
PHYSICAL REVIEW A VOLUME 25, NUMBER 2 FEBRUARY 1982

Nonlinear dissipative effects in the hydrodynamics
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The influence of dissipative effects on the nonlinear hydrodynamic equations of various
types of liquid crystals like nematics, cholesterics, smectics A, C, is investigated. An ex-
periment for uniaxial nematics is proposed which allows the detection of one group of
the novel terms presented. It is shown that the viscous nonlinearities in the stress tensor
of uniaxial nematics discussed by Moritz and Franklin do not exist.

I. INTRODUCTION AND GENERAL REMARKS

The derivation of linear hydrodynamic equations
by using symmetry arguments and thermodynam-
ics is a well-established procedure which has been
pursued for the various types of liquid crystals by
many authors, cf., e.g., for uniaxial nematics, '

for cholesterics, and for smectics A and smec-
tics C. ' ' ' However, as it turns out, nonlinear ef-
fects are nearly always essential for the description
of the experiments. This can be seen easily, e.g.,
from the fact that the threshold for the onset of
shear flow instabilities and thermoconvective insta-
bilities is much lower than in isotropic systems (for
the calculation of the threshold values for various
types of instabilities in liquid crystals we refer, e.g.,
to Refs. 9—15 and for the experimental detection
to Refs. 16—20}. Thus even at small shear rates
or temperature gradients the hydrodynamic
behavior is governed by nonlinear effects.

Due to the complicated structure of the order
parameter in the various types of liquid crystals,
the derivation of nonlinear hydrodynamic equa-
tions has attracted considerable attention only re-
cently ' ' and this work has concentrated on the
examination of reversible effects. Very recently,
Volovik and Kats ' considered reversible macros-
copic equations for various types of liquid crystals
including hydrodynamic variables and those mi-
croscopic variables which are thought to be slow.
The above-mentioned points become even more ob-
vious while deriving nonlinear hydrodynamic equa-
tions ' for the recently discovered biaxial nemat-
ics 24

Concerning the nonlinear dissipative hydro-
dynamic behavior there seems to exist only the
work of Moritz and Franklin on quadratic non-

linearities of the stress tensor in uniaxial nematics
and related work by the same authors on nonlinear
electrohydrodynamic effects in uniaxial nematics.
It will be the purpose of the present note to consid-
er nonlinear effects in the dissipative behavior of
the various types of liquid crystals and to propose
experiments which will yield information about at
least some of the novel parameters involved. In
addition, it will be pointed out that the viscous ef-
fects in the stress tensor considered by Moritz and
Franklin do not exist.

As is already well known from the study of sim-

ple fluids, there exists a class of dissipative non-
linearities which will be called the "trivial" ones in
the following: all dissipative coefficients entering
the nonlinear hydrodynamic equations may depend
on the scalar quantities which exist in the hydro-
dynamic system under investigation. For simple
fluids, e.g., the thermal conductivity, the two
viscosities can depend on temperature and pressure
leading to the experimentally and theoretically
well-established non-Boussinesq effects. ' For a
binary mixture of fluids there appears an addition-
al scalar quantity on which the transport parame-
ters may depend; the concentration c. For the
various types of liquid crystals to be discussed in
the following (uniaxial nematics, cholesterics,
smectics A and smectics C, biaxial nematics), the
same as for simple and binary fluids holds true, of
course. In addition, all transport parameters of
cholesterics, smectics A, and smectics C can
depend on p;pj V;R~, where p; is the direction
parallel to the axis of the helices and R; is the
layer displacement '; i.e., all transport parameters
assume the form

&=&0+&iplpJ. ViRJ. +a2(pipj ViRJ ) +. 2

(1.1)

25 995 1982 The American Physical Society



996 H. PLEINER AND H. BRAND 25

where the af do not depend on the additional
scalar quantity. For smectics A, pf must be re-

placed by n;, the normal to the smectic layers. )

For smectics C, the transport parameters can

depend, in addition, on the quantity n p. Thus it
becomes possible to give an expression for all dissi-

pative parameters which resembles, in structure,

Eq. (1.1).
Since there exist preferred directions in liquid

crystals, there is a further straightforward, well-

known way to obtain nonlinear viscous effects: one

has, e.g., only to replace the equilibrium value of
the director in uniaxial nematics n; by its none-
quilibrium value n; =n; + 5n; + O(5n ), a feature
which becomes crucial for the thermoconvective
instability in nematics when heating is done from
above. '

In the following we will not deal with the
straightforward generalizations of the linear
viscous effects on the hydrodynamic equations
sketched above, but we will concentrate on the

study of nonlinear viscosities which arise from new

dynamic couplings. As it turns out, it is most con-
venient to start with the dissipation function R (the
source term of the dynamic equation for the entro-

py density, cf., e.g., Ref. 5) and to expand this
function into powers of the thermodynamic conju-

gate quantities. The contributions to the dissipa-

tive currents can then be easily obtained by the
derivation of the dissipation function to the ther-

modynamic forces. In Sec. II we present the vari-

ous new terms for the different types of liquid cry-
stals and in Sec. III we sketch two experiments to
detect one of the viscous nonlinearities in uniaxial

nematics.

II. NONLINEAR VISCOSITIES

+gijh;hj, (2.1)

where g,zkI contains five phenomenological param-
eters, a;z two thermal conductivities, and gj brings

along one parameter characterizing the self-

viscosity of the director motion.
After having carried out the straightforward

generalizations from the linear to the nonlinear
domain discussed in Sec. I, there arises naturally
the question whether nonlinearities exist in the en-

tropy production which shows a new structure.
For quadratic nonlinearities in the stress tensor,
this point has been discussed in detail by Moritz
and Franklin, who considered especially terms in
the stress tensor which are quadratic in the sym-

metrized velocity gradients.
We examine here as a first step all terms which

are allowed by symmetry considerations and which
are cubic in the thermodynamic forces. We find
that the following terms are possible:

&' '= gijkhi(V T)(VkT)

writing down these terms. For the static behavior,
the corresponding procedure has been discussed ex-

plicitly by the authors.
For uniaxial nematics we have, as hydrodynamic

variables contributing to the dissipative behavior

(as always, the density does not contribute to dissi-

pation since its current is a conserved quantity),
the density of linear momentum g, the energy den-

sity k (or entropy density o), and the transverse

components of the director field n,5n. The
corresponding conjugate thermodynamic forces are
the velocity v, the temperature T, and h. The
quadratic terms in the dissipation function are
given by' ':

+gj (~g T)(~jT)+ ggjkI(~g Uj )(~k UI )

A. Uniaxial nematics
where

+ lijklm i(Vjok)(VI m) ~ (2.2)

As has been indicated in Scc. I, we expand the
dissipation function R in powers of the thermo-
dynamic conjugates, and we restrict ourselves
throughout the present paper to terms which are
quadratic or cubic in the thermodynamic forces.
In addition, we allow for the occurence of the hy-
drodynamic variables in the dissipation function
and thus in the corresponding currents. To ensure
positivity of the entropy production it is necessary,
of course, to add appropriate terms, which are of
fourth order in the thermodynamic forces, to the
dissipation function. Since quadratic supplement
is a straightforward procedure we refrain from

(ilk =([(5ik —
nink )nj+(5jk —

n Jnk )ni]
tr tr tr tr

gijklm 91(n'5kI5Jm +nj 5kl5fm

+ nk5gJ Im + I gJ km

tr tr
+/2(nJnknf5gm + g knj5jm

tr tr+ ngnJnI5km +nfnJnk5Im

+13(ni5jk5mI+nj 5fk5m)

+ ng 5J]5mk +5gl 5mk nj ) (2.3)
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and where 5' ——5;J —n;nJ.
For example, we find four new parameters. In

addition it seems worth to notice that none of the
terms presented by Moritz and Franklin are dissi-
pative ones. Instead they are reversible; this fol-
lows from their behavior under time reversal. As
reversible terms they must lead to vanishing entro-

py production; this is, however, not the case.
Therefore these terms do not exist.

An experiment to measure the coefficient g
presented in Eqs. (2.2) and (2.3) will be discussed
in Sec. III. From inspection of the contributions
(2.2) and (2.3) we arrive at the general conclusion
that the bending of the director field induces non-
linear irreversible couplings to the temperature
field and the symmetrized velocity gradients.

However, we wish to point out that general sym-
metry considerations allow further terms which are
quadratic in the thermodynamic conjugates and
which contain in addition the hydrodynamic vari-
ables. These terms contain the same number of
gradients (or even one less) than the contributions
given in Eqs. (2.2) and (2.3) and there seems to ex-
ist no argument to discard such terms. For uniaxi-
al nematics we find

R = g qj(V nj)(VqT)h'

3
Pij (35ij ~

3
pfj pi5ij +(2ini™k

(2.7}

+rj"jki h "(Vjvk)(viv )

+ g)JkI~ hi (Vjvk )(VIv~ ) (2.8)

and for R' ' we find (introducing as in Ref. 22 the
vector e—:I

m. 5n, ( n xm).5n, (m x n ).5m I and
corresponding notations for the thermodynamic
forces)

R' '= X;kI „(V;8j)(Vk8~)h„h

+=,jki „(V;e;)(Vkei)(V T)(V„T)

+r„j(v,e )j(v„e,)( vv„)(v, v, )

Due to the biaxiality the number of coefficients in-
volved increases, unfortunately, in a rather drastic
manner. Therefore we confine ourselves in the fol-
lowing on the display of the structure of the novel
contributions and refrain from writing out the
corresponding tensors in all detail.

For the terms analogous to R' ' of uniaxial
nernatics, we have

R"'= Rj„~hk (V; T)(vj T)+dj„~hk(v; T)(vj T)

+ gjki ~'(V;nj )(Vkni)(V v„)(vqvz)

+&gJI I~„(V;nJ- )(VknI )(V T)(V„T)

+~ijklmn(V;n, )(Vkni)h h„

where, e.g.,

(2.4)

,J.kI(V;8j)hk(VI T) .

C. Smectics A and smectics C

(2.9)

4mqij 415ij5mq +425mi 5qj (2.5) For the quadratic terms we have for smectics A
and smectics C (Ref. 5)

All these terms lead to further dissipative cou-
plings between the gradients of the director field
and the other variables. The terms -qf JkI~ppgp e.g.,
can be interpreted as a generalization of the terms

g;jkI of Eqs. (2.1) by allowing for a dependence of
the parameter on the gradients of n.

B. Biaxial nematics

+g~h,™hj+g,"jh;"hj", (2.6)

where gfJkI contains nine parameters, a;j three dif-
ferent thermal conductivities, and g;j and g,z are
given by

In biaxial nematics, which have attracted consid-
erable attention recently, we have for R' ' (Ref. 22)

R = 'QijkI(Vi vJ )(VkvI )+ iq(Vi T)(VJ T)

R' '= rjijki(v; vj }(Vkvi)+aij(V; T)(VjT)

+gj(V;@)(V,4)+(;,(V; T)(vj@)

+vhh, (2.10)

where 4 and h are the thermodynamic conjugates
to the variable R (layer displacement) and to the
variable 5n (rotation of the averaged molecule axis
about the layer normal p;), respectively.

Of course, ~ exists only in smectics C. For the
number of coefficients involved in the tensors in
(2.10) for srnectics A and srnectics C, respectively,
we refer to Ref. 5. As it turns out there exist for
smectics A no terms like those contained in R' '

and R' ' for nematics and only the dependence of
the transport parameters on the scalar quantity
(Vp Rjp;pj ) survives.

For smectics C the situation is completely dif-
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ferent due to the fact that there are two different
kinds of spontaneously broken continuous sym-
metries: a broken translational symmetry and a
broken rotational symmetry. We find for the
terms cubic in the forces

R' '= gjkh(Vj T){VkT)+gp i~ h{Vjuk }(Viv~ )

+f)kh(V jT){Vkg), (2.11)

R' '= Xk~~(V;n)(Vkn)(V v„}(Vvuz }

+=;k „(V;n)(Vkn)(V T)(V„T)

+8jki(V;n)(V jn)(Vk@)(Vi@)

+Qijki(Vf n }(
V jn )( Vkc )(Vi T) (2.12)

We refrain from writing down the details of the
tensors, we note in passing, however, that, eg. , gjk
brings along only one additional phenomenological

parameter.

D. Cholesterics

and for the terms which are quadratic in the forces
and which contain the variables, we have

j; =g;jt (VjT)hi,

X~ gij, (Vi T——)(Vj T) .

Thus stationary solutions of the hydrodynamic
equations must satisfy the conditions

V((k;j VjT)=V((g;~(hi VjT)

gh;+g—ij (Vi T)(Vj T}=0 .

If we assume

(3.1)

(3.2}

(3.3}

nematics representing a viscous coupling between

the temperature field and the thermodynamic con-

jugate force of the director field.
First we discuss a texture of uniaxial nematics

where the director is forced by special surface
treatment of the sidewalls to make a constant angle
8 ( 8~',90') with the z axis (cf. Fig. 3.7 of
Ref. 2). In addition we assume that a heat gra-
dient (well below threshold for the onset of any
thermoconvective instability) parallel to the z axis
is applied.

In general we have from Eqs. (2.1)—(2.3) for the
entropy current and the quasicurrent X;

Contrary to all other types of liquid crystals,
cholesterics allow for the existence of a pseudos-
calar quantity whose existence has drastic conse-

quences on the hydrodynamic behavior of
cholesterics. ' '" ' ' ' We obtain for the
terms cubic in the forces

R ' '= K(P (V; T)(VjT)(Vk T)

V;T=5 g(z),

we have

and

gh; =g'(z)5i*5jk gP(

V;[k. g(z)] =V;[gjthi5j, g(z)]

(3.4)

(3 &)

+rjijklm {Vi"k }{Vjul }{VmT}

+4jkl{V;vj)(Vk'vi)(V~4 )p~

+'jj(V;4}(Vj@)(Vk@)pkp,p;

+cok(Vk T)(V;4)(V,4)ppj

(2.13)+rjk(VjT}(VkT}(V;4}P;,

whereas no terms like those of R ' ' in nematics
and smectics C occur in cholesterics. Due to the
existence of the pitch, dynamical viscous couplings
of the temperature field (and the quantity VP), on
the one hand, and the symmetrized velocity gra-
dients, on the other hand, become possible in
cholesterics.

III. PROPOSED EXPERIMENTS
FOR UNIAXIAL NEMATICS

We consider two different experimental configu-
rations to detect the coefficient g in uniaxial

=g'(z)g[(5„ —n, n, )n

+ (5j, —n;nj)ni]5k5j, (3.6)

with

h
=OF V

BF
Bn; 'BVJn;

'

where F~ is the gradient free energy of uniaxial
nematics.

It is now easy to check that Eqs. (3.5) and (3.6)
do not allow for a solution n =const. ,
VJ T=5&,const (except for 6=0',90 ).

Thus, the proposed experiment provides a de-
cisive test for the existence and for the order of
magnitude of the coefficient g: If an external tem-
perature gradient is applied, making an angle e
with the initial (constant) orientation of n, there
exist exactly two configurations (8=0',90 ) in
which no distortion of the constant director field
occurs, whereas for all other initial orientations of
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n (8+0',90'), the director field n will become in-

homogeneous (and the temperature distribution
nonlinear in z). The strength of the resulting inho-

mogeneity is proportional to the magnitude of g
(the nonlinearity of T(z)-g ).

A second possibility to achieve in the bulk an
angle 6 between the director orientation n and the
applied temperature gradient V T, is the applica-
tion of an external static magnetic field. Again,
for 8+0',90' there occurs a distortion of n pro-

portional to g. The formal considerations are as
above; in Eq. (3.6) the gradient free energy F now
contains also the orientational energy of an uniaxi-
al nematic in an external magnetic field.

Equations (3.5) and (3.6) have been derived for
bulk hydrodynamics. In realistic experiments,
therefore, one has to minimize or to subtract the
influence of boundary layers (in which n does not
fit the bulk behavior) from the evaluation of g.

'Present address: Institute for Theoretical Physics,

University of California, Santa Barbara, California

93106.
D. Forster, T. C. Lubensky, P. C. Martin, J. Swift, and

P. S. Pershan, Phys. Rev. Lett. 26, 1016 (1971).
2P. G. de Gennes, Physics of Liquid Crystals (Clarendon,

Oxford, 1974)~

H. Pleiner and H. Brand, J. Phys. (Paris) L 41, 491
(1980).

4T. C. Lubensky, Phys. Rev. A 6, 452 (1972).
5P. C. Martin, O. Parodi, and P. S. Pershan, Phys. Rev.

A 6, 2401 (1972).
T. C. Lubensky, Mol. Cryst. Liq. Cryst. 23, 99 (1973).

7H. Brand and H. Pleiner, J. Phys. (Paris) 41, 553
(1980).

SH. Brand and H. Pleiner, J. Phys. (Paris) L 42, 327
(1981).

E. Dubois-Violette, C. R. Acad. Sci. B 273, 923 (1971).
E. Dubois-Violette and P. Manneville, J. Fluid Mech.
89, 2713 (1978).

' E. Dubois-Violette, J. Phys. (Paris) +4, 107 (1973).
' J. D. Parsons, J. Phys. (Paris) 36, 1363 (1975).
' H. Pleiner and H. Brand, J. Phys. (Paris) L 41, 383

(1980).
i4H. pleiner and H. Brand, in Liquid Crystals of One

and Tue-Dimensional Order and Their Applications,

edited by W. Helfrich and G. Heppke, Springer Series

in Chemical Physics (Springer, Berlin&Heidelberg&

1980), Vol. 11, p. 117.
H. Pleiner and H. Brand, Phys. Rev. A 23, 944 (1981).
E. Dubois-Violette, P. Pieranski, and E. Guyon, Phys.
Rev. Lett. 30, 736 (1973).

' P. Pieranski and E. Guyon, Phys. Rev. A 9, 404
(1974).

' E. Dubois-Violette, E. Guyon, I. Janossy, P. Pieranski,
and P. Manneville, J. Mec. )6, 733 (1977).
E. Dubois-Violette, G. Durand, E. Guyon, P. Manne-
ville, and P. Pieranski, in Liquid Crystals, Solid State
Physics, Suppl. 14, edited by L. Liebert (Academic,
New York, 1978), p. 147.
I. Janossy, J. Phys. (Paris) 41, 437 (1980).
G. E. Volovik and E. I. Kats, Zh. Eksp. Teor. Fiz. (in

press).
H. Brand and H. Pleiner, Phys. Rev. A 24, 2777
(1981).
W. M. Saslow, Phys. Rev. A (in press).

~L. J. Yu and A. Saupe, Phys. Rev. Lett. 45, 1000
(1980).
E. Moritz and W. Franklin, Phys. Rev. A 14, 2334
(1976).
E. Moritz and W. Franklin, Mol. Cryst. Liq. Cryst.
40, 229 (1977).

27F. H. Busse, J. Fluid Mech. 30, 625 (1967).
R. Krishnamurti, J. Fluid Mech. 33, 445, 457 (1968)~

I. Janossy, J. Phys. (Paris) L 42, 43 (1981).


