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V'

Basic features of stimulated Cerenkov radiation are investigated by means of two dif-

ferent quantum-mechanical approaches: (a) a solution of the Klein-Gordon equation in

the presence of a plane wave in a refractive medium, and (b) a classical current interact-

ing with a quantized radiation field, with recoil corrections introduced by hand. Both ap-

proaches lead to identical results. The electron energy spread is obtained in perfect agree-

ment with earlier classical calculations which have been indirectly verified by a recent ex-

periment. The relation between gain and spread turns out to be more favorable than for
the conventional free-electron laser.

I. INTRODUCTION

With the experimental realization of a free-
electron laser, ' interest in other free-electron de-

vices has also increased. In order that an electron
can exchange energy with a laser field, the presence
of a third agent is necessary, which is the wiggler

field in case of the free-electron laser. The very

simplest case is when this third agent is merely a
homogeneous medium represented by a refractive
index n (co}. If an externally applied laser beam is
nearly tuned to the spontaneous Cerenkov radia-
tion, we can expect the same phenomena as in the
case of the free-electron laser: the electron energy
suffers a comparatively large spread which is al-

most symmetric with respect to the initial electron
energy. The amount of detuning of the laser beam
versus spontaneous radiation, determines whether

positive or negative gain occurs, which leads to
bunching of the electron beam at the optical wave-

length. If started from spontaneous emission, the
device could also be run as an oscillator. Theoreti-

V'

cal and experimental aspects of Cerenkov ampli-
fiers and lasers are extensively dealt with in the re-

view papers (Ref. 2}, which also refer to the earlier
literature.

In this payer we will derive the basic features of
stimulated Cerenkov radiation via two different
quantum-mechanical approaches which have been

applied earlier to the free-electron laser. Although
all essential results turn out to be classical, the
derivation by relativistic quantum mechanics is by
no means more complicated than a classical ap-
proach and enhances understanding of the phe-

nomena by presenting them from a very different

viewpoint. Some results, e.g., the relation between

gain and spread, even seem to be more easily acces-
sible via quantum mechanics. We use a highly
idealized model, a monochromatic electron beam

interacting with a monochromatic plane-wave field
for a finite time T, which is applicable in the
small-signal cold-beam noncollective regime.
Under these conditions a consequence of stimulat-

ed Cerenkov radiation, namely, the induced spread
in the electron energy distribution, has recently
been observed experimentally. Our simple model

describes this experiment satisfactorily, showing

that detailed features such as the exact geometry of
the laser beam and the electron distribution, only

play a minor role. An earlier quantum approach
to the Cerenkov laser deals with a different re-

gime (very long interaction time, warm beam}.
Hence it does not exhibit the electron energy

spread, which is characteristic of the cold-beam re-

gime.
In the second section we employ the Kleiri-

Gordon equation in the presence of a mono-
chromatic plane-wave field propagating at some
angle with respect to the electron through a refrac-
tive medium to describe spread and gain of a
Cerenkov amplifier. In the third section we apply
a different approach, a classical electron current
interacting with a quantized radiation field, with
the quantum kinematics reintroduced afterwards

by hand. The second approach, albeit less rigorous
in principle, also includes spontaneous emission.
Both have been successfully applied to the conven-
tional free-electron laser, cf. Ref. 5 and Refs. 6 and

7, respectively.
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II. SEMICLASSICAL FORMULATION tial,

In this approach we consider a relativistic,
quantum-mechanical electron interacting with a
classical electromagnetic field in the presence of a
medium described by an index of refraction n & 1.
The interaction is illustrated in Fig. 1. An electron
with momentum p and energy e propagates along
the z axis, while an electromagnetic wave prop-
agates in the y-z plane at an angle 8 to the electron
beam. The electromagnetic wave is assumed to be

plane polarized in the y-z plane. The interaction is
turned on at t=0 and endures for a time T=L /U,

where U is the electron velocity and L is the in-

teraction length.
The external electromagnetic field in the pres-

ence of the medium is given by the vector poten-

A =A (sin8z —cos8y") cos( k r . to—t), (2.1)

where A is the amplitude of the wave and 6P is the
angle between the direction of propagation of the
electron and wave (see Fig. 1). The only effect of
the medium in the problem is to modify the free-

space dispersion relation

COk= /k/ =n —.
c

(2.2)

Because spin effects can be shown to be unim-

portant, the motion of the electron is determined

by the solution of the Klein-Gordon equation with

the external field (2.1). After some simplifications
this equation can be written as

. eA . c) mc+2i sin8cos(k r cot) —+ — /=0,2g2 g2 g2 Bz
(2.3)

where e and m are the charge and mass of the electron. In particular, we have made use of the geometry il-

lustrated in Fig. 1 and the important inequality

a=me y»mc »%co .

Also, the small coupling between the electron and the radiation field due to the
~

A
~

term has been

dl opped.
The expansion of the electron wave function in terms of plane waves

Q=QC(p, t) exp[i[p r —e(p)t]/A'},
P

reduces Eq. (2.3) to the following systein of equations for the coefficients C( p, t):

(2.4)

(2.5)

.e(p) " - «p~
dt

2i ——C(p, t) — sin8e' i' ( C(p —k, t) exp[ i [e(p ——k) +co]t A/}

+ C(p+ k, t) exp[ i [e(p+—k) —co]t/A'} )=0, (2.6)

where p=
~ p ~

and e(p}=(p c +m c }'~2. By
comparing the second and third terms in Eq. (2.6),
an estimate can be made for the characteristic time
scale r for the variation of C(p, t):

ELECTRON BEAM I i-~ P

MEDIUM

LASER BEAM
V'

FIG. 1. Geometry for stimulated Cerenkov interac-
tion.

r=fie( p }/(eApc sin8) .

From this result, the relative size of the first two
terms in Eq. (2.6} can be determined:

d2

dj
C(p, t)/ e(p) C(p, t) -[e—(p)r]

eAp sin8

e'(p)

which is equal to 10 for the conditions of the
experiment of Ref. 3. We can therefore neglect the
second derivatives of the coefficients C(p, e) with

respect to time. With this approximation and the
following definitions:
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pr=p+Ifik eI =—e(pI)=(pI'c +m c )'

C(pt, t)=at(t) exp[i(et lf—ko e—)tl@],

I =0,+1,+2, . . . (2.7)

the system of Eqs. (2.6) can then be rewritten as

i Suit (et—ifi—co e)a—t

plicated manner through the energy e~. In order to
further simplify the set (2.8), we use the inequality
(2.4) to expand e~ about its initial value e as

' 2 1/2
2!fikcP cos8 Jfikc

EI =6 1+ +
E'

epIcA sin0
(al +1+al —1)

26'I

with the boundary condition

(2.8)

= e+lA'kcpcos8

+— (1—P cos 8),1 (ltrtkc)

2
(2.10)

aI(t =0)=BIp . (2.9)

The above set of equations depends on I in a com-
where P=pc/ .eWith the substitution of this ex-

pansion, the set of Eqs. (2.8) takes the form

l fi(kc) 2 ~ eA P sin8
iat lt—0(npcos8 1)+—— (1—p cos 8) at= — (at &+at &) .

2 E + (2.11)

The expression has been derived from Eq. (2.8)

by neglecting terms of order I and higher and by
replacing pI and el on the right-hand side of Eq.
(2.8) with their initial values. Explicit calculations
of the corrections due to using more exact expres-
sions for these terms and retaining higher powers
of I show that they are small with respect to the
retained terms.

At this point it is worth identifying the principal
parameters that characterize the system. These
parameters are the interaction energy

ePA sin8
e; =%co;=

2

the anharmonicity energy

fi k
e, =%co, = (1—P cos 8),

2E'

the frequency detuning from resonance

6=co(nPcos8 1), —

and the interaction time T.
In order to solve for the wave function of the

electron, i.e., a„'s, we will consider the quasi-
energy (stationary) solution of Eq. (2.11):a„(t)
=b„exp( —iyt), where fiy is the quasienergy and
the b„are constant coefficients that satisfy

ybI —(61+co,l )bI ——co;(bI+)+bI )) .

(2.12)

If Eq. (2.12) is multiplied by exp(ilx), 0&x &2n.,
and the resulting expression summed over l, Eq.
(2.12) changes from a recurrence relation to the

where

P=gbt exp(ilx) .
1

(2.14)

Equation (2.13) is simply Mathieu's equation and

can therefore be solved in terms of Mathieu func-
tions. Unfortunately, a formal solution is not par-
ticularly useful. Instead of pursuing this exact
solution we will follow the procedure used to in-

vestigate the free-electron laser and develop an ap-
proximate solution of Eq. (2.13) that is more useful

than the exact solution. In order to apply this ap-
proximate method it is necessary to determine the
relative sizes of the various terms of Eq. (2.12) or
(2.13).

In order to roughly estimate the maximum size
of I in Eq. (2.11) or (2.12), we investigate the
steady-state equation derived from Eq. (2.11) by
setting at ——0. If, in turn, npcos8=1 and we as-

sume aI -aI ~ and aI+~-0 (all levels with I (I,„
filled), then r =I,„=(

~

c—o;
~

/co, )'r2.

On the other hand, Eq. (2.12) shows that the
time to excite the levels I=+1 is approximately

~
co; ~, so that during an interaction time T,

I= Tco; levels will be excited. If Tco; && r, then the
influence of the anharmonic term is small because
I co, (I/r) coj (QNj This means that the anhar-
monic term in Eq. (2.12) and the term d fldx in

I

following second-order differential equation in x:

d2 . d
co, +id, —2t0; cosx+y /=0,

dx
L

(2.13)
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(2.15)

1 2coiaia
1+ [(n+ —, )e —(n ——, )e ]

2n

Eq. (2.13) can be treated as a perturbation as long
as (to;a3, )'~ T && 1. When the second derivative is
treated as a perturbation, the eigensolutions and
eigenfrequencies of Eq. (2.13) to first order are
given by

p~ =n 5+n cog

P(x,0)= 1 . (2.19)

It is also possible to expand the function P(x, t)
in terms of the quasienergy function (2.15) and

(2.16) as

P(x, t)=pc P (x)e (2.20)

The condition on rP(x, t) at t=0 is determined from

Eq. (2.9) to be

2CO

Xexp i nx — sinx (2.16)
so that

where

—2to; cosx P(x, t), (2.17}

t((x, t)=pa„(t)e', 0&x &2m. . (2.18)

Now that the quasienergy solutions are known,
the time-dependent solution can be determined. In
the same manner by which Eq. (2.12) was trans-
formed into Eq. (2.13), Eq. (2.11) can be trans-
formed into the differential equation

iat((x, t} a' . a
Q~ 2

iy t 2

a„(t)=pc e e '
g (x)dx, (2.21}

with
2~

c =f t(' (x)dx . (2.22)

Equations (2.15), (2.16), (2.21), and (2.22) determine

the wave function of the electron subject to the
condition T(

~
co;

~

to, )'~ && l.
We are now in a position where the small-signal

gain and the spread of the electron momentum can
be calculated. The energy gained or lost by the
electron is given by

he=ficogn
~
a„~ 3

2

2~ „
1+ (2n+1) '" '"+'

(2n 1) n n+1 (2.23}

where

2COI 2COI COg ) 2COI. 2COI.
d„=~2m J„+ 3 (n+ —, )J„+) + (n ——, )J„ (2.24)

8~
G = — phd,

kA
(2.25)

The gain experienced by the radiation field is relat-
ed to the energy lost by the electron through

npe3e P (n 1) 3 3e
—d sinuT sin8

myn d&

(2.26)

where p is the electron density. Although tedious,
the sums in Eq. (2.24) can be performed with the
aid of the recurrence relations for Bessel functions.

The resulting expression for the small-signal
gain is given by

where

u= (1—nPcos8) .COT

2
(2.27)

In a similar manner the energy spread for the
small-signal region can be found to be
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~E=~ X 2
l

12 epA NT sing

Q

(2.28)

Here u is again given by Eq. (2.27). Equations
(2.26} and (2.28) are valid only as long as

p=T( iso; iso
)'i «1. (2.29)

If numbers that are typical of the experiment
are substituted in Eq. (2.29), then p= l. This
would seem to indicate that the small-signal-gain
formula is not applicable for the present experi-
ment. The same problem occurs with the free-
electron laser where, according to a relation simi-
lar to Eq. (2.29), the corresponding small-signal-

gain expression should not be applicable to the
conditions of the original experiment. Yet, agree-
ment between the original experiment and the
predictions of the small-signal gain are rather
good. It is therefore likely that Eq. (2.26) will

give reasonable predictions for the gain under

present experimental conditions.
Although the expression for the energy spread

(2.28) agrees well with a previously published result

(see Ref. 3 and the discussion of this paper) the
formula for the small-signal gain (2.26) differs
from the result published by Gover et al. ' Our
expression is larger by the not insignificant factor
(n —1)P y . In view of this important difference,
the expressions for the small-signal gain and the

energy spread are rederived in Sm. III using a dif-
ferent method.

j (x}=ecP5(x—xp —cpr) p=(p, p,p) (3.2)

is the classical current of the electron, and e is the.

polarization vector of the radiation field with
k.e =0. The total power radiated spontaneouly is
obtained from Eq. (3.1) by integrating over the
phase space of the emitted photons and summing
over polarizations,

(3.3)

while the spread of the final electron energies is

(3.4)

Here N denotes the number of initial photons of
the radiation field. Since z && 1, we have for
N » 1, i.e., for stimulated Cerenkov radiation,

introduce the quantum recoil by hand into the

classical current results, which then allows for cal-
culation the gain. For a detailed description of the
method we refer to Ref. 7. Recently, it has proven

in the case of the free-electron laser, by means of
a rigorous expansion of the fully quantized transi-

tion amplitudes to first order in the recoil, that
this simple approach leads to correct results.

All information is contained in the quantity

T/2 —i( k ~ x —cot) ~.
( )

yn 2 —T/2

(3.1)

where

III. MULTIPHOTON FORMALISM
AE=Wv 2Nz . (3.5)

In this section we shall rederive the results of
Sec. II by a multiphoton formalism which had

been earlier developed in the context of the free-
electron laser. ' In this approach the problem of a
quantized electron interacting with a quantized ra-
diation field in the presence of a medium is made
tractable by replacing, to lowest order, the current
operator of the electron by its classical current,
while retaining the quantized radiation field. This
lowest-order approximation is then exactly soluble.
In the process of replacing the current operator by
the classical current, however, the quantum recoil
has been lost. Hence the lowest order does not
yield gain. We then investigate energy-momentum
conservation for the case in which the electron
emits or absorbs a definite number of photons into
or out of the radiation field. This can be used to

The probability that n photons are emitted is,
for N » 1, given by ' J„(2&Nz). The Bessel
functions are practically zero when the index
exceeds the argument. Hence, invoking energy
conservation, we can conclude that the maximum

energy exchange between the electron and the laser
is

hE,„=2fico tVvz =&25E . (3.6)

Hence in view of Eqs. (3.1)—(3.3) the spontaneous
radiation is linearly polarized with the direction

For specified k =neo/c(sin8 cosP, sin8 siniI), cos8),
a system of two mutually orthogonal polarization
vectors is given by

e ' "=(sing, —cos(t, p),

e ' '=( —cos8cosi)), —cos8siniI'i, sin8) .
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specificed by p' . With p=p' we have
'2

than given by '

2
8ir ePcT sin8 sinuz=

Ace V 2n u
(3.7) G= bz-Vp 8 AE

=2Vpbz
N Bz fico

(3.13)

with u defined in Eq. (2.27). Equation (3.5) repro-
duces the spread of Eq. (2.28), because N/V
=cod n /8~ with A the amplitude of the vector
potential (2.1).

In the limit of T~00, in view of

sin ax' ~ rca5(x),
X

we obtain for the spontaneous power radiated per
unit time:

liin =eiP czn codco d(cos8)sin~8222
T~00 T

in agreement with Eq. (2.26). The bunching ampli-

tude is exhibited in the square of the wave function

of the electron when leaving the wiggler,

=1+ sin(cot —k x+P) . (3.14)
&Nz

Equation (3.13) shows that we actually derived
the gain via a gain-spread relation. Using

B (n i —1)iricoP y 5

Bz 2mc

X 5(1—n p cos8), (3.8) we can rewrite this relation in the common form

Madey's theorem'
which exhibits the well-known power spectrum of
Cerenkov radiation.

To calculate the gain we investigate the quantum
kinematics for the case that the electron emits s
photons (s & 0) or absorbs —s photons (s(0):

p'=p —st, (3.9)

1 —nP cos8— =0,2(1—n )%co

2mc
(3.10)

which exhibits the recoil as a quantum correction
V'

to the classical Cerenkov radiation condition. Re-
placing 1 nPcos8—in Eq. (3.7) by the left-hand
side Eq. (3.10) and expanding the modified z to
first order with respect to the recoil according to

when p(p') is the energy momentum four vector of
the initial (final) electron, p =(E/c) —p
=m c =p', and k = (co/c, k) with k =n ~ /c, is
the wave vector of the laser field. Squaring Eq.
(3.9) we get

( yf —y; ) = —,( n ' —1 )P'y' ( ( y; —yI )' )
~y

(3.15)

5u =5 (1 nP cos8—coT

2
(3.16)

where y; and y~ are related to the electron's initial

and final energy, respectively. The corresponding
relation for the standard helical wiggler free-

electron laser' is identical with Eq. (3.15) except
that the factor (n 1)p y is—missing. For n p= 1,
i.e., cos0=1, this factor is unity. For cos0 slightly
smaller than unity, however, it increases signifi-
cantly. For the values of the Stanford experiment
it is approximately 15, indicating a much more
favorable gain-spread ratio than in the case of the
conventional free-electron laser.

In order that our gain formula applies, we must
have

(1—n )iria)
z 1 —nPcos8 —s

2mc

=z(1 nP cos8)—+s M

defines

(3.11)

where 5 ineans variations with respect to either P,
cos0, or co due to uncertainties in the initial elec-
tron and laser beam. Varying with respect to y, 8,
and co we obtain, respectively,

'2
n.e sin 8(n —1)P cuT 5 sinu

2Vmyn BQ Q

(3.12)

The first-order expansion will restrict us to the
small-signal regime. The condition for its validity
turns out to be identical to Eq. (2.29). The gain is

5yg
nL

50 (—cot0,
L

5co A, dn
1 —nP cos8 —co P cos8

co L dco

(3.17a)

(3.17b)

(3.17c)
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Among these, Eq. (3.17a) seems most easy and Eq.
(3.17b) most difficult to meet. For example, the
parameters of the Stanford experiment do not
satisfy Eq. (2.17b). Equation (2.17c) requires a

highly frequency-independent refractive index.
Equations (2.17a)—(2.17c) are mainly important if
the gain is of interest, whereas the spread essential-

ly survives even if these conditions are not fully

satisfied by the experimental parameters. We em-

phasize that this discussion refers to a Cerenkov

amplifier and not a Cerenkov laser. In the latter
case much more restrictive conditions would apply.

IV. DISCUSSION

bE,„(keV)=38.8[P(MW }]'r (4.1}

giving the maximum energy change of the electron

due to its interaction with the laser in terms of the

peak power P of the laser in megawatts. It is re-

markable that the energy change depends solely on
P Equation. (4.1) was derived" by solving the

Lorentz force equation for an electron in the pres-
ence of a plane wave with a Gaussian intensity
variation and corroborated by computer calcula-
tions with a more accurate laser profile. We ob-

tain from Eq. (2.29}

2
coT—sinOmc

eA v

mc2
(4.2)

assuming exact resonance so that (sinu/u)~=1.
Relating the amplitude A of the vector potential of
the laser field with wavelength A, to its peak inten-

sity I in W/cm by

In the recent Stanford experiment, attention was

focused on the spread as the most pronounced
feature. Although the spread could not directly be
measured, data are consistent with the formula

=8.52X10 l((cm)[I(W/cm )]'
mc

(4.3)

bE(keV ) =27.4 [P(MW) ] (4.4)

This specifies the average spread; the approximate
maximum energy change (in a quantum treatment

there is no definite upper limit for the energy

change) is in view of Eq. (3.6) bE,„-V2bE
=38.7P' . Since we used a highly idealized

description of the laser field, the almost complete

agreement with Eq. (4.1) is surprising. It indicates

that the spread, being the most pronouned feature
of stimulated Cerenkov radiation, is not at all sen-

sitive to the detailed geometry of the experiment.
Our expression for the gain differs from an ex-

pression obtained earlier' by means of the plasma

physics dispersion relation approach essentially by
the factor (n —1)y P2. This is the same factor
which occurs on the right-hand side of the gain-

spread relation (3.15). As has been pointed out

above, this is not an insignificant discrepancy. At
present we do not have an explanation for this

difference.

ACKNOWLEDGMENTS

We are indebted to Avraham Gover for discus-
sions. One of us (W. B.) would like to thank Mar-
ian O. Scully and the Institute for Modern Optics
for the hospitality extended to him, and the
Alexander-von-Humboldt Foundation for a
Feodor-Lymen grant. This work was supported by
the Office of Naval Research.

and noting that the length L =vT of the interaction
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