve+ = veil —verdi where Veis is V« in the HF approximation. The estimated error in 5Ve„ is the same as in Ve&.
b

— —fit —fit —HF . —fit4 V = V —V, where V is V in the HF approximation. The estimated error in b, V is the same as in V .
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the results hV,„=+3.8 eV and hV« = —17.2 eV.
Unfortunately, the total correlation energy E, of
—6.7 eV falls well short of the 85% of the total
correlation energy claimed for this wave function.
It is possible that some smaller contributions to the
form factors were omitted in the calculation or that
there is an error in the calculation of the scattering
factors. We also discovered that published curves
for

TABLE VI. Correlation effects on E, V,„, and V

for Ne. All quantities are given in eV.

Bunge,
Peixoto,

and Naon and Duguet
Bonham Cornille (experimental)

This
study

—6.7
—17.2
+ 3.8

—12.4
—18.6
—6.2

—9 +5.4
—7.6+7.0
—7.3+7.0

—10.5+0.4
—22.3+0.7
+ 1.4+0.7

ho(s) =—2Z/d (s)+b,[F (s)]+M(s)

are given incorrectly for this wave function. ' The
6's signify correlated minus HF quantities. '

The Naon-Cornille form factors, on the other
hand, lead to opposite results: 6V,„=—6.2 eV and
hV„= —18.6 eV. Comparison of ~(s) for the
two wave functions immediately shows that they
have totally different correlation corrections to the
one-electron density function. The Peixoto-Bunge
wave function may leave out contributions from
singly excited configurations which are known to
make important contributions to the one-electron
density and, hence, one might assume that the
Naon-Cornille results might be more reliable. How-
ever, the correlation energy calculated from the
scattering factors is 19% larger than the correlation
energy claimed for this wave function, which is
10.4 eV. This also raises doubts as to the accuracy
of these scattering factors. On the other hand, our
fits of Hartree-Fock and correlated data, where
EV„and EV,„are known, suggest that our Z-
expansion predictions concerning correlation effects
on 5V«and 6V,„should be better than +0.7 eV in
the case of Ne. The discrepancy between this un-

certainty and that obtained in the case of He is due
to the fact that the theoretical energies used in the
He cases are more accurate than the experimental
ones available for Ne. Within the accuracy of our
estimate we are in better agreement with the results

of Bunge and Peixoto than those of Naon and Cor-
nille. Duguet lists his experimental results for Ne
as dkV« ———7.3+7.0 eV and hV« ———7.6+7.0 eV.
These results yield a correlation energy of
—7.5+7.0 eV. He also lists a value of —9.0+5.4
eV for the total correlation energy. The difference
between these two estimates of E, is due to the
greater numerical uncertainties involved in deter-
mining the first value. Our results are
b V,„=+1.4+0.7 eV and AV«= —22.3+0.7 eV
with a total correlation energy of —10.5+0.4 eV.
This compares well with the generally accepted
value of 10.36 eV for E,. The smaller uncertainty
in the case of the correlation energy is a reflection
of the increase in uncertainty when the total energy
is dissected into its component parts (i.e., compare
the error estimates in footnotes b and c of Table
III). It is clear that the Duguet experiment is not
yet definitive but with further refinements it may be
possible for work of this kind to yield very interest-
ing information.

The obvious question is whether or not current
diffraction experiments can possibly be expected to
make reliable predictions about correlation effects.
As far as we can tell, assuming that the Peixoto
et al. data are correct, the answer is a qualified yes
in the case of light elements such as Ne. While it is
essential in the case of Ne to have values for the

0
scattering quantities beyond s =40 A ' to recover
V«and V«, we find that we need accurate values
only out to s =15 A ' to recover EV,„and hV«
energies. The accuracy with which relative scat-
tered intensities must be measured simply depends
on the magnitude of the difference between experi-
mental and Hartree-Fock values. If the difference
is of the order of 10% of the total experimental in-

tensity and if the relative intensity is measured to
0.1% then AV,„and LV«might be determined ex-
perimentally to 10%. Considering the disagree-
ments and uncertainties in currently available
theoretical predictions even 10% accuracy would
make a significant contribution to our understand-
ing of electron correlation. It is not likely that dif-
fraction experiments will be able to yield results as
definitive as those given in this study. On the other
hand, it appears that diffraction experiments could
produce values better than those currently available
from theory. Note that, for an order of magnitude
improvement in the error estimate for our hV,„
value in Ne, the individua1 ionization potentials
would all have to be known to an accuracy of 1

meV (i.e., ten times better than currently available
values).



26 Z EXPANSIONS OF THE TOTAL ELECTRONIC ENERGY FOR. . .

TABLE VII. Comparison of predicted ionization energies for high-Z atoms by extrapolation using different methods
with the exact values. All values are in eV. The notation used here is the same as in Ref. 16.

State
of ionization

and atom Exact value'

Fitting to
Eq. (6) with

Zp ——14

Fitting to
Eq. (6) with

Zo ——8

Fitting to
Eq. (7) with

Zp ——14

Fitting to
Eq. (7) with

Zp ——8 1/Z

pxrn
SxiV
Cl XV

Cl xnan

Ar XIV

611.85
707.14
809.39
656.69
755.73

611.83
707.07
809.21
656.68'
755.67"

611.83
707.06
809.18
656.68'
755.66'

611.82
707.01
809.07
656.66'
755.61b

611.82
707.01
809.06
656.66'
755 61c

611.79
706.98
809.05
656.63
755.55

'The exact values are from Ref. 16.
Here the value of Zp used was 16.

'Here the value of Zp used was 10.

E. Calculation of electron affinities
of H, F, and 0 from Z expansions

Fits of experimental energies of all the atoms for
which data were available in an isoelectronic series,
excluding negative ions, were determined. From the
He isoelectronic sequence we calculated the nonrela-
tivistic energy of H to be 0.52602 a.u. frotn Eq.
(6) while the exact nonrelativistic energy is 0.527 75
a.u. . This result is accurate to 0.001 a.u. but not as
accurate as we would have expected from the vari

ance of the fit (+0.0000003). It was also discovered
that when H was included in the fits the variance
increased by a factor of 100. Further, it was found
that the accuracy of the extrapolated energies of the
negative ion improved when more points were used
in the fit. We also fitted experimental first ioniza-
tion energies' of isoelectronic species excluding the
negative ions to Eqs. (5)—(7), (9), and (10). The
ionization potential is the energy difference between
two successive states of ionization of the atom
E (Z,N —1)—E (Z,N), where E (Z,N) and
E(Z,N —1) are the total electronic energies for an
atom of atomic number Z with N electrons before
and N —1 electrons after ionization, respectively.
The Z dependence for the ionization potential is,
therefore, the same as that for the total electronic
energy itself. No relativistic corrections were ap-
plied to the experimental ionization potential used
since such corrections to the electron affinity are
unknown. Note that relativistic corrections to the
first ionization potential are of the order of 0.03 eV
and we therefore would not expect the corrections
to the electron affinity (EA) to be significantly
greater. The EA's for the F and 0 atoms were then
obtained by interpolation with a precision of +0.01
eV as deduced from the variance of the fit. As in

TABLE VIII. Values of the electron affinity EA for
F and 0 atoms using different fits. The values from the
fits are precise to -0.01 eV.

Remark
EAof F

(eV)

EAof 0
(eV)

1/Z
Eq. (5)
Eq. (6)
Eq. (7)
Eq. (9)
Eq. (10)
Exact'

3.17
3.06
3.15
3.10
3.15
3.12
3.445+0.005

1.10
0.99
1.10
1.05
1.10
1.13
1.46

'H. S. W. Massey, Negative Ions (Cambridge University
Press, Cambridge, 1976), 3rd ed. , pp. 31—65.

the case of H the predicted value for the electron
affinity of F and 0 were in error by a factor (30)
much greater than the precision. In order to deter-
mine the source of this problem the high-Z member
of the isoelectronic series was omitted from the fit-
ting procedure and was then predicted by extrapola-
tion. In all cases studied, the accuracy and pre-
cision for high-Z extrapolations were identical
(+0.01 eV). Variations in the choice of Zo did not
qualitatively influence these conclusions. A sum-

mary of these results are given in Table VII. It is
clear, as pointed out by others, that there are
problems uniquely associated with negative ions.
The values predicted by different fits are given in
Table VIII. It is also observed, as pointed out else-
where, ' that 0 has a negative EA suggesting
that 0 is unstable.

The EA for F and 0 atoms were also determined

by calculating the total energies of F and 0 and
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TABLE IX. Improved values for cetain ionization energies in Moore's tables as deduced

from Eq. (6). All entries are in eV.

Entry' Value in Moore*s table Suggested improved value

Ar XVI
Kxvr
Kxvn
Caxvi
Caxvrr
Caxviii

918+1
968+1

1034+1
974+1

1087+1
1157+1

918.61+0.01
966.65+0.01

1034.81+0.04
974.76+0.01

1085.47+0.01
1157.97+0.02

'The notation used here is the same as in Ref. 16.

using the nonrelativistic experimental total energies
of the neutral atoms. The difference in the total en-

ergy of the neutral atom and the negative ion is the
electron affinity. The total energy of F was ob-
tained by fitting the experimental total energies of
the Ne isoelectronic sequence to Eqs. (5)—(7), (9),
and (10). Similarly the F isoelectronic sequence was

used to determine the total energy of 0 . The pro-
cedure, however, is subject to numerical difficulties
because the electron affinity is a small difference
between two large numbers. Although the results
were essentially the same, the estimated precision
was much larger (+0.3 eV) not only for the nega-
tive ion extrapolations but also for high-Z ioniza-
tion potential extrapolations. Hence, we can con-
clude that, for the purpose of obtaining accurate es-

timates of high-Z ionization potentials by extrapo-
lation, fits of ionization energies rather than total
energies should be used, and that none of the stud-

ied methods are capable of predicting accurate
values for electron affinities.

F. Determining more accurate estimates
for some ionization energies

Fitting the experimental ionization energies of
isoelectronic species can be used to determine, by
extrapolation, improved values of ionization poten-
tials for some high-Z ions. We believe that in cer-
tain cases our predictions are more reliable than
those currently included in Moore's tables. As
pointed out in Sec. IVE high-Z extrapolations to
determine the next ionization potential in a series
can be made with accuracies on the order of +0.01
eV. We picked out those cases in Moore's table
where all but one listed experimental value in an

isoelectronic series of ionization potentials were

given to an estimated accuracy of +0.01 eV or

better while the accuracy of the final high-Z
member was given to only +1.0 eV. We then used

our fitting procedures to predict improved values

for the final listed member of each series. Our
recommendations for improved values are given in

Table IX.

V. CONCLUSIONS

In summary, we conclude that other Z expan-
sions, notably that in Eq. (6), offer equivalent or
better fits to isoelectronic energies compared to the
usually employed 1/Z expansions. We also propose
that Z-expansion fits be used to decompose total en-

ergies into the constitutent parts V«, V,„ for the

purpose of studying electron correlation contribu-
tions. Equation (6) appears capable of better than
+0.7 eV accuracy for such a purpose in the case of
Ne. For Ne we predict the correlation corrections
to V,„and V„ to be LV =+1.4+0.7 eV and
6V«= —22.3+0.7 eV. These results are in better
qualitative agreement with those derived from Ref.
28 than with the theoretical results of Naon and
Cornille and the experimental results of Duguet.

All expansions yield excellent estimates of ex-

trapolated positive ionization potentials from fits of
experimental isoelectronic ionization potentials
(+0.01 eV). Predictions of electron affinities from
fits of total energies or ionization potentials appear
to be unreliable by as much as 0.3 eV by any of the
methods studied here.
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